• 검색 결과가 없습니다.

Camera Calibration

N/A
N/A
Protected

Academic year: 2021

Share "Camera Calibration"

Copied!
44
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Camera Calibration

Wanho Choi

(wanochoi.com)

(2)

How to solve Ax=b : http://wanochoi.com/lecture/Ax=b.pdf • Least Squares : http://wanochoi.com/lecture/Least_Squares.pdf • Transformation Matrix : http://wanochoi.com/lecture/TransformationMatrix.pdf • Rotation : http://wanochoi.com/lecture/Rotation.pdf

Preliminaries

(3)

How to capture? [Idea #1]

film

(photon sensor)

the captured image

no image fully blurred

object

the sun

(4)

How to capture? [Idea #2]

the captured image object film barrier a small hole (known as aperture) (photon sensor) upside-down sharp

but, insufficient light

requires large exposure time

the sun

(5)

How to capture? [Idea #3]

film

lens (photon sensor)

the captured image

upside-down sharp sufficient light object the sun (light source)

(6)

Convex Lens Formula

H h a b f α α β β tanα = H a = hb tanβ = Hf = hb − f h H = ba h H = b − ff = bf − 1 ∴ b a = bf − 1 ⇒ ⇒ b f = ba + 1 = a + ba ⇒ ∴ 1f = a + bab = 1a + 1b upside-down upright : focal length focal point tanα = H a tanα = hb tanβ = hb − f tanβ = H f optical center

(7)

Aperture (

조리개)

렌즈(lens)로 들어오는 광량(amount of light)을 조절한다.

또한, 피사계 심도(depth-of-field)도 이에 영향을 받는다.

: 초점이 맞은 것으로 인식되는 (acceptably sharp) 거리의 범위

구멍의 크기가 작을수록 핀홀 카메라(pinhole camera)에 가까워 진다.

(8)

Aperture (

조리개)

(9)

Aperture (

조리개)

(10)

Ideal Thin Lens vs Real Lens

spherical aberration chromatic aberration

https://expertphotography.com/chromatic-aberration-photography/ https://en.wikipedia.org/wiki/Spherical_aberration http://www.drewgrayphoto.com/learn/distortion101

(11)

• Pinhole as a point

• Pencil of rays: 모든 광선(ray)은 한 점(focal point)을 통과

• One ray per each point

Pinhole Camera

image plane pinhole virtual image

(12)

• “어두운 방”이라는 뜻

• 그림 등을 그리기 위해 만든 광학 장치로, 사진술의 전신

Camera Obscura

(13)

Camera Obscura

(14)

Homogeneous Coordinate System

유클리디언 기하학(Euclidean geometry)에서 사용하는 좌표계 : 데카르트 좌표계 (cartesian coordinate system)

사영 기하학(projective geometry)에서 사용하는 좌표계

: 동차 좌표계 (homogeneous coordinate system)

(x, y, z) (x, y, z,1) (x, y, z, w)

4x4 or 3x4 matrixcomputation

(x/w, y/w, z/w)

(15)

Homogeneous Coordinate

• The 2D point (x, y) is represented by the homogeneous coordinate (x, y,1).

• In general, the homogeneous coordinate (x, y, w) represents the 2D point (x/w, y/w).

(16)

Pinhole Camera Model

XC YC ZC 1 = r11 r12 r13 t1 r21 r21 r23 t2 r31 r32 r33 t3 0 0 0 1 X Y Z 1 ˜x ˜y ˜z = f 0 0 0 0 f 0 0 0 0 1 0 XC YC ZC 1 (x, y) = (˜x/˜z, ˜y/˜z) ˜u ˜v ˜w = sx sθ uc 0 sy vc 0 0 1 ˜x ˜y ˜z (u, v) = (˜u/˜w , ˜v/˜w ) camera space (3D) ➔ image plane space (2D)

world space (3D) ➔ camera space (3D)

image plane space (2D) ➔ pixel space (sensor) (2D)

y z O = C0 : optical center : optical axis P(XC, YC, ZC) p = ? f: focal length image plane p = [xy] ≡ ˜x ˜y ˜z = f XC/ZC f YC/ZC 1 ≡ f Xf YCC ZC = 0 f 0 0f 0 0 0 0 0 1 0 XC YC ZC 1 pixel scale image center skewness

