• 검색 결과가 없습니다.

Lecture 10

N/A
N/A
Protected

Academic year: 2022

Share "Lecture 10"

Copied!
28
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Equations of Continuity and Motion (1/6)

(2)

10.1 Continuity Equation

10.2 Stream Function in 2-D, Incompressible Flows 10.3 Rotational and Irrotational Motion

Objectives

- Derive 3D equations of continuity and motion

- Derive Navier-Stokes equation for Newtonian fluid - Study solutions for simplified cases of laminar flow

- Derive Bernoulli equation for irrotational motion and frictionless flow - Study solutions for vortex motions

(3)

fluid dynamics, the three-dimensional expressions for conservation of matter and the momentum equations of motion are developed.

conservation of mass → continuity eq.

conservation of momentum → eq. of motion → Navier-Strokes eq.

x y z

  

[Re]

Infinitesimal (differential) control volume ( ) → point form Finite control volume – arbitrary CV → integral form

(4)

Apply principle of conservation of matter to the differential CV

→ sum of net flux = time rate change of mass inside C.V.

1) mass flux per unit time (mass flow)

mass vol

Q u A

timetime  

    

(5)
(6)

= flux in –flux out

∙ net flux through face perpendicular to y -axis

∙ net flux through face perpendicular to z -axis

( u ) ( u )

u y z u x y z x y z

x x

 

                  

( v )

x y z y

     

( w )

x y z z

     

(A)

(7)

( x y z ) t

    

(B)

Thus, equating (A) and (B) gives

( ) ( ) ( )

( ) u v w

x y z x y z x y z x y z

t x y z

  

                    

   

( ) ( )

LHS x y z x y z x y z

t t t

  

  

           

  

(8)

Since C.V. is fixed →

0

t

LHS x y z

t

     

Cancelling terms makes

( ) ( ) ( )

u v w 0

t x y z

   

   

   

   

0 t q

 

    

→ Continuity Eq. for compressible fluid in unsteady flow (point form) (10.1)

(9)

(  q ) q   q

      

I II

gradient divergence

(I): q ( ui vj wk ) i j k

x y z

  

            

u v w

x y z

  

  

  

  

(II): u v w

q x y z

           

  q u v w u v w

x y z

x y z

   

               

(i)

(10)

u v w 0

u v w

t x y z x y z

    

      

        

        

d dt

d u v w 0

dt      xyz   

( ) 0

d q

dt      

(10.2a)

(10.2b)

0

t q

 

    

(10.1)

(11)

d dx dy dz dt t x dt y dt z dt

        

   

   

u v w

t x y z

   

   

   

   

1) For steady-state conditions

t 0

  

 

(12)

Then (10.1) becomes

( ) ( ) ( )

( ) 0

u v w

x y z q

   

  

     

  

(10.3)

2) For incompressible fluid (whether or not flow is steady)

d 0

dt

  

Then (10.2) becomes

u v w 0 x y z q

  

     

  

(10.5)

(10.4)

d u v w 0

dt      xyz   

(13)

radial

, - u r

azimuthal

, - v

axial

, - w z

For compressible fluid of unsteady flow

1 ( ) 1 ( ) ( )

ur v w 0

t r r r z

   

   

   

   

For incompressible fluid

1 ( ) 1

ur v w 0

r r rz

  

  

  

(14)

( )

0, 0, v 0

t r z

    

 

    

    

    

1 ( )

ur w 0

r r z

 

  

 

→ 2-D boundary layer flow Example: submerged jet

r, u

z, w

(15)

In 2D flowfield, define stream function yx, y) as

u v 0

x y

 

 

 

(10.6)

u y

y

 

v x

y

 

(10.8)

(10.7)

• Then, we can have a simplified equation to determine only one unknown function.

(16)

→ Thus, continuity equation is satisfied.

2) Apply stream function to the equation for a stream line in 2-D flow Eq. (2.10):

Substitute (10.7) into (10.10)

(10.9)

2 2

=0

u v

x y x y y x x y x y

y y y y

 

                                  

0

vdxudy

(10.10)

= =0

dx dy d

x y

y y y

 

  

(10.11)

y = constant (10.12)

→ The stream function is constant along a streamline.

(17)

Substitute (10.7) into (10.13)

qdn udy vdx

   

(10.13)

qdn dy dx d

y x

y y y

 

   

 

(10.14)

→ Change in y (dy between adjacent streamlines is equal to the volume rate of flow per unit width (m2/s).

(18)

 Stream function in cylindrical coordinates radial

v

r

r y

  

azimuthal

v

r

y

 

the direction of flow is in the negative x- direction, from right to left.

(19)

 Motion of fluid: displacement, rotation

1

v v x v t

x v

t x x

              

       

 

 

  

1) The time rate of rotation of x -face about z -axis

Assume the rate of rotation of fluid element x and y about z-axis is positive when it rotates counterclockwise.

(20)

2) The time rate of rotation of y -face about z - axis

3) The net rate of rotation = average of rotations of x -and y -face

1

u u y u t

y u

t y y

        

       

 

   

  

1

z

2

v u

x y

       

(21)

1

x

2

w v

y z

       

1

y

2

u w

z x

       

(10.15)

1) Rotation

1 1 1

2 2 2

w v u w v u

i j k

y z z x x y

                     

 

1 1

2 q 2 curl q

   

(10.16)

(22)

2 2 2

x y z

      

a) Irrotational flow → Ideal fluid

0

   q

x y z

0

     

, ,

w v u w v u

y z z x x y

     

  

     

(10.17)

b) Rotational flow → Viscous fluid

0

   q

(23)

Rotational flow

(24)

Irrotational flow

Rotational flow

(25)

2 curl q q

      

 Rotation in cylindrical coordinates

1 1 2

z r

v v

r z

 

 

       

1 2

r z

v v

z r

     

1 1

2

r z

v v v

r r r

 

 

 

         

(10.18)

(26)

G = line integral of the tangential velocity component about any closed contour S

10.3.2 Circulation

G   q ds

(10.19)

(27)

2 2 2 2

u dy v dx u dy v dx

d u dx v dy u dx v dy

y x y x

           

G                            

v u

x y dxdy

   

       

v u

d dxdy

x y

    G        

 

2

z

z

A A A

v u

dA dA q dA

x y

   

G               

(10.20)

(28)

circulation G  0 (if there is no singularity vorticity source).

[Re] Fluid motion and deformation of fluid element translation

Motion

rotation

linear deformation Deformation

angular deformation

참조

관련 문서

Derive the expression for the total force per unit width exerted by the sluice gate on the fluid in terms of vertical distances shown in Fig?. Derive the equation for the

I=0 for incompressible fluid III=0 for simple shear flow.. limitations

The purpose of this study was to propose the instructional strategies for teaching three-dimensional geometry to students with visual impairments by

- introduce laws of similitude which provide a basis for interpretation of model results - study dimensional analysis to derive equations expressing a physical relationship

→ Bernoulli equation can be applied to any streamline.. The concepts of the stream function and the velocity potential can be used for developing of differential

For irrotational flow of ideal incompressible fluid, the Bernoulli’s equation applies over the whole flow field with a single energy line. Exact velocity field

Hele-Shaw flow (potential flow) Van Dyke, Album of Fluid Motion (1982).. 2017

- Derive Bernoulli equation for irrotational motion and frictionless flow - Study solutions for vortex motions.. can be obtained by integrating Navier-Stokes equation for