• 검색 결과가 없습니다.

 1.  Recovery Effect of Evacuation and Rinse Conditions on Performance in PSA Process for CO       

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Recovery Effect of Evacuation and Rinse Conditions on Performance in PSA Process for CO        "

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

CO

2

  PSA 

   

* * 

 

* 

(2000 2 1 , 2000 9 18 )

Effect of Evacuation and Rinse Conditions on Performance in PSA Process for CO

2

Recovery

Hawung Lee, Jae-ho Choi*, Yeong-Koo Yeo*, Hyung Keun Song and Byung-Ki Na

Clean Technology Research Center, KIST, Seoul 136-791, Korea

*Dept. of Chem. Eng., Hanyang University, Seoul 133-791, Korea (Received 1 February 2000; accepted 18 September 2000)

 

&   "'( ) *+ ,- ./- %. 01   23 4567  89 : ;<)  =>,  ?@A BC"  ; 4D) E ! F 4D 0G  45 H I $%. J- => 45   2345K LM67 "#  &   ! NO  * 2P23

Q D RS%.  => T  6 U CO2 V T67 '(W% XD9 T Y 8& W$

<Z, => [\ ] T67 :^ '( T8& _` a<) bcd%.  & =>23 0G NO  ?@A efg h i D RS%.

Abstract−The effect of evacuation and rinse step on the process performance was studied using numerical simulation to recover heavy component in a PSA process. Rinse and evacuation steps are very important to obtain heavy component as a product. Therefore, to improve the process performance, the rinse pressure, reflux ratio and flow direction of rinse step were selected as variables, and the performance change of process according to changing variables was investigated. The effect of eva- cuation condition combined with the rinse condition was studied also. As a result, the optimum operating condition was obtained to have maximum process performance. Increasing rinse pressure conduced to increase the recovery by increasing adsorbed amount of CO2 during the rinse step. Decreasing evacuation pressure contributed to increase the purity by increasing desorbed amount of CO2 during the evacuation step. At this point, the optimum reflux ratio was existed at certain pressure conditions.

Key words: CO2, PSA, Rinse, Evacuation, Simulation

E-mail: nabk@kist.re.kr

1.  

   PSA  1957-1958 Skarstrom

[1, 2]   .  PSA   !

" # $%  &' ()* +,-%. #/0 1

1950& 234 5 6 . 7 &8-9 : 9 Skarstrom cycle   ;,  cycle <= '   > ?=

' @ A <= BC :-%. 3DE%.F PSA   GH#I ;  J" $[2]. 1960& 23KL 6 

M  PSA  NH  #/ , 1980& OP

QRSG, T SG > USG* V W ()* XY Z[\ T ] . ^_ OP `<=a CMb. c%d ()* 

[3, 4]. m XnP o p qr O s > t u vN w' ()* T] .

QRSG Skarstrom cycle xy w z{%. V | S G. Berlin [5] 0  SG G- }~ € 

 CMb. c w'  QRSG RSG € ‚

 1 b„ <=@ A ! CMb …" †J ‡6ˆ‰

q" vN#I Š5 '[6].

T SG ‹Œ, z{ <=a CMb. c w' 

(2)

 38 6 2000 12

`<=a <=@ A Ž P BC Pd~ƒ BC‘’ “”

%. V [7]. •' T SG BC Š5 `<=a C Mb. –A Š5. r P, `<=a CMb. c w'

 —6-9 SG. ƒ" ˜™.

+ () š›-%. œ USG `<=a CMb . c wJ V0 SG. z{ USG *R-<=-R-H

 4SG :  <=SG { €]  ;, <=SG" 

 `<=a  <=0 @ # `<=a žPŸ%. @ 

" `<=a.  H#I, P RSG CMb c %.

œP¡[2]. `<=a ‡6" w' USG š¢t  9£

P p %  SG ¤¥ xH ¦§ ^-H () ¨l ©O. + () ª]() « [6] (*¬.

KL `<=a9 CO2" CMb. c  USG ­‰"

®$.  ¯° USG V%. q* 20%N vN ±‰" c 6 .  ²' USG ¤¥ xH" 

tu XY vN#³ 6 { ´f, ¦4 + () U

SG ¤¥ xH#µ *W  ¦§ tu xH" M¶p"

 sE%.F tu ^&H#³ 6 USG ¤¥ ¨

· ¸-%. $. m E¹ ?=Rº > r»¼*  

tu ´½ ¾v E¹ ®$.

