• 검색 결과가 없습니다.

Energy conserving successive multi-stage method for the linear wave equation

N/A
N/A
Protected

Academic year: 2022

Share "Energy conserving successive multi-stage method for the linear wave equation"

Copied!
16
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Energy conserving successive multi-stage method for the linear wave equation

Jaemin Shin

a

, June-Yub Lee

b

,∗

aDepartmentofMathematics,ChungbukNationalUniversity,Cheongju28644,RepublicofKorea bDepartmentofMathematics,EwhaWomansUniversity,Seoul03760,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received18August2021

Receivedinrevisedform4February2022 Accepted21February2022

Availableonline25February2022

Keywords:

Linearwaveequation Energyconservation High-ordertimeaccuracy

SuccessiveMulti-Stage(SMS)method

We propose a new high-order multi-stage method to solve the linear wave equation in an unconditionally energy stable manner. ThisSuccessive Multi-Stage (SMS) method is extended from the Crank–Nicolsonmethod and unconditional energyconservation is guaranteed. We develop up to the sixth-orderSMS methodusing the order conditions for Runge–Kutta methods and provide mathematical arguments showing that the SMS method is adifferent branch from well-known high order energy preserving methods for Hamiltonian systems.We present aproof of theunique solvabilityand numerically demonstratetheaccuracyandstabilityoftheproposedmethodscomparedwithcompari- sons.

©2022ElsevierInc.Allrightsreserved.

1. Introduction

Linearwaveequationsappearinmanyfieldsofphysicsandhaveplayed asignificant roleinmathematicalmodelingfor transientphysicalphenomena.Forinstance,theyarisewhenconsideringtheMaxwellequationsforelectromagnetism [1,2], theacousticequationforsoundpropagation [3,4],andtheelastodynamicequationforwavepropagationinsolids [5,6].One ofthemostimportantpropertiesofwaveequationsisenergyconservation.

Inthispaper,weintroduceahigh-orderenergyconservingnumericalschemeforthelinearwaveequation,

κ

utt

= ∇ · (

M

u

) ,

(1)

where M

=

M

(

x

)

is asymmetric positivedefinite matrix and

κ = κ (

x

)

isa strictly positivefunction. Equation (1) might becompletedwithspecificboundaryconditionsinaboundeddomain

 ⊂ R

d

(

d

=

1

,

2

,

3

)

.Forsimplicity,weconsiderthe periodicboundaryconditionalongtheedgesofcomputationaldomainwhere

κ (

x

)

andM

(

x

)

areconstantsrepresentingthe homogeneous backgroundmedium.Homogeneous Neumannboundarycondition n

· (

M

u

) =

0 orhomogeneous Dirichlet boundaryconditionu

=

0 canbeeasilyimposedusingevenoroddextensionofthesolution,respectively.Thecorresponding energyof (1) canbewrittenasasumofthekineticandthepotentialenergiesofthesystem,

E

(

t

) =

1 2







κ

u2t

+  

M12

u

 

2



dx

,

(2)

*

Correspondingauthor.

E-mailaddress:jyllee@ewha.ac.kr(J.-Y. Lee).

https://doi.org/10.1016/j.jcp.2022.111098

0021-9991/©2022ElsevierInc.Allrightsreserved.

(2)

where

 

M12

u

 

2

= (∇

u

,

M

u

)

.Itisworthnotingthatwhenconsideringtheperiodicorhomogeneousboundaryconditions, theenergy (2) isconservedwithrespecttotime,asdemonstratedbyintegrationbyparts:

d dtE

(

t

) =





( κ

ututt

ut

∇ · (

M

u

))

dx

=

0

.

(3)

Notethatnon-zeroDirichletorNeumannboundaryconditionscanbealsoconsideredusinganadditive patchtothesolu- tion,however,theenergydefinedin(2) isnolongerconservedwithoutfurthermodification.