(usually negligible or zero)

rotation translation projection ˜x ˜y ˜z = f 0 0 0 0 f 0 0 0 0 1 0 XC YC ZC 1 f 0 0 0 f 0 0 0 1 [ 1 0 0 0 0 1 0 0 0 0 1 0] zooming 3D to 2D

: standard (or canonical) projection matrix

(17)

Pinhole Camera Model

˜u

˜v

˜

w

=

s

x

s

θ

u

c

0 s

y

v

c

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

(18)

Pinhole Camera Model

˜u

˜v

˜

w

=

s

x

s

θ

u

c

0 s

y

v

c

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

K: intrinsic parameters W: extrinsic parameters

(19)

Pinhole Camera Model

˜u

˜v

˜

w

=

s

x

s

θ

u

c

0 s

y

v

c

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

K: intrinsic parameters W: extrinsic parameters

C: camera matrix

K =

α γ u

c

0 β v

c

0 0 1

=

s

x

s

θ

u

c

0 s

y

v

c

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

(20)

Homography

• Transformation between two different planes

• Homography matrix

‣ 3x3 square matrix

But, 8 DoF as it is estimated up to a scale

‣ It is generally with . s x′y′ 1 = H [ x y 1] = h11 h12 h13 h21 h22 h23 h31 h32 h33 [ x y 1] h33 = 1

(21)

The Examples of Homography

(22)

DLT (Direct Linear Transformation)

˜u

˜v

˜

w

=

α γ u

c

0 β v

c

0 0 1

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

11 unknowns (11 D.O.F.) rx, ry, rz, tx, ty, tz α, β, γ, u5 unknownsc, vc 6 unknowns observed image point (measure) known control point (given)

(23)

DLT (Direct Linear Transformation)

C: camera matrix

˜u

˜v

˜

w

=

α γ u

c

0 β v

c

0 0 1

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

3 × 1

p = CP

3 × 4 4 × 1

(24)

DLT (Direct Linear Transformation)

p = CP

˜u

˜v

˜

w

=

C

11

C

12

C

13

C

14

C

21

C

22

C

23

C

24

C

31

C

32

C

33

C

34

X

Y

Z

1

u = ˜u˜w = CC11X + C12Y + C13Z + C14 31X + C32Y + C233Z + C34 v = ˜v˜w = CC21X + C22Y + C23Z + C24 31X + C32Y + C33Z + C34 So, we need at least 6 point pairs.

(25)

DLT (Direct Linear Transformation)

u = CC11X + C12Y + C13Z + C14 31X + C32Y + C33Z + C34 v = CC21X + C22Y + C23Z + C24 31X + C32Y + C33Z + C34 [−X −Y −Z −1 00 0 0 0 −X −Y −Z −1 vX vY vZ v]0 0 0 uX uY uZ u C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 = 0

(26)

DLT (Direct Linear Transformation)

For N-point pairs

−X1 −Y1 −Z1 −1 0 0 0 0 u1X1 u1Y1 u1Z1 u1 0 0 0 0 −X1 −Y1 −Z1 −1 v1X1 v1Y1 v1Z1 v1 −X2 −Y2 −Z2 −1 0 0 0 0 u2X2 u2Y2 u2Z2 u2 0 0 0 0 −X2 −Y2 −Z2 −1 v2X2 v2Y2 v2Z2 v2 ⋮ ⋮ −XN −YN −ZN −1 0 0 0 0 uNXN uNYN uNZN uN 0 0 0 0 −XN −YN −ZN −1 vNXN vNYN vNZN vN C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 = 0 12N × 12 12 × 1

Mc = 0

(27)

DLT (Direct Linear Transformation)

Mc = 0 Mc = w

!

