• 검색 결과가 없습니다.

convex splitting for phase-field crystal equation First and second order numerical methods based on a new Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Share "convex splitting for phase-field crystal equation First and second order numerical methods based on a new Journal of Computational Physics"

Copied!
24
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

First and second order numerical methods based on a new convex splitting for phase-field crystal equation

Jaemin Shin

a

, Hyun Geun Lee

a

, June-Yub Lee

b

,∗

aInstituteofMathematicalSciences,EwhaWomansUniversity,Seoul120-750,RepublicofKorea bDepartmentofMathematics,EwhaWomansUniversity,Seoul120-750,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received5April2016

Receivedinrevisedform22September 2016

Accepted23September2016 Availableonline28September2016

Keywords:

Swift–Hohenbergfunctional Phase-fieldcrystalequation Convexsplittingmethod Gradientstability Energystability

Thephase-fieldcrystalequationderivedfromtheSwift–Hohenbergenergyfunctionalisa sixthordernonlinearequation. Weproposenumerical methodsbasedonanew convex splittingforthephase-fieldcrystalequation.Thefirstorderconvexsplittingmethodbased ontheproposedsplittingisunconditionallygradientstable,whichmeansthatthediscrete energyis non-increasingfor anytimestep.The secondorderschemeisunconditionally weakly energy stable, which means that the discrete energy is bounded by its initial valueforanytimestep.Weprovemassconservation,uniquesolvability,energystability, and theorderoftruncationerrorforthe proposedmethods.Numerical experimentsare presentedtoshowtheaccuracyandstabilityoftheproposedsplittingmethodscompared totheexistingothersplittingmethods.Numericaltestsindicatethattheproposedconvex splittingisagoodchoicefornumericalmethodsofthephase-fieldcrystalequation.

©2016ElsevierInc.Allrightsreserved.

1. Introduction

Phase-field models have emerged asa powerfulapproach formodeling andpredicting mesoscale morphologicaland microstructuralevolutioninmaterials.Manyofsuchmodels trytominimize anenergyfunctional

E(φ)

associatedwitha phasefieldfunction

φ (

x

,

t

)

.Ingeneral,thephasefieldequationismodeledbygradientflowsfor

E(φ)

,

∂φ

t

= −

grad

E (φ),

(1)

where thesymbol “grad” denotes the gradient inthe sense of the Gâteaux derivative. Forexample, theAllen–Cahn and Cahn–Hilliard equationsare gradientflows ofthe Ginzburg–Landau free energy[1,2].It is worth tonote that the energy functional

E(φ)

isnon-increasingintimesince(1)isofgradienttype.

Themaindifficulty developinganumericalmethodforphasefieldequationsisaseverestabilityrestrictiononthetime stepduetononlinearterms andhighorderdifferentialones. Therehavebeenmanynumericalattemptstoovercomethe stability restriction.Theconvexsplitting(CS)methodshavebeenrevitalized bythework ofEyre[3],whichareoriginally attributed to Elliott and Stuart [4]. Recently, many researchers [5–11] have developed noteworthy schemes by using CS idea where an energy functional

E(φ)

is split into two convex functionals (so called contractive and expansive parts),

*

Correspondingauthor.

E-mailaddress:jyllee@ewha.ac.kr(J.-Y. Lee).

http://dx.doi.org/10.1016/j.jcp.2016.09.053 0021-9991/©2016ElsevierInc.Allrightsreserved.

(2)

E(φ)

=

E

c

(φ)

E

e

(φ)

.Theenergyofthefirstordernumericalsolutionbyaconvexsplittingmethodmonotonicallydecreases when

E

c

(φ)

isnumericallytreatedimplicitlyand

E

e

(φ)

explicitly,i.e.,

φ

n+1

− φ

n

Δ

t

= −

grad

E

c

n+1

) +

grad

E

e

n

).

(2)

Theconvexsplittingmethodsallusivelyindicatethatwemighthavemanykindsofenergysplittings.