Therehavebeenplentyofdiscussionsfornumericalmethodstosolvethewaveequations.Forthelong-timesimulation, consequently,energy-conservinghigh-ordermethodshavebeenattractingmuchattentiontodeterminethephaseandshape of thewavesasaccurately andstablyas possible.Also, therehas beenintensiveresearch on thenumerical treatmentof quasi-linearwave equationsorevenHamiltonianpartialdifferential equations(PDEs)overthepast decades.Forexample, theaveragevectorfieldmethod [7] hasbeenappliedtotheHamiltonianPDEswithconstantsymplecticstructure.And,the discretevariationalderivativemethod [8] hasbeenproposedtothefamilyofnonlinearwaveequationsbyconstructingthe discreteversion oftheenergyfunction.Therearealsostudiesfocused onfindingconditionsforenergyconservationinRK methods,forexample,asymplecticRKmethodwasdevelopedin [9–11].

Ourultimategoalis topresenta newRK-basedhigh-order energypreservingmethodforquasi-linearwave equations orwiderangeofHamiltoniansystems.Todemonstratethatourmethodisinadifferentbranchfromexistingmethods,we focus onthe linearwave equations forthe simplicityofargument inthispaper. Consideringenergy-conservingmethods forlinearwaveequations,itisnoteworthyreferringtotheapproach,basedontheleap-frogmethod,tobecomparedwith ourmethod.Theleap-frog methodisawell-knownmulti-stepmethodtosolve thewaveequation andhasbeenused for manyapplicationsandsimulations [12].Itisaccuratetothesecond-order,butstability isnotguaranteedwithlargertime stepsizes. Manystudieshaveintroduced energy-conservingmethods,such asthetamethods [13–15],by generalizing the leap-frogmethod.Ontheotherhand,itiswellknownthatthestandardCrank–Nicolsonmethodpreservestheconservation lawsofthe linearwave equation,butitjust hasthe second-orderaccuracy. Sowe extendtheCrank–Nicolsonmethodto constructthehigh-ordermethodwithguaranteeingenergyconservationanddemonstratethattheCrank–Nicolsonmethod basedRKmethodisdifferentfromtheexistingRKones.

Inthispaper,we proposeasuccessivemulti-stage(SMS)methodasahigh-order energyconservingnumericalscheme.

We start by constructing a framework that guarantees energy conservation.The proposed methodcan be considered as an RK method, making it is easy to find a proper coefficient set for high-order accuracy. We note that SMS methods are different from the existing symplectic RK methods. Specifically, our proposed methods do not satisfy the condition bibj

biai j

bjaji

=

0 in [11].Thatis,SMSmethodsconstituteanewclassofhigh-ordermulti-stagemethodsthatguarantee energyconservation.

We first provide a proof that the Crank–Nicolsonmethod is unconditionally energy conserving inSection 2, andwe extend thisidea to an s-stageSMS methodin Section 3. In Sections4 and5, we numerically demonstratethe order of theaccuracyaswell asenergyconservationinoneandhigherdimensions.Finally,conclusionsare drawninSection 6.In addition,we brieflyintroduce thederivationoforderconditionsforthe linearRunge–KuttamethodintheAppendix.It is worth notingthat weonlyconsidertemporalaccuracyinthispaper,thussemi-discretenumericalschemesare presented.

Fourierspectralmethodsareusedforspatialderivatives,andallsimulationsareexecutedusingtheMATLABprogramviaa fastFouriertransform.

2. ClassicalCrank–Nicolsonmethod

Bydefininganauxiliaryvariablev

=

ut,wecanrepresentthelinearwaveequation (1) incanonicalformas ut

=

v

,

vt

=

1

κ ∇ · (

M

u

)

(4)

andtheenergy (2) inHamiltonianformas

H (

u

,

v

) =

1

2







κ

v2

+  

M12

u

 

2



dx

.

(5)

Forthesemi-discreteformulation, wedenoteun andvn asapproximationsofu



·,

tn



andv



·,

tn



,wheretn

=

n

Δ

t and

Δ

t isatimestepsize.Wefirstconsiderthewell-knownCrank–Nicolsonmethod

un+1

un

Δ

t

=

vn+1

+

vn

2

,

vn+1

vn

Δ

t

=

1

κ ∇ ·



M

un+1

+

un 2

 .