2.  

+ () €-9 USG ¾v  wJ 8SG.

)t0 &N  ¿$. &N  *R, <=, R, T ?

=SG. œPT qr  QRSGm USG" À*' .

&N  UK SG {‰ Á )t P %f ª]()[6]" 

 cPT ^-  Â. )t$.

(1) *RSG (2) <=SG (3) û RSG (4) û Ry QRSG (5) *R USG (6) R USG (7) T ?=SG (8) v» *Ry QRSG

USG* e K%. ÄP T 1, QRSG" ½W @ A

 Rº NR . ÅP~Æ Ç.(0.55 atm) Ctb J

" NRÈ~ Éd: ‰ Ê*  7°.  &' 

" Ë wJ Fig. 1 ¤Ì q" ÍA ¶£" €. <=

Rº 1.5 atm, QRRº 0.55 atm%. $%f, Ur»¼

¾v l wJ Ur»¼ 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 Î

Rº 1.0, 1.15, 1.3 Î 1.5 atm 4*~ ‹Œ. ÄP 

 s$.

U ¤¥ xH ¦§  tu Ϗl wJ e US G" J• *~ ‹Œ. UJ s$. ¤Ð5 6 ‹Œ

6 J• *~* ~Ñ + () U ¤¥%. U ‘v

‰ U Rº xH#µ Ò ¤¥ tu M¶p" 

J ¼Ó$.

ÔÕ *R USGm R USG  Ö× ‘v ¦§ ¾v

 dW { 4*~ ‹Œ. ÍØ 6 .

(1) û *Ry USG, û Ry USG (2) û *Ry USG, v» Ry USG (3) v» *Ry USG, û Ry USG (4) v» *Ry USG, v» Ry USG

{%. Ur»¼ ¦§ tu xH" Ù' ‘’%. Ú_

J s$ ;, URº‰ ?=Rº ¦4  tu PÛÆ Ü 4~ *" ¼Ó$. Ý ?=Rº 0.1R‰ 0.05R, URº

1R‰ 1.5R%. ªÞJ " ¤ÐJ { 4*~ ¤¥%.

s #$.

(5) ?=Rº 0.1R, URº 1.0R (6) ?=Rº 0.05R, URº 1.0R (7) ?=Rº 0.1R, URº 1.5R (8) ?=Rº 0.05R, URº 1.5R

m Á ¤¥%. r»¼ ¦§ tu s' ß URº‰

?=Rº ¦4 r»¼* ´½ ¾v " 1%. àá 

7°. + () ÔÕ ?=Rº‰ URº 1R9 (5)

¤¥ â%., (1) (4) ¤¥ ¦§ U ‘v ­‰" s ' 2 ^- Ö× ‘v ªÞ$. " Â. (5) (8) ‹

Œm Á U > ?=Rº ¦§ tu s 6]$.

+ () ¸- PSA  tu vN w' ¤¥ ¨A 1Ç. PSA  tu &' * ㌠š¢. PSA 

 ä' ¯°å æç èÆ tu  ;, + ()

 *é “3-%. p " p$%f qm ‡6ˆ

e *~" ê* â%. $. q  CMb š oB

CO2 êQ …. $, ‡6ˆ ßV0 CO2 Ù &

' cPT CO2 Ù%. $. USG* V ~ ë ‹Œ

T SG ì ¶í CO2" ‡60 CO2. ~Ñ, US G* V  ‹Œ T SG ‡60 CO2 Ù U

b. 0 CO2" î GM'. ²' USG š¢' x69 Ur»¼ USG V ï CMb ï%. ð 1%. $.

GM0 ±‰O Ϗl ñÆ ÍA wJ tuê*òª 

$. tuê*òª ßï ¦§ ‡6ˆ‰ q xH" ÍA 1%. òª ó* ô õ§ö NS%. ½Œ÷6ø t u X ù 1 ´Æ 0. + () tuê*òª 

#" wJ !ú ßï 7.6, 10, 15, 20 SLPM9 ‹Œ &

J GM$.

Fig. 1. Flow schedule of PSA process.

PR: Pressurization, AD: Adsorption, CD: Countercurrent depressur- ization, PE: Pressure equalization, RN: Rinse, EV: Evacuation

(3)

3.  

+ () ¶p"  ^ tu û USG ¤¥ ¨

Aü  7° {‰ Á ¶ý‰ ¶p‘’ $.

