• 검색 결과가 없습니다.

 Mass Transfer Characteristics in Aerobic Three-Phase Inverse Fluidized Beds    

N/A
N/A
Protected

Academic year: 2022

Share " Mass Transfer Characteristics in Aerobic Three-Phase Inverse Fluidized Beds     "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

     

   *

 

*  

(2002 5 3 , 2002 6 18 )

Mass Transfer Characteristics in Aerobic Three-Phase Inverse Fluidized Beds

Sang-Woo Kim, Pyung-Seob Song, Hyun-Tae Kim, Yong Kang and Sang-Done Kim*

Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea

*Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea (Received 3 May 2002; accepted 18 June 2002)

 

 0.152 m  2.5 m          -

! "#$%& '( )*+ ,-./0. 1  2  34 5(34 67)  ,

   8,  - ! "#$%8, 9:; <= >?./0. " @A BC  6 7 877.3 kg/m3 D 966.6 kg/m3  0.004 m *E F67 GHIJK341 GLK 34+ MM ,

    NI OP./0.   Q BRS. TU4VI W ?BS.X Y >

?./NZ,    T[ 8,1 - ! "#$%8,;    P\[] ^7TU+ P.@ 

 T[_` Y >?./0.        T[8,  - !

"#$%8,;  D 2 ab cd a.; = efghNZ,  2 <  2 <

iY j kl efm0. nQ op  67 q GLK 34 r GHIJK= 34I OPs

r iY      T[8,  - ! "#$%8, q t= efgh0.    ,    T[8,  - ! "#$%8,;  D  2 

34 67 uvNI MM efw , xh0.

Abstract−Gas holdup, axial dispersion coefficient of liquid phase and gas-liquid mass transfer characteristics have been investigated in a aerobic three-phase inverse fluidized bed whose diameter and height are 0.152 m and 2.5 m, respectively.

Effects of gas and liquid velocities and particle density(particle kind) on the gas holdup, axial dispersion coefficient of liquid phase and volumetric gas-liquid mass transfer coefficient have been determined. Tap water, filtered compressed air and low density polypropylene particle(ρs=877.3 kg/m3, dp=0.004 m) or polyethylene particle(ρs=966.6 kg/m3, dp=0.004 m) have been used as a liquid, gas and fluidized solid phase, respectively. The gas holdup has been obtained from the pressure drop profiles by means of static pressure drop method, and the axial dispersion coefficient of liquid phase and volumetric gas-liquid mass trans- fer coefficient have been determined by means of axial dispersion model from the knowledge of axial profile of dissolved oxy- gen concentration. It has been found that the gas holdup, axial dispersion coefficient and volumetric gas-liquid mass transfer coefficient have increased with increasing gas and liquid velocities, but the effects of gas velocity have been dominant in aer- obic three phase inverse fluidized beds. In the beds of polyethylene particle(relatively heavier particle) the values of εG, Dz and kLa have exhibited higher than those in the beds of polypropylene particles(relatively lighter particle). The values of gas holdup, axial dispersion coefficient and gas-liquid mass transfer coefficient have been well correlated in terms of gas and liquid veloc- ities and particle density.

Key words: Aerobic Three-phase, Inverse Fluidized Bed, Mass Transfer, Gas Holdup, Axial Dispersion Coefficient

To whom correspondence should be addressed.

E-mail: kangyong@hanbat.cnu.ac.kr

(2)

1.  

         

 ,       ! "#$ %

&'(  )*+ ,- ./0 12 3/+ #4 5 67  5 89! 0-: ; <=>$,  )* ?( @A B , CDE F9 )* "G HI)* J K-+( " - (L M 6N ; <! O 1PQ +R% IS T=U, A )*

VWL XI5 : ; < ( <Y[1-6]. Z[,   

 \A ]^=$( 5 _\ `a+ bFc J d

Fe, f;gG J hCFe, d5e "G i jklm+( "

n-9 op M#q ; <! r=$ stu. 8v,   

 )* wx+ y9z de {|(biofi1m) }~L H

€ ‚: ; <\ `a+ de f;gG  ƒn, I c5 J+ „D -€ n-q ; <Y[7-11].