(6)

(3)

Lemma1.TheCrank–Nicolsonmethod (6) isunconditionallyenergyconserving,meaningthatforanytimestepsize

Δ

t,

H 

un+1

,

vn+1



= H 

un

,

vn



.

(7)

Proof. Wefirstcalculatethedifferenceinenergyfunctionals,

H 

un+1

,

vn+1



H 

un

,

vn



=

1 2





κ 

vn+1



2

κ 

vn



2

+ 

M

un+1



2

− 

M

un



2dx

.

(8)

Forthefirsttwotermsof(8),wecanrearrangethemas 1

2





κ 

vn+1



2

κ 

vn



2

dx

=

1 2





κ 

vn+1

vn

 

vn+1

+

vn



dx

= Δ

t 4







vn+1

+

vn



∇ · 

M

∇ 

un+1

+

un



dx

= − Δ

t 4





∇ 

vn+1

+

vn



· 

M

∇ 

un+1

+

un



dx

.

(9)

Forthelasttwotermsof(8),wecanexpandas 1

2





 

M12

un+1

 

2

−  

M12

un

 

2dx

=

1 2





∇ 

un+1

un



· 

M

∇ 

un+1

+

un



dx

= Δ

t 4





∇ 

vn+1

+

vn



· 

M

∇ 

un+1

+

un



dx

.

(10)

Adding(9) and(10),weobviouslyhave

H 

un+1

,

vn+1



H 

un

,

vn



=

0.



Remark1.Lemma1impliesthattheenergycorrespondingtothenumericalsolution



un

,

vn



oftheCrank–Nicolsonmethod isaphysicalconstantE

(

t

)

,

H 

un

,

vn



= H 

u0

,

v0

=

E



t0

.

(11)

3. Successivemulti-stagemethods

We nowpropose a successivemulti-stage (SMS)methodasan extension ofthe Crank–Nicolsonmethodto an s-stage method,referredtoasSMS(Rs),withagivencoefficientvector

Rs

=

[r1

,

r2

, · · · ,

rs]

.

(12)

TheSMS(Rs)isaone-steps-stagemethodthatcomputesthenextapproximation



un+1

,

vn+1



from



un

,

vn



.Wesetu0

=

un andv0

=

vnfortheinitial-stage,andthencalculatetheintermediatevalue

(

ui

,

vi

)

bysolving

ui

ui1

Δ

t

=

ri

(

vi

+

vi1

) ,

vi

vi1

Δ

t

=

ri

κ ∇ · (

M

∇ (

ui

+

ui1

)) ,

(13)

fori

=

1

,

2

, · · · ,

s.Finally,wehaveun+1

=

usandvn+1

=

vs.WenotethatSMS(R1)withacoefficientvector R1

=

1

2

(14)

is identicalto theCrank–Nicolson method(6), whichprovides second-order accuracy. Forhigherorder accuracy, we will describetheorderconditionsforthecoefficientvector Rs inSection3.3.Beforeintroducingaspecificexample,weprovide proofsoftheuniquesolvabilityandenergyconservationinSections3.1and3.2,respectively.

(4)

3.1. Uniquesolvability

Theorem2.TheSMS(Rs)method (13) isuniquelysolvableforanytimestepsize

Δ

t.

Proof. Foreachstagei

=

1

,

2

, · · · ,

s,weneedtosolve ui

ri

Δ

t vi

= ϕ

i

,

vi

ri

κ Δ

t

∇ · (

M

ui

) = ψ

i

,

(15)

where

ϕ

i

=

ui1

+

ri

Δ

t vi1 and

ψ

i

=

vi1

+

ri

Δ

t

∇ · (

M

ui1

)

.Thesystem(15) canberepresentedas ui

r2i

Δ

t2

κ ∇ · (

M

ui

) = ϕ

i

+

ri

Δ

t

ψ

i

,

(16)

whichhasauniquesolutionui foranytimestepsize

Δ

t,since I

ri2

Δ

t2

κ ∇ · (

M

∇)

(17)

is an invertibleoperator withall eigenvalues bigger than 1 for givenpositive function

κ

and negative definite operator

∇ · (

M

∇)

.Usingthesolutionui from(16),wecaneasilyobtainauniquesolutionofviby(15).



