• 검색 결과가 없습니다.

재 료 상 변 태

N/A
N/A
Protected

Academic year: 2022

Share "재 료 상 변 태"

Copied!
32
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

재 료 상 변 태

Phase Transformation of Materials

2008.09.11.

박 은 수

서울대학교 재료공학부

(2)

Contents for previous class

• Ideal solution과 regular solution의 이해

• 이상 용액과 규칙 용액에서 Gibbs Free Energy

• Chemical potential과 Activity 의 이해

(3)

Contents for today’s class

• Review for last class

• Real solutions

• Ordered phases:

SRO & LRO, Superlattice

• Intermediate phase

(intermetallic compound)

• Equilibrium in heterogeneous system

(4)

* Binary System (two component)

Æ A, B

- Mixture ; A – A, B – B ; Æ 각각의 성질 유지, boundary는 존재, 섞이지 않고 기계적 혼합

A B

- Solution ; A – A – A ; Æ atomic scale로 섞여 있다. Random distribution A – B – A Solid solution : substitutional or interstitial

- compound ; A – B – A – B ; Æ A, B의 위치가 정해짐, Ordered state

B – A – B – A

* Single component system One element (Al, Fe), One type of molecule (H2O)

: 평형 상태 압력과 온도에 의해 결정됨

: 평형 상태

온도(T)

압력(P)

이외에도

조성의 변화(X)

를 고려

(5)

Gibbs Free Energy of Binary Solutions

G1 = XAGA + XBGB J/mol G2 = G1 + ΔGmix J/mol

Gmix

=

Hmix - TSmix

How can you estimate ΔHmix and ΔSmix ?

G = H-TS = E+PV-TS

(6)

Mixing free energy ΔG

mix

= th + config S S S

1

! ln

!

)!

ln ( k

N N

N k N

S S

S

B A

B before A

after

mix + −

=

= Δ

가정1 ; ∆H

mix=0 :

; A와 B가 complete solid solution ( A,B ; same crystal structure)

; no volume change

1) Ideal solution

w k

S

= ln

w : degree of randomness, k: Boltzman constant Æ thermal; vibration ( no volume change )

Æ Configuration; atom 의 배열 방법 수 ( distinguishable )

ΔGmix = -TΔSmix J/mol

Gmix

=

Hmix - TSmix

Entropy can be computed from randomness by Boltzmann equation,

If there is no volume change or heat change,

) ln

ln

(

A A B B

mix

R X X X X

S = − +

Δ

(7)

) ln

ln

(

A A B B

mix

RT X X X X

G = +

Δ

ΔGmix = -TΔSmix

Mixing free energy ΔG

mix

1) Ideal solution

Compare Gsolution

between high and low Temp.

G2 = G1 + ΔGmix

( ∆H

mix=0 )

G1 ΔGmix

(8)

Chemical potential

= μ

A A

dG ' dn

The increase of the total free energy of the system by the increase of very small quantity of A, dn

A

, will be proportional to dn

A

.

소량 첨가에 의한 내부 에너지 변화 계산

(T, P, nB: constant )

G

= H-TS = E+PV-TS

For A-B binary solution, dG' = μAdnA + μBdnB

= − + + μ

A A

+ μ

B B

dG ' SdT VdP dn dn

For variable T and P

1) Ideal solution

(9)

1

= μ

A A

+ μ

B B

G X X Jmol

For 1 mole of the solution (T, P: constant )

G = E+PV-TS G = H-TS

B B

B A

A

A RT X X G RT X X

G

ln ) ( ln )

( + + +

=

μA

μB

XB

μ = +

μ = +

A A A

B B B

G RT ln X G RT ln X

1) Ideal solution

Chemical potential 과 Free E와의 관계

(10)

1

= μ

A A

+ μ

B B

G X X Jmol

For 1 mole of the solution

A A B B

dG = μ dX + μ dX

B A B

dG

dX = μ − μ

A B

B

dG μ = μ − dX

(

1

)

B A B B

B

B A A B B

B

B A

B

B B

B

G dG X X

dX

X dG X X

dX dG X dX

dG X

dX

= μ − + μ

= μ + μ

= μ −

= μ −

B A

B

G dG X μ = + dX

(11)

2) Regular solution : ΔHmix≠ 0

Quasi-chemical model assumes that heat of mixing, ΔH

mix

, is only due to the bond energies between adjacent atoms.