"…E   + #[ †‡ ˆ‰ „D HŠ[ ‹c0U, ^

\A-@A0E @A-A ! Œ 0  (two-phase inverse fluidized bed)0E Ž  "G  89 J+ #[ †‡

0 %‘% ’“v 0Œ”% < c(0[2, 3, 12, 13].

  0 " lm n-•– f;gGE dFe  d 5e •– ƒn\E Fc=$ K-z\ —˜' 0 ƒn\E

Fc ™šE scale-up›œ žc  gGŸ žc J+

#[ Fe cB „D  ¡Y. ¢, £\9   

CD †] @ H¤”+ z lI ¥ ]( J \ A-@A  89 £\9 ƒn\E Fc 9_ gG

Ÿ! žc žc j¡ *Q : ; <[6-8]. "¦+( §‡

, £\9   +' ˆ J+ ¨[ †‡ ©ª›«L

¬­ „D HŠ[ ‹c0[2, 3, 10].

®Q' ¯ †‡+' £\9   +' \A-@A 

  †] @ °±² ³´ \A AŽŸ+ #[ Aš µ!

¶=$· £\9 Fc0E dFc  ƒn\ "G   ƒn

\E Fc ¸b+ {¡[ ™š, Xm  m ¹— žc, scale-up "G Fc 0 º »¼(fault diagnosis) J+ {;

Fe *½L ¾F* ¿.

2.  

¯ †‡+' K-u ‹À Á Fig. 1+' B Âà Ä0 ÅC0

0.152 m0 Æ0 2.5 m 1ÇÈ ¨! K-¿.

 A)*$ ?( 877.3 kg/m30 ÅC0 0.004 m ‡y ÉGÊ${Ë )*à ?( 966.6 kg/m30 ÅC0 0.004 m ‡y ÉG+ÌË )*L K-¿=U, †]@(continuous liquid phase)

=$ !, \A•l(dispersed phase)=$ 4u Í°F\L K -¿.

)*  ! —˜ †]@!  3+' 3$ Î c]=$ Ï΀ Ðр \ —˜ FÒ yÓ @A •lÒ!

K-¿ Ô, @A •lÒ ÅC 0.003 m ‡Õ! Ö×Á$ 0.003 m

Ø=$ Ï΀ ÙÁ¿. [Ú, \A•l  3+' j)z” 3$ Û(Ü ¿ Ô \A •l ÏÎ[ •ÝL —

˜  3 Ò+ ÅC 0.00635 m ¨! Ï΀ 4¸ Þ)4 -

[ ß 0 ¨+ ÅC 0.001 m àG×áL Îc Ø=$ ^” K -¿. 0à Ä @A \A•l j)±â  +

' K-ã! CD „D =$ \A •l! ¨+ j)6N ; <

r=$ äåæ <[14-16].

;/e 89! µ\ —˜  3 @A •lÒ=$3ç

0.25 m —Á3ç °±²=$ 0.25 m ØV Í/ è! ^” Í/é

'à Í/kh\L ÖÖ ™Á4 *½gG Áà PC+ †ž¿. ¯

†‡ m¹— @A]0 0-0.06 m/s, \A]0 0.002-0.01 m/s ¹—+' ‹À¿.

£\9   +' \A AŽŸ cÍêâ+ ˜ ë ì+ ˜ ‡¿.

g (1)

(2)

(3) Í/ è0 ™Áu ƒ#Ú í&+   3 @A•lÒ=

$3ç °±² îG+ ®i @ -ïlI(dissolve oxygen)Ÿ! ð c\ —4 3 @A •lÒ=$3ç ºñò °±² îG 0.15, 0.3, 0.5, 0.65  0.8 z %+ ÖÖ 6½ óô è! ™Á¿=U, 0

 è+' solenoid valve+ 4 ÎcŸ 6½L ô4 -ïlI ðc\(Oxi340-A, WTW)+ ˜ -ïlIL ðc¿.

£\9   ª Í/ê ðc -ïlI ðc! —[

6½ óô  0 c Ó(steady state)+ (u ë+ õ

¿=U, @ \ ] Ð| ÖÖ Bcu rotameter! K-

4 ðc¿. óôu Ö 6½ -ïlI ðc Ö 6½L

magnetic ³´\+' ö( ‚\+ 4 Îcö((20oC)L %

&' õ¿=U, ‰ˆ9! —4 4… ÷ ƒø ðc¿.  