3.2. Energyconservation

Theorem3.ForeachintermediatestageoftheSMS(Rs)method (13),theenergyisconservedforanytimestepsizeri

Δ

t,

H (

ui

,

vi

) = H (

ui1

,

vi1

) .

(18)

Moreover,theproposedmethod (13) isunconditionallyenergyconserving,meaningthat

H 

un+1

,

vn+1



= H 

un

,

vn



foranytime stepsize

Δ

t.

Proof. SimilarlytotheproofofLemma1,wefirstconsiderthedifferenceofadjacentdiscreteenergyfunctionals,

H (

ui

,

vi

)H (

ui1

,

vi1

)

=

1 2





κ

v2i

κ

v2i1

+  

M12

ui

 

2

−  

M12

ui1

 

2dx

.

(19)

Thetwopartsof(19) canbeexpandedas 1

2





κ

v2i

κ

v2i1dx

= −

ri

Δ

t 2





∇ (

vi

+

vi1

) · (

M

∇ (

ui

+

ui1

))

dx

,

(20)

1 2





 

M12

ui

 

2

−  

M12

ui1

 

2dx

=

ri

Δ

t 2





∇ (

vi

+

vi1

) · (

M

∇ (

ui

+

ui1

))

dx

.

(21)

Thenwehave

H (

ui

,

vi

) = H (

ui1

,

vi1

)

foranyri

Δ

t,i

=

1

, · · · ,

s.Therefore,

H 

un+1

,

vn+1



= H (

us

,

vs

) = H (

u0

,

v0

) = H 

un

,

vn



(22) whichprovesconservationofthediscreteenergyfunctional

H 

un

,

vn



.



3.3. Temporalaccuracy

WecanconsideraframeworkoftheRunge–Kutta(RK)methodtoshowthetimeaccuracyfortheSMSmethod.Summing (13) uptothei-thstage,thedifferencebetweeni-thstage

(

ui

,

vi

)

andinitial-stage

(

u0

,

v0

)

valuescanbewrittenasalinear combinationofthepreviousstagevalues:

ui

u0

Δ

t

=

i j=1

rj



vj

+

vj1

 ,

vi

v0

Δ

t

=

i j=1

rj

κ ∇ ·



M

∇ 

uj

+

uj1

 .

(23)

(5)

Next,(23) canbefurthersimplifiedastheRKmethod,

ui

u0

Δ

t

=

i j=0

ai jvj

,

vi

v0

Δ

t

=

i j=0

ai j

κ ∇ · (

M

ui

) ,

(24)

whereai0

=

r1,aii

=

ri,andai j

=

rj

+

rj+1 for j

=

1

,

2

, · · · ,

i

1.Furthermore,theSMS(Rs)method (13) canbedescribed bytheButchertablefortheRKmethod,

c A bT

=

0 0 0 0

· · ·

0

c1 r1 r1 0

· · ·

0

c2 r1 r1

+

r2 r2

· · ·

0

.. . .. . .. . .. . . . . .. .

cs r1 r1

+

r2 r2

+

r3

· · ·

rs

r1 r1

+

r2 r2

+

r3

· · ·

rs

,

(25)

whereA

∈ R

(s+1)×(s+1),b

∈ R

s+1,andc

=

A1 with1

= (

1

,

1

, . . . ,

1

)

T

∈ R

s+1.

Becauseofthelinearityandautonomyofthegivenwaveequation (1),weconsiderthelinearRKmethod,whichisbriefly explainedinAppendix.Theorderconditionforthe p-thorderaccuracyisbTAq11

=

1

/

q

!

for1

q

p.

Fornumerical simulations,we need a specifictable forthe desiredaccuracy. We nowconstruct thecoefficient vector Rs fromtherelationship betweentheSMSandlinearRKmethods. Wefirst considerasingle coefficient vector R1

=

[r1].

ConsideringthestructureoftheSMSmethod,wehavethecorrespondingmatrixA andvectorb as A

=

0 0

r1 r1

 ,

b

=

r1

r1



.