Gmix

=

Hmix - TSmix

ΔHmix = PABε AB = a A B

a

P N zX X bonds per mole N : Avogadro ' s number

z : number of bonds per atom

= (# of bond)X(bond E)

∆Hmix = ΩXAXB where Ω = Nazε

G2 = G1 + ΔGmix

) ln

ln

( A A B B

B A B

B A

AG X G X X RT X X X X

X

G = + + Ω + +

0 ε

(12)

Regular Solutions

Reference state

Pure metal GA0 = GB0 = 0

) ln

ln

( A A B B

B A B

B A

AG X G X X RT X X X X

X

G = + + Ω + +

G2 = G1 + ΔGmix

Gmix

=

Hmix - TSmix

Hmix -TSmix

(13)

Phase separation in metallic glasses

(14)

1

= μ

A A

+ μ

B B

G X X Jmol

For 1 mole of the solution (T, P: constant )

G = E+PV-TS G = H-TS

A B B

A B

AX X X X X

X = 2 + 2

2) regular solution

B B

B B

A A

A A

X RT

X G

X RT

X G

ln )

1 (

ln )

1 (

2 2

+

− Ω

+

=

+

− Ω

+

= μ μ

) ln

ln

( A A B B

B A B

B A

AG X G X X RT X X X X

X

G = + + Ω + +

) ln

) 1

( (

) ln

) 1

(

(

A A 2 A B B B 2 B

A G

+ Ω −

X

+

RT X

+

G

+ Ω −

X

+

RT X

=

μ μ

μ = +

μ = +

A A A

B B B

G RT ln X G RT ln X

Chemical potential 과 Free E와의 관계

Ideal solution

복잡해졌네 --;;

(15)

Activity, a : mass action을 위해 effective concentration

ideal solution

regular solution

μ

A = GA + RTlnaA

μ

B = GB + RTlnaB

Ω

=

B

B B

ln a (1 X )

X RT

γ =B B

B

a X

μ = + μ = +

A A A

B B B

G RT ln X G RT ln X

B B

B B

A A

A

A = G + Ω (1 X )2 + RT ln X μ = G + Ω (1 X )2 + RT ln X μ

(16)

Solution에서 a와 X와의 관계

조성 따른 activity 변화 aB aA

Line 1 : (a) aB=XB, (b) aA=XA ideal solution…Rault’s law Line 2 : (a) aB<XB, (b) aA<XA ΔHmix<0

Line 3 : (a) aB>XB, (b) aA>XA ΔHmix>0

γ =

γ =

B B

B

A A

A

a cons tan t (Henry ' s Law) X

a 1 (Rault ' s Law) X

For a dilute solution of B in A (XB→0)

(17)

μ

A = GA + RTlnaA

= Ω

B

B B

ln a (1 X )

X RT

Activity는 solution의 상태를 나타내는

조성 과 Chemical potential 과 상관관계 가짐.

A

A

a

degree of non-ideality ? X A = γA A = γA A

A

a , a X

X

γA : activity coefficient

Chemical Equilibrium (μ, a) → multiphase and multicomponent

iα = μiβ = μiγ = …), (aiα = aiβ = aiγ = …)

(18)

ε > 0, ΔH

mix > 0

ε < 0, ΔH

mix< 0

Ideal or Regular solution : over simplification of reality

Real solution:

충분한 무질서도 + 가장 낮은 내부 E

Ordered alloys Clustering Random interstitial strain effects

배열 Entropy + 원자간 결합의 효과S

=

k

ln

w ∆Hmix = ΩXAXB where Ω = Nazε

PAB

≈ 0 ε

Sthermal= 0

내부

E PAA, PBB

Gmix

=

Hmix - TSmix

(19)

* The degree of ordering or clustering will decrease as temp.

increases

due to the increasing importance of entropy.