3+' @ •lÒ! îù + )z @ purge tank dP

---dz=(εsρsLρLGρG) εs Ws

ρsAH ---

=

εSLG=1

Fig. 1. Experimental apparatus.

11. Calming section 11. Lab. card 12. Liquid distributor 12. Computer 13. Gas distributor 13. Vent line 14. Sampling vessel 14. Gas flow meter 15. DO meter 15. Liquid flow meter 16. Pressure sensor 16. Air compressor

17. Manometer 17. Pump

18. Control valve 18. N2 bomb 19. Reservoir 19. N2 purge tank

10. Amplifier 20. T-Controller

(3)

+' I á+ ˜ purgez” -ï lI ¥! 1.1ú10−4mol/l$

%¿=U purge tank ö( 20oCû0.5oC$ ö(‚\+ ˜

%6ü.

£\9   +' @ °±² •l š;(Dz)à \A-@

A 3× š;(kLa) + °±² •lWý(axial dispersion

model)! -4 ‡¿[17, 18].  + @ °±² •l

Wý! -\ —˜ -ïlI °±² ;% þÿð ¥ ±²

! @ Ð|±² 3+' 3$ =U, °±² þÿ ò

  3 @A•lÒ=$ 4 ì (4)$  ; <=U, 0L 

\ —˜ Cš  ì (5)à (6)! (): ; <.

(4)

(5)

(6) 4\',

(7) 0U C* lI y($ ì (8) Ä0 E ; <[17-18].

(8) ì (8)+' a, b ;0U 0 ÖÖ ì (9)à (10)=$  ; <.

(9) (10)

3. 

3-1.  (εG)

£\9   +' Û \A ] ê @A

] "G )* ?((ρs) \A AŽŸ+ HÁ ²! Fig.

2+ Eª. Fig. 2(a)+' ; < 0   +' \A AŽŸ \A ]0 ¶+ ®Q ¿.  +' \ A]   ª3+ j)z \A¥ L H\ ` a+  ª3+ \Ý$ ï‰ •l ¥0 1æ \A AŽ

Ÿ L st: ; <. Fig. 2(b)+' ; < 0   

+' ê †] @ ]   ª3+ ï‰ \ A AŽŸ L æ. 0  +' \Aà @A '$

²Ž$ ÐÑ>$, @A ]0 ¶+ ®Q +' Û

\Ý Û]( IL æà \Ý  ª AŽ6! 6

\A AŽŸ0 [ : ; <. [Ú, Ä \A] @A]

5 +' )* ?(  ÉG+ÌË CD 

#=$ ?( , ÉGÊ${Ë CDB \A AŽŸ0  r

=$ E(Fig. 2(c)). 0 A )* ?( S  CD (966.6 kg/m3) ÉG+ÌË †] @ B ?(  ,=>

$ †] @B ?( 0 , ÉGÊ${Ë(877.3 kg/m3)+ S

4 \Aà @A Ð|0 <  +' S *€ î:

; < ƒ&, ÉGÊ${Ë CD   ª3+' *€

1 PeL ---d2C

2 --- dC

--- St Cdξ+ ( *–C)=0 –

X 0 C C0 1

Pe* ---dC

---dx

X=0

+ , =

=

X 1dC

---dx

X=0

0 , =

=

PeL ULL εLDZ

--- St kLaL UL --- X Z

L--- , = , =

=

C*=a bX+

a=(y H⁄ )(P+ρLLL) b=–(y H⁄ )ρLεLgL

Fig. 2. Gas holdup in aerobic three-phase inverse fluidized beds.

(4)

î\B '$ "! %=U î4 Û\ݏ Ð| 

&' \Ý ´AL ÉG+ÌË CDB 0 b[ : ;

<. Z[, Ä \Aà @A ] +' )* ?( ,

CD )* ?(  CD+ S4  0 ,=>$ 

A )* AŽŸ0 Ç\ `a+ #=$ \A AŽŸ  I[ : ; <.