(26)

Tosatisfythefirst-orderconditionbT1

=

1,weneedr1

=

1

/

2,whichalsosatisfiesthesecond-orderconditionbTA1

=

1

/

2.

Thus,theSMSmethodbeginswithsecond-orderaccuracyandR1

=

1

2

isonlyonecaseofthesecond-orderSMSmethod.

Wenotethatthereisnosolutionforthetwo-stagecoefficientvectorR2

=

[r1

,

r2] thatsatisfiestheorderconditionsupto third-orderaccuracy.WenowchooseapossiblechoiceofthecoefficientvectorR3

=

[r1

,

r2

,

r3],whichimpliesathree-stage SMSmethod,andconsidercorrespondingmatrixA andvectorb as

A

=

⎢ ⎢

⎢ ⎢

⎢ ⎣

0 0 0 0

r1 r1 0 0

r1 r1

+

r2 r2 0 r1 r1

+

r2 r2

+

r3 r3

⎥ ⎥

⎥ ⎥

⎥ ⎦ ,

b

=

⎢ ⎢

⎢ ⎢

⎢ ⎣

r1 r1

+

r2

r2

+

r3

r3

⎥ ⎥

⎥ ⎥

⎥ ⎦

.

(27)

Tosatisfythefirst-orderconditionbT1

=

1,thecoefficientsshouldsatisfy r1

+

r2

+

r3

=

1

2

,

(28)

whichalsosatisfiesthesecond-orderconditionbTA1

=

1

/

2,justasinthecaseoftheone-stageSMSmethod (26).Withthe identity (28) andthethird-orderconditionbTA21

=

1

/

6,wehavethefollowingidentity:

1

2bTA21

=

r31

+

r32

+

r32

+

2



r21r2

+

r12r3

+

r22r1

+

r22r3

+

r23r1

+

r32r2

+

4r1r2r3

= (

r1

+

r2

+

r3

)

3

− (

r1

+

r2

)(

r2

+

r3

)(

r3

+

r1

)

=

r1

+

r2

+

r3

4



1 2

r3

 

1 2

r1

 

1 2

r2



=

1

12

.

(29)

Thus,

r1r2

+

r1r3

+

r2r3

2r1r2r3

=

1

12

.

(30)

(6)

Fig. 1. Coefficients of R3for fourth-order accuracy.

We note that the coefficientssatisfying up to third-order conditions also satisfy the fourth-order condition. In fact, the identity (28) andtheconditionbTA31

=

1

/

24 inducethesameresultasin (30) since

1

2bTA31

= (

r1

+

r2

+

r3

)

4

2

(

r1

+

r2

+

r3

)(

r1

+

r2

)(

r2

+

r3

)(

r3

+

r1

)

=

r1

+

r2

+

r3

4

1

16



1 2

r3

 

1 2

r1

 

1 2

r2



=

1

48

.

(31)

Inconclusion,weneedonlytworelations(28) and(30) toachievethefourth-orderaccuracy.

Now, for finding R3 to construct three-stage fourth-order SMS methods, we set a free parameter r1

= γ

. Then the parametersr2 andr3satisfy

r2

+

r3

=

1

2

γ

2

,

r2r3

=

1

6

γ +

12

γ

2

12

(

1

2

γ ) .

(32)

Fig.1showsthecoefficientsof R3 withrespecttotheparameter

γ >

1

/

2,whichisthesolvableregion.Thisfigureimplies that thereare infinitelymanythree-stage fourth-order SMSmethods.Choosing

γ =

0

.

8 forthe numericalsimulation,we have

R3

( γ )

[0

.

8

,

0

.

599258893

,

0

.

899258893]

.

(33)

Asweobserveintheidentity (28) and(30),anypermutationofthesolutionr1,r2,andr3 inR3 satisfiesthesameorder conditionsuptofour.Infact,thefollowingtheoremprovesthatthispermutationinvariantpropertyisgenerallytrueforall s-stageSMSmethods.

Theorem4.Forans-stageSMSmethodwithacoefficientvectorRs,thevalueofbTAp1 forp

0 isinvariantunderthepermutation ofRs

=

[r1

,

r2

, · · · ,

rs].