Thephase-fieldcrystal(PFC)model,whichisthemainsubjectofthispaper,hasbeensuggestedtostudythemicrostruc- turalevolutionoftwo-phasesystemsonatomiclengthanddiffusivetimescales.Elderet al.[12,13]introducethePFCmodel tominimizetheSwift–Hohenbergfreeenergyfunctional[14],

E (φ) =







1 4

φ

4

+

1

2

φ

 −  + (

1

+ )

2

 φ



dx

,

(3)

where

φ

is thedensity field and



is a positivebifurcation constantwith physicalsignificance.Here,



isthe Laplacian operator and

(

1+ )2=1+2



+ 2.Fortheinterested readers,werefer to[14] foradetailedphysicalmeaning ofthe functional.Inparticular,

(

1+ )2 offreeenergyisfromfittingto anexperimental structurefactor[13].ThePFCequation arisingfrom

E(φ)

undertheconstraintofmassconservationcanbewrittenasfollows:

∂φ

t

=  μ =   φ

3

 φ + (

1

+ )

2

φ



,

(4)

where

μ

isthechemicalpotential definedas

μ

=δδφE and δφδ denotesthevariationalderivativewithrespectto

φ

.Sinceit isoriginallymodeledtoproducetheperiodicstates[12],weassumethatthedensityfield

φ

isperiodicon



.

Some researchers try to use a convex splitting method basedon the following formof the Swift–Hohenberg energy functional,

E (φ) =







1

4

φ

4

+

1



2

φ

2

− |∇φ|

2

+

1 2

(φ)

2



dx (5)

whichisidenticalto(3)andcanbeeasilysplitintotwoconvexfunctionals,

E

D Fc

(φ) =







1

4

φ

4

+

1



2

φ

2

+

1 2

(φ)

2



dx

, E

D Fe

(φ) =





|∇φ|

2dx

,

(6)

with



1.Here,thediffusion(DF) termisusedfortheexpansivepart.Wiseet al.[5]proposeafirstorderanduncondi- tionallygradientstableschemebasedontheconvexsplitting(6),

φ

n+1

− φ

n

Δ

t

=  μ

n+1

,

(7)

μ

n+1

=  φ

n+1



3

+ (

1

 ) φ

n+1

+ 

2

φ

n+1

+

2

n

,

(8)

whichwe aregoingtorefertoasCSD F(1).Huet al.[6]proposeasecondorderconvexsplittingmethod,whichisweakly energystable.Thesecondordermethodcanbewrittenas

φ

n+1

− φ

n

Δ

t

=  μ

n+12

,

(9)

μ

n+12

=  φ

n+1

 +

1



2



φ

n+1

+ φ

n

 +

1

2



2



φ

n+1

+ φ

n

 +  

3

φ

n

− φ

n1



,

(10)

where



φ

n+1

=14

φ

n+1+ φn 

φ

n+12

+

φ

n2

and

φ

1= φ0,whichwe aregoingtorefertoasCSD F(2).Wecangive an accountforthismethodasamulti-stepimplicit–explicitmethod[15].The implicitpartisdesignedwithasecant-type differencemethodlikeasin[16] andexplicitpartisfromasecondorderAdams–Bashfordmethod.Thesecant-typediffer- enceissecondorderaccurateandplaysanimportantrolefortheproofoftheenergystability.

InordertosolvethePFCequationaccuratelyandefficiently,weproposenewnumericalmethodsbasedonthefollowing convexsplitting

E

B Fc

(φ) =







c

(φ) +

1

2

φ (

1

+ )

2

φ



dx

, E

eB F

(φ) =





e

(φ)

dx

,

(11)

where

c

(φ)

= 14

φ

4 and

e

(φ)

= 2

φ

2. Notethat (11)has a differentformto (6)but itis closelyrelatedto theoriginal form(3).Here,thebifurcation(BF)termisusedfortheexpansivepart.Wecaneasilyshowthat(11)isaconvexsplitting andthedetailedproofispresentedinAppendix A.

(3)

Theproposed energysplittingisalso applicableto theframeworksoffirstandsecond orderconvexsplittingmethods [5,6]. Applying theseframeworks,we propose thefirst andsecond orderconvexsplitting methods andcompletelyprove massconservation,uniquesolvability,energystability,andtheorderoftruncationerrorfortheproposedmethods.Moreover, wetrytonumericallydemonstratethat(11)isagoodchoiceintheconvexsplittingstrategyforaccuratenumericalmethods.

Forinterestedreaderstothesecondordermethodswiththeenergystability,therehavebeennotablestudiesforsolving the PFC equation. Vignal et al. [7]propose a nonlinear, second order time accurate, and unconditionally gradient stable methodbyusingtheCrank–Nicolsonmethodandtheadditionalstabilizationapproachproposedin[8]fortheCahn–Hilliard equation.Theaccuracyandstabilityoftheirmethoddependonthevalue ofthestabilizationparameter.Thesecondorder method in [7]can be considered asthe method based on the convex splitting (11).Glasner et al. [9]propose a linear, second ordertime accurate, and unconditionallygradient stable method based on a linear convex splitting.In addition, Gomezet al.[17] propose a nonlinear, second ordertime accurate, andunconditionallygradient stablemethodwiththe modifiedCrank–Nicolsonmethod,whichisnotbasedontheconvexsplitting.