*

In systems where there is a size difference between the atom,

∆E = ∆H

mix + elastic strain

quasi- chemical model 에서 단지 ∆H

mix

만 고려

정확한 내부 E 변화 알기 위해선 새로운 수학적 모델 요망

Gmix

=

Hmix - TSmix

Real solution:

충분한 무질서도 + 가장 낮은 내부 E

(20)

• Ω < 0 ⇒ contain short-range order (SRO) = s

= −

AB AB

AB AB

P P (random)

s P (max) P (random)

Ordered phase ε < 0, ΔH

mix< 0

(21)

5 nm

(22)

[2211]Laves (1120) (0132)

(23)

* In solutions with compositions that are close to a simple

ratio of A:B atoms another type of order can be found.

* This is known as long-range order (LRO) CuAu, Cu3Au and many other intermetallics show LRO.

* A superlattice forms in materials with LRO

Ordered phase ε < 0, ΔH

mix< 0

Cu–Au alloy

High temp.

Disordered Structure

Low temp.

CuAu superlattice Cu3Au superlattice

(24)

The entropy of mixing of structure with LRO is extremely small and with

increasing temperature the degree of order decrease until above some critical temperature there is no LRO at all.

This temperature is a maximum when the composition is the ideal required for the superlattice.

LRO 파괴되는 임계 온도는 Ω 혹은 Δhmix(결합에너지)가 증가함에 따라 상승.

• 대부분의 계에서 규칙상은 용융점까지 안정하다.

Ordered phase ε < 0, ΔH

mix

< 0

Gmix

=

Hmix - TSmix

(25)
(26)

Five common ordered lattices

(a) L20: CuZn (b) L12: Cu3Au (c) L10: Cu3Au

(d) D03: Fe3Al (d) D019: Mg3Cd

(27)

5 nm

(28)

*

Often the configuration of atoms that has the minimum free energy after mixing does not have the same crystal structure as either of the pure components. In such cases the new structure is known as an intermediate phase.

*

Intermediate phase has crystal structure different from that of either element in pure state. For example, CuZn has an ordered body centered structure, different from either Cu (fcc) or Zn (hcp). This particular intermediate phase has some solubility range whereas other

intermediate phases may have a very narrow solubility range for the solute element.

Intermediate Phase

(29)

* Many intermetallic compounds have stoichiometric composition

AmBn

and a characteristic free energy curve as shown in Fig 1.23a.

* In other structure, fluctuations in composition can be tolerated by

some atoms occupying ‘wrong’ position

or by atom sites being left

vacant, and in these cases the curvature of the G curve is much less,

Fig. 1.23b

Intermediate Phase

(30)

Intermediate Phase

(31)

β

β’

규칙-불규칙 변태:

낮은 온도에선 규칙 구조가, 높은 온도에서는 무질서한 배열이 안정한 중간상

(32)

1) Relative atomic size

- Laves 상 (원자크기비가 1.1~1.6인 경우)

- 침입형 화합물: MX, M2X, MX2, M6X 2) Valency Electron

- 전자상이 형성되는 경우 3) Electronegativity

- 이온결합에 의한 화합물 Mg2Sn

MgCu2 (A Laves phase)

3 main factors determining the structure of Intermediate phase ?

Intermediate Phase

참조

관련 문서

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

The key issue is whether HTS can be defined as the 6th generation of violent extremism. That is, whether it will first safely settle as a locally embedded group

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

If both these adjustments are considered, the resulting approach is called a bootstrap-BC a -method (bias- corrected-accelerated). A description of this approach

Five days later, on 15 January 1975, the Portuguese government signed an agreement with the MPLA, FNLA and UNITA providing for Angola to receive its independence on 11

· 50% exemption from tuition fee Ⅱ for the student with a TOPIK score of level 3 or higher or completion of level 4 or higher class of the Korean language program at the

웹 표준을 지원하는 플랫폼에서 큰 수정없이 실행 가능함 패키징을 통해 다양한 기기를 위한 앱을 작성할 수 있음 네이티브 앱과

_____ culture appears to be attractive (도시의) to the