Proof. Without loss of generality, we consider a swapped coefficient vector R

ˆ

s

:=

r1

, · · · ,

rk1

,   

rk+1

,

rk

,

rk+2

, · · · ,

rs



for 0

<

k

<

s andprovethat

bTAp1

= ˆ

bTA

ˆ

p1 (34)

whereA,

ˆ

b,

ˆ

andc are

ˆ

thematrixandthevectorsintheButchertablecorrespondingtotheswappedcoefficientvector R

ˆ

s. Weobservethat entriesai j ofA anda

ˆ

i j ofA are

ˆ

differedbyd

=

rk+1

rk onlyata fewpoints,sowe denoteA

ˆ =

A

+

dD whereD

∈ R

(s+1)×(s+1) havezeroentriesexcept Di,k1

=

1

,

i

k, Dk,k

=

1,andDi,k+1

= −

1

,

i

>

k. Alsoentriesofb,

ˆ

c are

ˆ

samewithb,c except

b

ˆ

k1

=

bk1

+

d

, ˆ

bk+1

=

bk+1

d

,

and c

ˆ

k

=

ck

+

2d

.

(35) Inthecaseof p

=

0,(34) is obviousbT1

= ˆ

bT1.Letc(p)

:=

Ap1 and c

ˆ

(p)

:= ˆ

Ap1,thenweclaimthat thefollowingidentity holdsforp

1,

ˆ

c(p)

=

c(p)

+ β

pe

, β

p

=

d rk

+

rk+1



c(kp+)1

c(kp)1

,

(36)

(7)

wheree

∈ R

s+1 isthestandardunitvector withek

=

1.For p

=

1,itisatrivialstatementsincec

ˆ

k

=

ck

+

2d,

ˆ

ci

=

ci

,

i

=

k, and

β

1

=

rk+drk+12



rk

+

rk+1

 =

2d.Weprovethisassertion(36) for p

>

1 bymathematicalinduction.

ˆ

c(p+1)

= (

A

+

dD

)



c(p)

+ β

pe

=

c(p+1)

+

dDc(p)

+ β

pAe

+

d

β

pDe

.

(37)

Fori

<

k,

ˆ

c(ip+1)

c(ip+1)

=

0 since Di,j

=

ai,k

=

0.Incaseofi

>

k,c

ˆ

(ip+1)

c(ip+1)

=

d



c(kp)1

c(kp+)1

+ β

pai,k

=

0 duetothe mathematicalinductionassumptionfor

β

p.Fori

=

k,usingak,k

+

dDk,k

=

rk+1,weget

ˆ

c(kp+1)

c(kp+1)

=

d



ck(p)1

+

c(kp)

+ β

prk+1

=

d

rk

+

rk+1



rkc(kp)1

+ (

rk

+

rk+1

)

c(kp)

+

rk+1ck(p+)1

.

(38)

Ontheotherhand,bythedefinitionofc(p+1)

=

Ac(p),wehave c(kp++11)

c(kp+11)

=

s j=0



ak+1,j

ak1,j



c(jp)

=

rkc(kp)1

+ (

rk

+

rk+1

)

ck(p)

+

rk+1c(kp+)1

.

(39)

Bycombining(38) and(39),weconcludethemathematicalinduction(36) forp

+

1

β

p+1

:= ˆ

c(kp+1)

ck(p+1)

=

d

rk

+

rk+1



c(kp++11)

c(kp+11)

.

(40)

Finally,(35) and(36) impliestheinvariant, b

ˆ

TA

ˆ

p1

bTAp1

=

s i=0



b

ˆ

ic

ˆ

(ip)

bic(ip)

= (ˆ

bk1

bk1

)

ck(p)1

+

bk

c(kp)

ck(p)

) + (ˆ

bk+1

bk+1

)

c(kp+)1

=

d



c(kp)1

c(kp+)1

+ (

rk

+

rk+1

p

=

0

. 