This paper is organized as follows. In Sections 2 and 3, we propose the first andsecond convex splitting methods, respectively, forthePFC equationwithdetailedproofs forthemassconservation,unique solvability,andenergystability.

In Section 4, a one-dimensional numerical experiment is presented to show the accuracy andstability of the proposed methods.Inaddition,wedescribenonlineariterativemethodswithnumericalimplementations.InSection5,wenumerically demonstratetheorderofaccuracywithatwo-dimensionalexample.Wealsosimulatetwo- andthree-dimensionalexamples toshowtheapplicabilityofthenumericalmethod.Finally,conclusionsaredrawninSection6.InAppendix B,weshowthat theerrorestimateintimeforthefirstandsecondordermethods.Inaddition,weprovideacomparisonofoursecondorder methodwiththemethodof[7]inAppendix C.

2. Numericalanalysisofthefirstordernumericalmethod,CSB F(1)

Inthissection,we proposea firstordernumericalmethodbasedonthe convexsplitting(11)withdetailedproofsfor themassconservation,unconditionaluniquesolvability,andunconditionalgradientstability.Thefirstorderconvexsplitting method,referredtoasCSB F(1),iswrittenas

φ

n+1

− φ

n

Δ

t

=  

φ

n+1



3

+ (

1

+ )

2

φ

n+1

 φ

n



.

(12)

Forsimpledescriptionfortheproof,werewrite(12)as

φ

n+1

− φ

n

= Δ

t

 μ

n+1

,

(13)

μ

n+1

=  φ

n+1



3

+ (

1

+ )

2

φ

n+1

 φ

n

.

(14)

Theorem1.Thescheme(13)ismassconserving.

Proof. Themassconservationof(13)followsfrom



φ

n+1

− φ

n

,

1



L2

= Δ

t



 μ

n+1

,

1



L2

= −Δ

t



μ

n+1

,

1



L2

=

0

,

(15)

where

(φ, ψ)

L2=



φψ

dx denotestheL2 innerproduct.Here,theintegrationbypartsformulacanbederivedfor

φ

and

ψ

satisfyingtheperiodicboundaryconditions,

(φ, ψ)

L2

= − (∇φ, ∇ψ)

L2

.

(16)

Thus,if(13)hasasolution

φ

n+1,thenitmustbe

φ

n+1

,

1

L2=

φ

n

,

1

L2.

Weintroducetheusefullemma,whichwillbeusedfortheproofofthesolvabilityforbothofthefirstandsecondorder methods.

Lemma2.WeconsidertheHilbertspaceH0asazeroaveragespace.Forgivenv1

,

v2H0,wedefinetheinnerproductofdualspace by

(

v1

,

v2

)

H−1=

ϕ

v1

,

ϕ

v2



L2,where

ϕ

v1

, ϕ

v2H0arethesolutionsoftheperiodicboundaryvalueproblem−

ϕ

v1=v1and

−

ϕ

v2=v2in



.Fromtheabovedefinition,if

ψ

H0,thenwehavetheidentity

(−φ, ψ)

H1

= (φ, ψ)

L2

.

(17)

Theorem3.Thescheme(13)isuniquelysolvableforanytimestep

Δ

t

>

0.

(4)

Proof. WeconsiderthefollowingfunctionalonH=

φ

| (φ,1

)

L2=

φ

n

,

1

L2

:

G

(φ) =

1

2

φ − φ

n

2

H1

+ Δ

t

E

c

(φ) − Δ

t

 δ δφ E

e

 φ

n

 , φ



L2

.

(18)

Itmaybeshownthat

φ

n+1H istheuniqueminimizerofG ifandonlyifitsolves,forany

ψ

H0, dG

ds

+

s

ψ ) 



s=0

= 

φ − φ

n

, ψ 

H1

+ Δ

t

 δ

δφ E

c

(φ) , ψ



L2

− Δ

t

 δ δφ E

e

 φ

n

 , ψ



L2

=



φ − φ

n

− Δ

t



 δ

δφ E

c

(φ)δ δφ E

e

 φ

n



, ψ



H1

=

0

,

(19)

becauseitisclearthatthefunctionalG isstrictlyconvexby

d2G

ds2

+

s

ψ ) 



s=0

=

1

2

ψ

2H1

+ Δ

t 2

 δ

2

δφ

2

E

c

(φ) ψ, ψ



L2

0

.