̂c = argmin

c

(w

T

w)

wTw = (Mc)T(Mc) = cTMTMc = cT(USVT)T (USVT) c

= cT(VSUT) (USVT) c = cTVSUTUSVTc

= cTVS2VTc = cT ( 12 ∑ i=1 si2viviT ) c

: SVD (Singular Value Decomposition)

: the 12th (=smallest) eigenvector of V

= cT (s2

1v1v1T + s22v2v2T + ⋯ + s122 v12v12T ) c

∴ ̂c = v12 ( ∵ vTi vj = 0)

(28)

If individual parameters are needed

C = [H|h] = KR [I| − C

0

] = H [I| − C

0

]

known

H = QR

: QR decomposition

∴ K = 1

Q

33

Q

h = − HC

0

∴ C

0

= − Hh

: homogeneity normalization

(29)

Checkerboard

‣ Size & structure are known.

‣ Easy to set & get the points.

(30)

Camera Calibration using 2D Pattern

• All points are on a plane, so Z=0.

x

y

z

(31)

Camera Calibration using 2D Pattern

• All points are on a plane, so Z=0.

• We cannot solve the problem with general DLT process.

−X1 −Y1 −Z1 −1 0 0 0 0 u1X1 u1Y1 u1Z1 u1 0 0 0 0 −X1 −Y1 −Z1 −1 v1X1 v1Y1 v1Z1 v1 −X2 −Y2 −Z2 −1 0 0 0 0 u2X2 u2Y2 u2Z2 u2 0 0 0 0 −X2 −Y2 −Z2 −1 v2X2 v2Y2 v2Z2 v2 ⋮ ⋮ −XN −YN −ZN −1 0 0 0 0 uNXN uNYN uNZN uN 0 0 0 0 −XN −YN −ZN −1 vNXN vNYN vNZN vN C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 = 0 rank deficiency!

(32)

A Simple Trick!

˜u

˜v

˜

w

=

α γ u

c

0 β v

c

0 0 1

r

11

r

12

r

13

t

1

r

21

r

21

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

X

Y

Z

1

˜u

˜v

˜

w

=

α γ u

c

0 β v

c

0 0 1

r

11

r

12

t

1

r

21

r

21

t

2

r

31

r

32

t

3

[

X

Y

1]

H = [h

1

, h

2

, h

3

] = K[r

1

, r

2

, t]

8 unknowns (8 D.O.F.)

(33)

Homography

• Linear transformation between two different planes

p = HP

[

u

v

1]

= [h

1

, h

2

, h

3

] [

X

Y

1]

[

u

v

1]

=

h

11

h

12

h

13

h

21

h

22

h

23

h

31

h

32

h

33

[

X

Y

1]

observed image point (measure) known control point (given) 8 unknowns

= 1

So, we need at least 4 point pairs.

(34)

How to get K, R, and T from H

H = [h

1

, h

2

, h

3

] = K[r

1

, r

2

, t]

rotation matrix가 아니기 때문에 QR decomposition 사용 불가능

r

1

= K

−1

h

1

r

2

= K

−1

h

2

r

T1

r

2

= 0

r

T 1

r

1

= r

T2

r

2

= 1

(K−1h1)T(K−1h2) = 0 이 관계로 부터 다음과 같이 2개의 제약조건(constraints)을 얻을 수 있다. (K−1h1)T(K−1h1) = (K−1h2)T(K−1h2) hT1K−TK−1h2 = 0 hT1K−TK−1h1 − hT2K−TK−1h2 = 0

(35)

How to get K, R, and T

hT1K−TK−1h2 = 0

hT

1K−TK−1h1 − hT2K−TK−1h2 = 0

: symmetric positive definite matrix

B = b11 b12 b13 b21 b22 b23 b31 b32 b33 ∵ B = K−TK−1 = (K−T) (K−T)T = AAT : Cholesky decomposition ∴ b := [b11 b12 b13 b22 b23 b33]T B := K−TK−1 h T 1Bh2 = 0 hT 1Bh1 − hT2Bh2 = 0

(36)