3-2.   (Dz)   (kLa)

£\9   +' @ °±² •lš;à \A-@A 3

× š; ì (4) ˜ ˜(analytical solution)$3ç 

 °±²+ ®i -ï lI ¥! Eª -ïlI +  4 ! ; < Ô[17, 18], ¯ †‡ ‹À +'   °±

² —Á+ ®i -ï lI¥ k5 Fig. 3+ Eª. Fig. 3+' ; < 0,  3 @ •lÒ! \“=$ 4 ê

 ±²! þÿð ¥ ±²=$ ™c¿! ` ° ±² 0

¶+ ®Q -ïlI ¥0 ¶! ä ; <. 0 °±²  0 ¶+ ®Q ª3+' ê @ Û \Ý

60 \ `a+ @A]+ ݶu lI ( u

 : ; <. 8v, \Aà @A Ž$ Û ΃ 

0E \Ý!+' °±² 0 ¶+ ®Q \A] lI  ( I4' @+ -˜z -ïlI( "0 °±²

0 ¶+ ®Q IE[17, 18], ¯ †‡Ã Ä  +'

@Aà \A Ð|0 ²Ž(counter current)0>$, +' ê

@A °±²=$ ê:;Ü lI ( Æ \Ýà ^E€

z\ `a+ @+ lI -˜z driving force lI ( ñ

Ž(cocurrent) CDg¦ I% # r! ä ; <.

£\9   +' Û \A ]0 @ °±²

•lš;+ HÁ ²! Fig. 4+ Eª. Fig. 4+' ; <

0 @ °±²•lš; \A ]0 ¶+ ®Q  

¿.   +' \A ]   ª3+' \Ý

;à •" L æà \A AŽŸ0 U(Fig. 2), 3/+

˜ Û \Ý î †] @0  ª3+' $h Ð

|! b4 @ ³´! 67  <\ `a+ @

•lš; [ : ; <.  +' 3 )*

L 567\ —˜ ê @A ]0 @ °±² •lš;

+ HÁ ²! Fig. 5+ Eª. Fig. 5+' ; < 0 †]@

 °±²•lš; @A]0 ¶+ ®Q  r! ä ;

<. 0 Îc\A] +' @A ê](  )

*  L æà F%0 : O^ 1PQ @A ]

+ ®Q  ª3 Žˆ0 #z” †] @ ³´

 #u : ; <. 0à Ä ˆ T @A] ¹—+

' &'0 EEE, Æ @A] ¹—+' 0 (€

ΔE )* Žê( (”\ `a+ @A] + ® Fig. 3. Dissolved oxygen concentration profile in the axial direction of a

column(UL×102=1 m/s).

Fig. 4. Effects of gas velocity on the axial dispersion coefficient of liq- uid phase in aerobic three-phase inverse fluidized beds.

Fig. 5. Effects of liquid velocity on the axial dispersion coefficient of liq- uid phase in aerobic three-phase inverse fluidized beds.

Fig. 6. Effects of gas velocity on kLa in aerobic three-phase inverse flu- idized beds.

(5)

Q Dz )0 ǀ % # r=$ E.

£\9   +' Û \A ]0 \A-@A 3×

š;, kLa+ HÁ ²! Fig. 6+ Eª. Fig. 6+'

; < 0 )* ÉG+ÌË CDÃ ÉGÊ${Ë CD W}

\A] + ®Q \A-@A 3× š; ¿. 0 , \A ]0 ¶+ ®Q ª3+ \A AŽŸ0 U 0+ ®Q \Ý]+ ݶu lI ¥( 1%\ `a+ Îc @A

] +' \A-@Aš&! ˜ @A$ z lI ¥0  1» : ; <. Z[, \A]0 &   ª3+'

†]@ $hÐ|ˆ! (\ `a+ \ݕl +

[ Žˆ à o§”  ª Žˆ #L æà 

 <\ `a+ \A-@A š&+' H Î  Ð|+ [

micro eddy y90 1æ \A-@A š; [ :

; <.   +' A)* XI5]( \A

]0 ¶+ ®Q I r Â$ †] @ $h Ð| `a 0Q B z <[2-5]. £\9   +' ê †]

@ ]0 \A-@A 3ך;+ HÁ ²! Fig. 7+

Eª. Fig. 7+' ; < 0 kLa) @A ]0 ¶+

®Q ÉG+ÌË, ÉGÊ${Ë } % )* CD W}  r

 ä ; <. 0 @A ]0 ¶+ ®Q Û\Ý Û!