(20)

Therefore,(19)istrueforany

ψ

H0ifandonlyifthegivenequationholds

φ

n+1

− φ

n

Δ

t

= 

 δ δφ E

c

 φ

n+1

 − δ δφ E

e

 φ

n



.

(21)

Hence,minimizingthestrictlyconvexfunctional(18)isequivalenttosolving(12)(or(13)).

Beforeprovingtheenergystability,wepresenttwousefullemmas.Forthesimplicity,wedefinetimedifferenceoperators asnK = φn+1− φn andq



φ

ny

= 

φ

n+1



φ

n

.

Lemma4.Supposethat

φ

,

ψ

aresufficientlyregularand

(φ)

istwotimescontinuouslydifferentiable.Considerthecanonicalconvex splittingof

(φ)

into

(φ)

= c

(φ)

e

(φ)

,i.e.,bothfunctions

c

(φ)

and

e

(φ)

areconvexfunctions,then

(φ) − (ψ) ≤ 

c

(φ)

e

(ψ ) 

− ψ).

(22)

Proof. The analogousproof could befoundin [5],howeverweintroduce itforaself-containeddescription.Becauseboth

cand

e areconvex,wehave

c

(φ)

c

(ψ )

c

(φ)(φ − ψ),

(23)

e

(φ)

e

(ψ )

e

(ψ )(φ − ψ).

(24)

Byusingtheseinequalities,wehave

(φ)

c

(φ)

c

(ψ )) − (

e

(φ)

e

(ψ ))

c

(φ)(φ − ψ) −

e

(ψ )(φ − ψ)

= 

c

(φ)

e

(ψ ) 

− ψ).

(25)

As the applicationofLemma 4,we havethe followinglemma forthe proof ofthe energystability for thefirst order method.

Lemma5.Consideranenergyfunction

(φ)

=14

φ

42

φ

2andacanonicalconvexsplittinginto

c

(φ)

=14

φ

4and

e

(φ)

=2

φ

2. Sinceboth

c

(φ)

and

e

(φ)

areconvex,wehave

s

1 4

 φ

n



4



2

 φ

n



2

{

≤ 

φ

n+1



3

 φ

n



n

K .

(26)

Now,weprovetheenergystabilityofthefirstordermethod(13).

Theorem6.Supposethat

φ

n+1isasolutionto(13).Theconvexsplittingscheme(13)isunconditionallyenergystable,meaningthat foranytimestepsize

Δ

t

>

0,

E

n+1

)E

n

).

(27)

(5)

Proof. BasedonLemma 5,theenergydifferenceis

J E

n

) K =





s

1 4

 φ

n



4



2

 φ

n



2

{ +

1

2

r

φ

n

(

1

+ )

2

φ

n

z

dx







φ

n+1



3

 φ

n



n

K +

1 2

r

φ

n

(

1

+ )

2

φ

n

z

dx

.

(28)

By(14),wehave

φ

n+13

 φ

n=

μ

n+1− (1+ )2

φ

n+1 and(28)followsas

J E

n

)K ≤







μ

n+1

− (

1

+ )

2

φ

n+1



n

K +

1 2

r

φ

n

(

1

+ )

2

φ

n

z

dx

=







μ

n+1

n

K − Jφ

n

K (

1

+ )

2

φ

n+1

+

1 2

r

φ

n

(

1

+ )

2

φ

n

z

dx

.

(29)

Wenowproceedtoexpandthedifferenttermsontheright-handsideof(29).Using(13),thefirsttermin(29)ismanipu- latedby





μ

n+1

n

K

dx

= Δ

t





μ

n+1

 μ

n+1dx

= −Δ

t





 ∇ μ

n+1

 

2dx

.

(30)

Next,forthesecondtermin(29),wehave





n

K (

1

+ )

2

φ

n+1dx

=





n

K (

1

+ )

2

 φ

n+1

+ φ

n 2

+

n

K

2



dx

=

1 2





r

φ

n

(

1

+ )

2

φ

n

z

dx

+

1 2





n

K (

1

+ )

2

n

K

dx

=

1 2





r

φ

n

(

1

+ )

2

φ

n

z

dx

+

1 2





 (

1

+ ) Jφ

n

K 

2

dx

.