(41)

The p-thorderSMS(Rs)involvesthesystemofpolynomialequationsbTAq11

=

q1! ofdegreeq

=

1

, · · · ,

p withrespect tor1

,

r2

, · · · ,

rs,thus finding Rs bydirectlysolving thesystemofp-thorderpolynomial equationsisnota trivialtaskfor p

>

2.Wenowbrieflyexplainhowtofindas-stageSMScoefficientsvector Rs

=

[r1

,

r2

, · · · ,

rs] forsixth-orderaccuracy.

The first-ordercondition israthertrivial.For s

1, givenr1

, · · · ,

rs1,we choosers

=

rs

(

r1

, · · · ,

rs1

) =

1

/

2

− 

s1 i=1ri, satisfyingthefirst-orderconditionbT1

=

1.Thisisjustasimpleextensionof(28).ThenitisalsoeasytoshowthatSMS(Rs) withRs

=

[r1

, · · · ,

rs1

,

rs

(

r1

, · · · ,

rs1

)

] satisfiesthesecond-orderconditions,bTA1

=

1

/

2.

Nextstep istofind lasttwo coefficientsrs1 andrs forgivenr1

, · · · ,

rs2 satisfyingboth ofthefirst- and third-order conditionscorrespondingtobT1

=

1 andbTA21

=

1

/

6,respectively.Ifwechooserstosatisfythefirst-orderconditionthen thethird-orderconditionisjust apolynomialequationforrs1,whichisagainan extensionof(30).Herewedonotshow thedetails butwehavean explicitformulaforrs1 andrsasa functionofr1

, · · · ,

rs2 fors

3 andthe solutionpairis uniqueuptopermutationifitexists.Thisissimilarto(32) whichisthecaseofs

=

3.Aratherlengthyalgebraiccalculation proves that a third-orderSMS(Rs) wherers1

=

rs1

(

r1

, · · · ,

rs2

)

andrs

=

rs

(

r1

, · · · ,

rs2

)

alsosatisfies thefourth-order condition,bTA31

=

1

/

24.

Finally we tryto seekan s-stageSMS(Rs) satisfyingthefirst-,third-,andfifth-order conditions.Forgivenr1

, · · · ,

rs3 withs

3,weformafifthpolynomialequationasafunctionof

γ =

rs2 tosolvebTA41

=

1

/

120 with

Rs

=

[r1

, · · · ,

rs3

, γ ,

rs1

,

rs] (42)

where rs1

=

rs1

(

r1

, · · · ,

rs3

, γ )

andrs

=

rs

(

r1

, · · · ,

rs3

, γ )

are given by the explicit formula forthe first- and third- conditions.Thoughthereisnosimplealgebraic formulaon

γ

,we numericallyimplementthissolverfordoubleprecision accuracyandfigureoutthatthereisnosolutionwiths

4.Fig.2showsthedottedplotof

(

r1

,

r2

)

where

R5

(

r1

,

r2

) =

[r1

,

r2

,

r3

(

r1

,

r2

),

r4

(

r1

,

r2

,

r3

),

r5

(

r1

,

r2

,

r3

)

] (43) is a solution for the fifth-order condition. For the numerical observation, we consider a domain for the coefficients as

(

r1

,

r2

)

[

1

.

5

,

2

.

5]2 anduniformspacingwith0

.

05.Forexamples,numericalvaluesuptosingleprecisionaccuracy

R5

(

1

,

1

.

5

)

[1

,

1

.

5

,−

1

.

474930077

,

1

.

109591016

,

0

.

584521093]

,

(44) R5

(

2

,

1

)

[2

,

1

,

1

.

074758082

,−

1

.

995305362

,

0

.

570063445]

,

(45)

(8)

Fig. 2. Pairs of r1and r2where R5has a solution of the fifth-order accuracy.

andtheir permutationsare thesolutionssatisfyingall orderconditionsup to5.Wealsonumericallyobservethat afifth- ordermethodofSMS(R5)alwayssatisfiesthesixth-ordercondition,bTA51

=

1

/

720.