*¾4 \A AŽŸ0 \ `a=$ ˜: ; <. "…E

Fig. 7+', } % )* W} CD+ #4 @A ]0 gë

0.01 m/s+' \ 6,: `+ \A-@A 3× š;

++ ,€ ¿=E, @A ]0 0.03-0.05 m/sc($ Æ ¹—

+' @A ]0 ¶+ ®Q kLa )  „D -4æ'

&'[ . EE% # r! ä ; <. 0à Ä ˆ

\Aà @A Ž$ Û ΃  +'à Ä0 @ A ]0 ¶+ ®Q ª3+' Ž ê( z\(

%^,  0 /Ö4æ' @AAŽŸ  L æà

\ `a+ †]@ ¼— 3×0 \A-@A š; kLa )

 ǀ % #  : ; <.

3-3. 

£\9   +' \A AŽŸ †] @ °±² •l

š; "G \A-@A 3× š; ì (11), (12)  (13) Ä 0  ,k; \Aà @A ] "G A)* ? ( ¨ì=$ E ; <.

(11)

(12)

(13)

ì (11), (12)  (13) ¨š; ÖÖ 0.90, 0.92  0.910U, 0

ì ‹Àžà 1 ÎÁ¿(Fig. 8-9).

4.  

£\9    Fm n-! —˜ \Aà @A Ð|0

²Ž$ ÐÑ +' \A AŽŸ cÍêâ+ ˜ "G † εG 301.9UG0.867UL0.842 ρs

ρL ---

  8.919

=

Pe* ULL

---Dz 4.486 UL UG+UL ---

 

 2.830 ρs

ρL ---

  2.861

= =

St* kLaL UL

--- 0.719 UL UG+UL ---

 

 3.103 ρs ρL ---

  1.745

= =

Fig. 7. Effects of liquid velocity on kLa in aerobic three-phase inverse fluidized beds.

Fig. 8. Comparison between the experimental and calculated values of Peclet number.

Fig. 9. Comparison between the experimental and calculated values of Stanton number.

(6)

] @ °±² ³´š;à \A-@A 3× š; @

£\9   +' \A AŽŸ \Aà @A]0 ¶

+ ®Q ¿=U, )* ?(  CD , CDB j

”» \Aà @A ] +' \A AŽŸ  )! Eª.

 +' ê †]@ °±² ³´š;à \A-@A 3×

š;( W} \A ] @A ]0 ¶+ ®Q

¿=U, )* ?(  CD @ °±² ³´š;Ã

š; W}  )! Eª. £\9   +' \ A AŽŸ, @ °±² ³´š; "G \A-@A 3ך

; ¯ †‡ ‹À¹— ª+' ëì Ä0 ‹Àk; ¨ì=

$ E ; <.

¯ †‡ [©e2»3‰¼ 20014( (†‡* %ò Km(¾

÷£: E00295)+ ˜ ;õz=U 5 ‰¼+ K67P.



a : constant in Eq. 8

b : constant in Eq. 8

C : oxygen concentration [mol/l]

Co : intial oxygen concentration [mol/l]

C* : equilibrium concentration [mol/l]

Dz : axial dispersion coefficient of liquid phase [m2/s]

g : gravitational acceleration [m2/s]

H : Henry’s constant [atm · l/mol]

kLa : volumetric mass transfer coefficient [1/s]

L : column height [m]

Pe : peclet number difined in Eq. 7

∆P : pressure drop in the column [N/m2] PT : pressure at the top of the column [Pa]

St : stanton number defined in Eq. 7

X : dimensionless distance defined in Eq. 7

y : gas-phase mole fraction of oxygen z : axial distance [m]

UG : superficial gas velocity [m/s]

UL : superficial liquid velocity [m/s]

 

ε : phase holdup [-]

ρ : density [kg/m3] µ : viscosity [Pa · s]