(31)

Here,forthesecondandthirdlinesin(31),weusetheidentity





φ (

1

+ )

2

ψ

dx

=





(

1

+ )φ(

1

+ )ψ

dx

=





ψ (

1

+ )

2

φ

dx

.

(32)

Rearranging(31),wehave







− Jφ

n

K (

1

+ )

2

φ

n+1

+

1 2

r

φ

n

(

1

+ )

2

φ

n

z

dx

= −

1 2





 (

1

+ ) Jφ

n

K 

2

dx

.

(33)

Applying(30)and(33)to(29),wehave

J E

n

)K ≤ −Δ

t





 ∇ μ

n+1

 

2dx

1 2





 (

1

+ ) Jφ

n

K 

2

dx

0 (34)

whichprovestheenergydissipationforanytimestep

Δ

t

>

0.

3. Numericalanalysisofthesecondordermethod,CSB F(2)

Now, we propose a second order numerical method based on the convex splitting (11)with detailed proofs forthe massconservation,unconditionaluniquesolvability,andunconditional(weakly)gradientstability.Thesecondorderconvex splittingmethod,referredtoasCSB F(2),iswrittenas

φ

n+1

− φ

n

Δ

t

= 



 φ

n+1

 +

1

2

(

1

+ )

2



φ

n+1

+ φ

n





2



3

φ

n

− φ

n1



,

(35)

(6)

whereasecant-typedifference



φ

n+1

isdefinedby

 φ

n+1

 =

c

 φ

n+1



c

 φ

n

 φ

n+1

− φ

n

=

1

4



φ

n+1

+ φ

n

 

φ

n+1



2

+ 

φ

n



2



(36)

forgiven

φ

n andaninitialsetting

φ

1= φ0.Thefirsttimestepreductiondoesnotaffecttheoverallsecondorderaccuracy oftheschemeasthenumericalresultswillbeshown. Ifone couldliketoavoidthisreduction,referto [10]andconsider thetheirsuggestion.

Forsimpledescriptionfortheproof,(35)canbewrittenas

φ

n+1

− φ

n

= Δ

t

 μ

n+12

,

(37)

μ

n+12

=  φ

n+1

 +

1

2

(

1

+ )

2



φ

n+1

+ φ

n





2



3

φ

n

− φ

n1



,

(38)

where



φ

n+1

isdefinedasin(36)and

φ

1= φ0. Theorem7.Thescheme(37)ismassconserving,i.e.,

φ

n+1

,

1

L2=

φ

n

,

1

L2. Proof. WeskiptheproofsinceitissimilartoTheorem 1.

Theorem8.Thescheme(37)isuniquelysolvableforanytimestep

Δ

t

>

0.

Proof. WeconsiderthefollowingfunctionalonH=

φ

| (φ,1

)

L2=

φ

n

,

1

L2

:

G

(φ) =

1

2

φ − φ

n

2

H1

+ Δ

t Q

(φ) + Δ

t



1

2

(

1

+ )

2

φ

n



2



3

φ

n

− φ

n1

 , φ



L2

,

(39)

where

Q

(φ) =

1 4

 φ

4 4

+ φ

3

3

φ

n

+ φ

2 2

 φ

n



2

+ φ  φ

n



3

,

1



L2

+

1

4

(

1

+ ) φ

2L2

.

(40)

Thefunctional Q isconvexbecause(1+ ) φ2L2 isconvexand

d2 d2

φ



1 4

 φ

4 4

+ φ

3

3

φ

n

+ φ

2 2

 φ

n



2

+ φ  φ

n



3



=

1 2

φ

2

+

1

4

 φ + φ

n



2

0

.

(41)

Alsonotethatbyconstruction

d d

φ



1 4

 φ

4 4

+ φ

3

3

φ

n

+ φ

2 2

 φ

n



2

+ φ  φ

n



3



=

1 4

 φ + φ

n

  φ

2

+ 

φ

n



2



= (φ) .

(42)

Now,itmaybeshownthat

φ

n+1H istheuniqueminimizerofG ifandonlyifitsolves,forany

ψ

H0, dG

ds

+

s

ψ ) 



s=0

= 

φ − φ

n

, ψ 

H1

+ Δ

t



(φ) +

1

2

(

1

+ )

2

φ, ψ



L2

+ Δ

t



1

2

(

1

+ )

2

φ

n



2



3

φ

n

− φ

n1

 , ψ



L2

= 

φ − φ

n

− Δ

t

 μ , ψ 

H1

=

0

,

(43)

where

μ = (φ) +

1

2

(

1

+ )

2

 φ + φ

n





2



3

φ

n

− φ

n1



,

(44)

becauseitisclearthatthefunctionalG isstrictlyconvexby

d2G

ds2

+

s

ψ ) 



s=0

=

1

2

ψ

2H1

+ Δ

t 2



1 2

φ

2

+

1

4

 φ + φ

n



2

 ψ +

1

4

(

1

+ )

2

ψ, ψ



L2

0

.