Remark2.We have presented the numerical search algorithm for R3

( γ )

and R5

(

r1

,

r2

)

satisfying bTAq11

=

1

/

q

!,

q

=

1

, · · · ,

s fors

=

3

,

5.Similarly,onecantrytosearch R7

= (

r1

,

r2

,

r3

,

r4

,

r5

(

r1

, · · · ,

r4

),

r6

(

r1

, · · · ,

r5

),

r7

(

r1

, · · · ,

r5

))

forgiven

(

r1

,

r2

,

r3

,

r4

)

satisfyingbTAq11

=

1

/

q

!,

q

=

5

,

6

,

7 whiler5

,

r6

,

r7arechosentofixbTAq11

=

1

/

q

!,

q

=

1

,

2

,

3

,

4.Insteadof tryingabruteforcesearchforthenumericalsolutionsofthesystemof3polynomialequationsup toseventhorderwhich maynot exist,we will presentmoreidentities usefultosimplifythe systemofpolynomial equationsrelatedto the SMS methodinfutureworks.

Beforewefinishthissection,wewouldliketointroducesomeproperties,whicharecomparablewithexistingnumerical methods. First, implicit RK methods usually consider the singly diagonally implicit type for the efficient computations, however,thisstrategyfortheSMSmethodsisnotavailable.

Lemma5.ThereisnoasinglydiagonalcoefficientvectorRs

=

[

γ , γ , · · · , γ

] forhigherthansecond-orderSMSmethods.

Proof. Supposethatwe haveasinglydiagonalcoefficientvector Rs

=

[

γ , γ , · · · , γ

] andwe trytofindaspecificvalue of

γ

tosatisfy theorderconditions.Wedenoteasr1

=

r2

= · · · =

rs

= γ

andwehavecorrespondingcoefficientsA and b as in (25).Forthefirst-orderaccuracy,wehave

bT1

=

2

s i=1

ri

=

2s

γ =

1

,

(46)

andthus

γ =

1

/(

2s

)

.Forthethird-orderaccuracy,wehave bTA

(

A1

) =

2

γ

s1

i=1

i1

j=1

4

γ

2j

+

2

γ

2i

⎠ + γ

s1

j=1

4

γ

2j

+

2

γ

2s

=

4

γ

3

s1

i=1

i2

+

2

γ

3s2

=

2 3

γ

3s



2s2

+

1

=

2s2

+

1 12s2

=

1

6

.

(47)

Therefore,eventhesinglydiagonalstrategyfortheSMSmethodcannotsurpassthethird-orderconditions.



Remark3.Infact,aSMSmethodwithasinglydiagonalcoefficient vector Rs

=

[

γ , γ , · · · , γ

] where

γ =

1

/(

2s

)

alsoisthe second-orderaccuratemethod,becauseitalwayssatisfiesthesecond-orderconditionbTA1

=

1

/

2.

Next, we need to remark that the proposed SMS methods differ from symplectic RK methods in [16,17]. It is well knownthatthealgebraic stabilityconditionbibj

biai j

bjai j

=

0 isasufficientconditionforthesymplecticRKmethods.

However, the SMS methods do not satisfy this condition. For the simplicity, we define the algebraic stability matrix as G

=

bbT

BA

ATB,referredtoasAG-matrix.

Theorem6.ASMSmethoddoesnotsatisfythealgebraicstabilitycondition.

참조

관련 문서

혼합제를 사용하여도 천식 조 절이 되지 않는 경우 경구 약제인 류코트리엔 조절제 그리 고 (또는) 테오필린을 추가하여 사용한다. 류코트리엔은 효 과 면에서는

 We developed expressions for the momentum and energy operators using the wave function of the free particle, however the results are valid for any wave function..  In

 If particles exhibit wave properties (de Broglie) then, like any other wave phenomena, there should be a wave equation for a particle (a differential equation which

 The Dutch physicist Pieter Zeeman showed the spectral lines emitted by atoms in a magnetic field split into multiple energy levels...  With no magnetic field to align them,

Modern Physics for Scientists and Engineers International Edition,

Note the point that any wave can be written as a linear combination of sinusoidal waves,.  therefore if you know how sinusoidal waves behave, you know in principle how

the fields in the dielectric decay exponentially away from the film and the wave fronts are tilted into the metal film, in order to remove energy from the dielectric

the fields in the dielectric decay exponentially away from the film and the wave fronts are tilted into the metal film, in order to remove energy from the dielectric