G : gas phase L : liquid phase S : solid phase



1. Kim, S. D. and Kang, Y.: Chem. Eng. Sci., 52, 3639(1997).

2. Park, H. Y., Kim, S. W., Cho, Y. J., Kang, Y. and Kim, S. D.: HWA- HAK KONGHAK, 39, 619(2001).

3. Cho, Y. J., Park, H. Y., Kim, S. W., Kang, Y. and Kim, S. D.: I&EC Research, 21, 2058(2002).

4. Ibrahaim, Y. A. A., Breins, C. L., Margaritis, A. and Bergongnou, M.

A.: AIChE. J., 42, 1889(1996).

5. Legile, P., Menard, G., Laurent, C., Thomas, D. and Bernis, A.: Int.

Chem. Eng., 32, 41(1992).

6. Garcia-Calderon, D., Buffiere, P., Moletta, R. and Elmaleh, S.: Wat.

Res. 32, 3593(1998).

7. Tang, W. T. and Fan, L. S.: Ind. Eng. Chem. Res., 29, 128(1990).

8. Chern, S. H., Muroyama, K. and Fan, L. S.: Chem. Eng. Sci., 38, 1167 (1983).

9. Choi, H. S. and Shim, M. S.: Korean J. Chem. Eng., 16, 670(1999).

10. Buffiere, P. and Moletta, R.: Chem. Eng. Sci., 54, 1233(1999).

11. Nikolov, V., Farag, I. and Nikov, I.: Bioprocess Eng., 23, 427(2000).

12. Lee, D. H., Epstein, N. and Grace, J. R.: Korean J. Chem. Eng., 17, 684(2000).

13. Karamanev, D. G. and Nikolov, L. N.: AIChE. J., 38, 1916(1992).

14. Kang, Y., Cho, Y. J., Woo, K. J., Kim, K. I. and Kim, S. D.: Chem.

Eng. Sci., 55, 411(2000).

15. Cho, Y. J., Kim, S. J., Nam, S. H., Kang, Y. and Kim, S. D.: Chem.

Eng. Sci., 56, 6107(2001).

16. Kang, Y., Kim, J. S., Woo, K. J., Nam, C. H., Kim, S. H. and Kim, S.

D.: HWAHAK KONGHAK, 36, 275(1998).

17. Deckwer, W.-D., Nguyen-Tien, K., Schumpe, A. and Serpemen, Y.:

Biotech. Bioeng., 24, 461(1982).

18. Kang, Y., Min, B. T., Nah, J. B. and Kim, S. D.: AIChE. J., 36, 1255 (1990).

εG 301.9UG0.867UL0.842 ρs ρL ---

  8.919

=

Pe* ULL

---Dz 4.486 UL UG+UL ---

 

 2.830 ρs

ρL

---

  2.861

= =

St* kLaL UL

--- 0.719 UL UG+UL ---

 

 3.103 ρs ρL ---

  1.745

= =

참조

관련 문서

Bubble drift velocity from the bed collapse technique in three-phase fluidized beds.. SungSoo Park, SeokMin Kang, Gui Young Han, DongHyun Lee * , and Sang Dong Kim 1

Extraction is a process in which one or more components are separated selectively from a liquid or solid mixture, the feed (Phase 1), by means of a liquid immiscible solvent

For a mixture of single volatile liquid and nonvolatile impurities, the dilution of a liquid with nonvolatile impurities reduces the vapor pressure of the

Catalytic performance of the cobalt-base catalysts under gas phase, n-hexane medium, and squalane medium FTS (tempera- ture: 260 o C, pressure in gas phase and squalane medium:

In this paper, it was carried out with the methods of com- parison: (i) Changing the L/V (liquid-gas flow ratio) and F (gas phase loading factor) respectively, and illuminating by SO

The simulation results show that the clear liquid height and the pressure drop of MVG tray are lower than that of sieve tray whereas the liquid velocity is higher and contacts

Variation of two-phase frictional pressure drop per unit length and liquid holdup with gas flow rate at constant liquid flow rate and different helix angle.... of turns acts

Dependence of the chemical potentials of solid, liquid and gas phases on temperature at constant pressure.. The dashed lines are for