(45)

Therefore,(43)istrueforany

ψ

H ifandonlyifthegivenequationholds

φ

n+1

− φ

n

Δ

t

= 



 φ

n+1

 +

1

2

(

1

+ )

2



φ

n+1

+ φ

n





2



3

φ

n

− φ

n1



.

(46)

Hence,minimizingthestrictlyconvexfunction(39)isequivalenttosolving(35)(or(37)).

(7)

Theorem9.Supposethat

φ

n+1isasolutionto(37).Thesecondorderscheme(37)isunconditionally(weakly)gradientstable,meaning thatforanytimestepsize

Δ

t

>

0 andn1,

E  φ

n



E  φ

0



.

(47)

Proof. Supposethatn1.Takingtheinnerproductof

μ

n+12 with(37)andusingintegrationbyparts,weobtain

−Δ

t





 ∇ μ

n+12

 

2dx

= E

n+1

)E

n

)

+ 

2





 φ

n+1



2

dx



2





 φ

n



2

dx



2





n

K 

3

φ

n

− φ

n1



dx

.

(48)

Withtheidentity





n

K 

3

φ

n

− φ

n1



dx

=





n

K 

φ

n+1

− φ

n



dx





n

K 

φ

n+1

+ φ

n



dx

+





n

K 

φ

n

− φ

n1



dx

,

(49)

wehave

E 

φ

n+1

 − E  φ

n



= −Δ

t





 ∇ μ

n+12

 

2dx



2





n

K

2dx



2





n

K r φ

n1

z

dx

.

(50)

UsingCauchy’sinequality,wehavethefollowinginequality





n

K r φ

n1

z

dx

1

2





n

K

2dx

+

1 2





r φ

n1

z

2

dx

.

(51)

Combining(50)and(51),wehave

E 

φ

n+1

 − E  φ

n



≤ −Δ

t





 ∇ μ

n+12

 

2dx



4





n

K

2dx

+ 

4





r φ

n1

z

2

dx

.

(52)

Now,summing(52),wehave

E 

φ

n+1

 − E  φ

1

 =



n k=1

 E

k+1

)E

k

)





n k=1

⎝−Δ

t





 ∇ μ

k+12

 

2dx



4





r φ

k

z

2

dx

+ 

4





r φ

k1

z

2

dx

= −Δ

t



n k=1





 ∇ μ

k+12

 

2dx



4





n

K

2dx

+ 

4





r φ

0

z

2

dx

.

(53)

Forthecaseofn=0,using

φ

1= φ0,thelasttermontheright-hand-sideof(50)disappearstoyield

E 

φ

1

 − E  φ

0

 = −Δ

t





 ∇ μ

12

 

2dx



2





r φ

0

z

2

dx

.

(54)

Adding(54)to(53)yields

E 

φ

n+1

 − E  φ

0

 ≤ −Δ

t



n k=0





 ∇ μ

k+12

 

2dx



4





n

K

2dx



4





r φ

0

z

2

dx

0

,

(55)

anditmeansthattheweaklygradientstabilityisproven.

(8)

Fig. 1. Time evolution of solution for the PFC equation in 1D.

Remark10.Analternativeapproach tothequestion ofenergystabilityisto introduceamodified energyfunctional ˜E (φ) as

E ˜  φ

n+1

 = E  φ

n+1

 + 

4





n

K

2dx

.

(56)

(52) showsthat thisenergy isnon-increasingfromone time step to thenext. In other words,the second order scheme (37)isstronglyenergystablewithrespectto ˜E (φ).Meanwhile, ˜E (φ)isconsistentwith

E (φ)

as

Δ

t tendtozero.Formore details,pleasereferto[6,10].

4. Convergenceandstabilitytestofthenumericalmethodsin1D

Inthissection,wepresentonedimensionalexamplestonumericallydemonstratetheaccuracy, stability,andefficiency of theproposed methods CSB F(1)andCSB F(2).Becauseproposed numericalmethods arenonlinear, we needa nonlinear iterative method.Wepresentthe detailednumericalimplementations forfirstandsecond order methodsin Sections4.2 and4.4,respectively.Anumericaltolerancetol isdefinedas109unlessmentionedotherwise.