How to get K, R, and T

hT1K−TK−1h2 = 0 hT 1K−TK−1h1 − hT2K−TK−1h2 = 0 B := K−TK−1 h T 1Bh2 = 0 hT 1Bh1 − hT2Bh2 = 0 b := [b11 b12 b13 b22 b23 b33]T vT 12b = 0 (v11 − v22)T b = 0 vTij = [h1ih1j h1ih2j + h2ih1j h3ih1j + h1ih3j h2ih2j h3ih2j + h2ih3j h3ih3j]T [ vT 12 (v11 − v12)T] b = 0

(37)

How to get K, R, and T

the 1st point pair

the n-th point pair

vT12 (v11 − v12)TvT 12 (v11 − v12)T b = 0

Vb = 0

Vb = 0 Vb = w

!

̂b = argmin

b

(w

T

w)

(38)

If individual parameters are needed

H = [h

1

, h

2

, h

3

] = K[r

1

, r

2

, t]

r

1

= K

−1

h

1

r

2

= K

−1

h

2

B = K

−T

K

−1 : Cholesky decomposition

B = K

−T

K

−1

= AA

T

∴ K = A

−T

r

1

= K

−1

h

1

&

r

2

= K

−1

h

2

h

3

= Kt → t = K

−1

h

3

(39)

Distortion: non-linear error

Especially radial distortion

So, we only consider the first two terms of radial distortion.

• The distortion function is dominated by the radial components, and especially dominated by the first term.

• Moreover, more elaborated model would cause numerical instability.

(40)

Dealing with Radial Distortion

˘x = x + x [k1(x2 + y2)2+k2(x2 + y2)2]

˘y = y + y [k1(x2 + y2)2+k2(x2 + y2)2] (˘x, ˘y)

(x, y): ideal (distortion-free) point : real (distorted) point

˜u ˜v 1 = α 0 uc 0 β vc 0 0 1 ˜x ˜y 1 ˜u = uc + α ˘x ˜v = vc + α˘y ˘u = u + (u − u0) x [k1(x2 + y2)2+k2(x2 + y2)2] ˘v = v + (v − v0) x [k1(x2 + y2)2+k2(x2 + y2)2] [(u − u 0) (x2 + y2) (u − u0) (x2 + y2) (v − v0) (x2 + y2) (v − v0) (x2 + y2)] [ k1 k2] = [˘v − v]˘u − u

(41)

Maximum Likelihood Estimation

• Non-linear optimization problem

• Levenberg-Marquardt algorithm

• Initial guess from DLT

N

i=1 M

j=1

p

ij

− ˘p

ij

(K, k

1

, k

2

, R

i

, t

i

, P

j

)

2

(42)

Camera Calibration using OpenCV

(43)

References

• https://www.youtube.com/watch?reload=9&v=vZELygPzV0M • https://www.youtube.com/watch?v=ywternCEqSU • https://www.youtube.com/watch?v=Ou9Uj75DJX0 • http://staff.fh-hagenberg.at/burger/publications/reports/ 2016Calibration/Burger-CameraCalibration-20160516.pdf • https://www.microsoft.com/en-us/research/wp-content/uploads/ 2016/02/tr98-71.pdf

(44)

참조

관련 문서

 Analytical photogrammetry is a term used to describe the rigorous mathematical calculation of coordinates of points in object space based upon camera parameters,

The error propagation coming from the camera calibration has been investigated, and the error propagation coming from the reconstruction of voxel images, in

그림 19 Absorbance spectra of the prepared chitosan-IPN hydrogels functionalized with gallic acid.. Inset image displays the calibration curve obtained using

Depth Sensor As a sensor to measure hydrostatic pressure of knowing the depth of the device.. Board 1,2 The performance of various sensors and controls to be able to use

light particle (photon) must overcome the binding energy of the electron to the nucleus. ‰ If the energy of the photon exceeds the binding energy, the electron is emitted with a KE

Photochemical Technique: Fluorescence lifetime – streak camera. The Streak Camera

The innovation of the mass media not only has changed the delivery process of a product but also has expanded into the image industry such as

Indirect costs of a cost object are related to the particular cost object but cannot be traced to it in an economically feasible (cost-effective) way.. For example, the