WebeginbyshowingthesolutionevolutionofthePFCequationwiththeperiodicboundaryconditionandthefollowing initialcondition

φ (

x

,

0

) =

0

.

07

0

.

02 cos

 π (

x

12

)

16



+

0

.

02 cos2

 π (

x

+

10

)

32



0

.

01 cos2

 π

x 8



(57)

on a domain



= [0

,

32]. For the numerical simulations,



=0

.

2 is used and the grid size is fixed to

Δ

x=1

/

2 which providesenoughspatialaccuracy.ThenumericalsolutionisevolvedtotimeTf=128.

Fig. 1displaysthetimeevolutionofsolutionwithasmallenoughtimestep

Δ

t=Tf

/

214usingthesecondordermethod CSB F(2).At the earlystage, solutions are rearranged andadjusted to findtheir desiredmode withlow magnitude. After finishingtheadjusting,thesolutiongrowsupandapproachestothesteady-statesolution.Thissolutionwillbeusedasthe referencesolutiontoestimatetheconvergencerate.

Fig. 2displays thetimeevolutionoffreeenergy

E (φ)

corresponding thesolutioninFig. 1.Thepropertyoftheenergy dissipation isvalidandonesteepenergytransitionisobserved.Whenthesolutionisarrangedwithlow magnitudeatthe earlystage,energyisslightlydeclined.Afterthatenergyissteeplydeclinedbecauseofgrowingthesolution.Finally,energy issluggishlydecreasingsincethesolutionisnearatthesteadystate.

(9)

Fig. 2. Energy evolution for the PFC equation in 1D.

Fig. 3. Relative l2-errors at t=48 with respect to the grid size for various time steps in 1D.

4.1. SpatialaccuracytestofCSB F(1)andCSB F(2)

Since we assume the periodic boundary condition andfocus only on thetime marching method,we use the Fourier spectralmethodforthespatial discretization.And,thefastFouriertransformwiththeMATLABprogramisappliedforthe wholenumericalsimulations.

Wedemonstratethenumericalconvergenceinspacewiththesameconditionsandparametersinthebeginningofthis section.Toestimatetheconvergenceratewithrespecttoagridsize,simulationsareperformedbyvaryingthegridpoints 16

,

24

,

32

, . . . ,

128.Furthermore,wecalculatethemwithvarioustimesteps.

Fig. 3showstherelativel2-errorswithrespecttovariousgridsize.Here,theerrorsarecomputedbycomparisonwith thereferencenumericalsolutionobtainedusingthesecondordermethodCSB F(2)withatimestep

Δ

t=Tf

/

214and256 grid points.As can be seen,the spatial convergenceofthe resultsunderthe gridrefinements isevident. Furthermore,it showsthat64 gridpoints(

Δ

x=1

/

2)providethesufficientspatialaccuracy.

4.2. Numericalimplementationofthefirstordermethod,CSB F(1)

Forcompletedescriptionofthenumericalsolver,letusrecallthefirstordernumericalmethodCSB F(1)

φ

n+1

− φ

n

Δ

t

=  

φ

n+1



3

+ (

1

+ )

2

φ

n+1

 φ

n



.

(58)

Since(58)isnonlinear,weintroducetheNewton-typeiterativemethod,whichisawell-knownnonlinearsolver.Usingthe linearizationofthenonlinearterm

 φ

n,m+1



3

=

3

 φ

n,m



2

φ

n,m+1

2

 φ

n,m



3

,

(59)

wedevelopaNewton-typeiterativemethodas



I

− Δ

t

 

3

φ

n,m



2

+ (

1

+ )

2



φ

n,m+1

= φ

n

 Δ

t

n

2

Δ

t

  φ

n,m



3

.

(60)

(10)

Fig. 4. Number of nonlinear and BICG iterations for the first order method.

The initial guessissetas

φ

n,0= φn andthenonlineariteration (60)isrecursively applieduntil arelative l2-norm ofthe consecutiveerrorof

φ

n,m+1islessthantolerancetol,i.e., φn,m+1−φ

n,m 2

n,m2

<

tol.Thenlet

φ

n+1be

φ

n,m+1.

Inaddition,weneedtosolvethelinearsystem(60)foreachm-step.Since(60)isnotsymmetry,weusethebi-conjugate gradient(BICG)methodinthisstudy.ThestoppingcriterionfortheBICGiterationisthatarelativel2-normoftheresidual errorislessthanatol.Moreover,toacceleratetheconvergencespeedoftheBICGalgorithm,wesuggestapre-conditioner

M

=

I

− Δ

t





A I

¯ + (

1

+ )

2



,

(61)

where A is¯ theaveragevalueof3

φ

n,m2

.

We note that the above description for the numerical implementation is not specified in one dimensional case. We also remarkthatspectral methodsare usedinall ofnumericalcomputations.Simulationsare executedby usingMATLAB programwithafastFouriertransform.Evenintwoandthreedimensions,thecomputationalspeedisreasonablyfast.

Toshowtherobustnessofnonlinearsolverandthenecessityofpre-conditioner,wecountthenumberofbothiterations anddisplaytheaveragenumberwithrespecttothevarioustimestep

Δ

t=Tf

/

212

,

Tf

/

211

, . . . ,

Tf

/

23.Theinitialstateand otherparametersareidenticaltothoseinthebeginningofthissectionexceptthetolerancetol=108.Therelativelysmall toleranceisbecauseoftheconvergenceissueofBICGwhenweusethelargetimestepwithoutthepre-conditioner.

Thenumberofnonlineariterationsaveragedoverthesimulationtime0

<

t=n

Δ

tTf isshownasafunctionoftime step

Δ

t in Fig. 4 (a).On average,2–4iterations were involved inproceedingto thenext time step.We canexplain that suchafastiterativeconvergencecanbeachievedsincethesuccessiveiterationsareNewton-typeiterativemethods.Onthe other hand,thenumber ofBICGiterations averaged over thesimulation time isshownasa function oftime step

Δ

t in Fig. 4(b).Inthiscase,weregard thenumberofBICGiterationofonetime stepastheaveragednumberofBICGiteration inthenonlineariterations foronetime step.As showninthefigure,theBICGiterations areremarkablyreducedwiththe pre-conditioner.

4.3. ComparisonbetweenCSB F(1)andCSD F(1)

Now,wecomparetheproposedfirstorderschemeCSB F(1)tootherwell-knownconvexsplittingmethodCSD F(1)using the numericalconvergence.We demonstratethenumericalconvergence withthesameconditions andparameters in the beginning ofthissection.Toestimate theconvergenceratewithrespect toatime step

Δ

t, simulationsareperformedby varyingthetimestep

Δ

t=Tf

/

212

,

Tf

/

211

, . . . ,

Tf

/

23.

Fig. 5showstherelativel2-errorswithrespecttovarioustimesteps.Here,theerrorsarecomputedbycomparisonwith aquadruplyover-resolvedreferencenumericalsolutionobtainedusingthesecondordermethodCSB F(2).Itisobservedthat bothschemesgivedesiredfirstorderaccuracyintime.

Fig. 6 shows the time evolutions of the free energy functional with

Δ

t=1

/

2, 1

/

23, and 1

/

25. Using the proposed method, CSB F(1), the free energy functional at the same time t is almost similar for the different time steps, whereas significantdifferenceemergeswithlargertimestepsforCSD F(1).

4.4. Numericalimplementationofthesecondordermethod,CSB F(2)

Numericalsolvers forCSB F(2)aresimilartothoseforCSB F(1)inSection4.2,sothat wesimplydescribethederivation oftheiterativemethodforthesecondordermethodCSB F(2)

φ

n+1

− φ

n

Δ

t

= 



 φ

n+1

 +

1

2

(

1

+ )

2



φ

n+1

+ φ

n





2



3

φ

n

− φ

n1



,

(62)

참조

관련 문서

We have implemented and developed a virtual angioscopy system based on the proposed methods, and tested it using several actual data sets of human blood

In order to derive a new fuzzy controller, a fixed design-parameter fuzzy PID controller was surveyed in view of deriving a control law based on the

Based on numerical and experimental investigation results of the proposed H-S 3 HI strategy, the feasibility of harvesting the cooler-induced micro-vibration was demonstrated

Second, for the relationship between hospital capability and service orientation, the hospital capability had the positive significant impact on the service orientation in the

“The economic order of the Republic of Korea shall be based on a respect for the freedom and creative initiative of individuals in economic affairs.” The State may only

Second, two improvement methods for education and working conditions are suggested: to educate the swimmers in order to act responsibly and capability

crystal phase Isotropic liquid organic compound. 3 degrees of order 1 degree of order 0 degrees

with the experimental C versus t data. If the fit is unsatisfactory, another rate equation is guessed and tested. Integral method is especially useful for fitting simple