PSA  &' ba 6~£, <= êy£, baÜ£, }~ 6

~£ J ¶ýþE%.F ´ ª0 &N O s$.

¶ý£ ㌠ x6O ÿ´‘ y. (G P P ¶p N

' Pdi :Æ 0. ¦4 € N ÀP C5 K

¿J M¶p ñÆ Ú_ø $. (*¬ ¤t

N2(79-84%), CO2(12-17%), O2(4%), Î ´ï SO2, NOx. œ

P % , SO2, NOxt > O2 CO2 €-  ¾v

 {%. #, N2m CO2 tG. l ¶p" €#

$[8]. SO2, NOx Î Ù N&-%. ㌠/ <=. Zt

  ‹Œ <= tu Æ ¾v :~ ë%f, O2 Zt  p' êy<=€ ‰ ‰€  <=ta N2m ã

Œ ßpÆ Í  * â[9]. ²' N 

N.  GM$%f, @  ¼    ‘v

€ €  J @ A Rº` ¾v { Ï 6 %

f[9], ì ¦§ x6O \ Cp, ρ ¤Ìw xH*

 t  ¾v :~ ë “ æ:$. ó• @ A <=  ¶p ; P @ A" SN4 *$

[10, 11],N‰ <=N p baÜ Linear Driving Force(LDF) model ¦èf Ðb <=êy Sqé¶ý(Extended Langmuir

Isotherm model) ¦è 1%. $. ¶ý£O W {‰

Á[6].

Overall mass balance:

(1)

where

Mass Balance of i-component:

(2) Energy Balance:

(3)

Mass Transfer Rate:

(4)

Cim ÒÒ N‰ <=N …f u ª, ρbulk N , ε <=@ A . Cpgm Cps ÒÒ 

m <= ï, ρg Ðb , ∆Hj Ò t <=

. <= Clausius-Clapeyron £ J GM$. ba

Ü£ ki baÜG6f, CO2m N2 Zt  ¶e <=

Ç. N&-9 k  ㌠š¢' ´" *T. + () p0 k  CO2 ‹Œ 0.2 s1, N2 ‹Œ 0.015 s1$.   GM

 w' äG£ # ! $~Ñ[2] „£%.KL cPT ba

¦èÇ. + () ‰€  6]J cPT ‰òª 

J baÜG6" _p##. qi* <= 8W <=0 êy<=

ï ´ extended Langmuir isotherm J GM$.

w ÿ´‘£ $ w -%' ¤¥‰ ‹G¤¥ : Pü '. Ò SG &' ¤¥  SG ±‰ ‰ “½

‹G¤¥ Ò SG ¦4 Table 1 Í& ¤¥ Ñ''[13].

J P(t) pressure history" ´ ; PSA ¶p —¢' ¤

¥Ç. b- N‰ “½ø _p#I 1 š¢.  E 6 “3-%. ~6E6. _p#³ 6 %f {‰ Á #æ

&' ô6 y" ([3].

(5) where

P0m Pts ÂRº‰ ^”Rº ÍAf, γ P0m Pts ¼" 

´. ²' G6 a Rº)) *Ñ' " ÍA +.,

 Ò SGå §  *T. “3-%. *RSG MFC(mass

flow controller)  “ï ¤% P ßV Ç. Î ó* *

ÑÆ ß~* 0. Ε RSG ¼ªyt , 1%. àN P *RSG # 1.1, RSG # 0.99" p$. ²' T SG T -. ï‰ äG Ç. 0.8 p$. J p0 ¤ ÌRº <=Rº 1.5 atm, ?=Rº 0.05 atm, RRº 1.0 atm, RºQH Rº ?=Rº‰ RRº šæRº, Î USG RºQHRº URºÈ~ ¤Ì œP~ “#æ ~ W R N. USG" ß~Æ 0. ²' + () GM

 w p0 <=@‰ <=  &' t‰ ¤Ì¤¥ Table2

 €%f[9], ¶p p0 š¢ ãx6O  Table 3 €

.

w 0 ¶ý£O PSA  ¶p w # $P ü  ; b-9 N dJ {‰ Á q. q/-%.

$$. ÔÕ £ (4) <=£ GM' 2 Î ±‰  

∂(uCtotal)

∂z

--- ∂Ctotal ---∂t ρbulk

--- ε ∂qi

∂t ---=0

i=1

n

+ +

Ctotal Ci

i=1

n

=

∂Ci --- u∂t ∂Ci

∂z --- Ci∂u

∂z --- ρbulk

---ε ∂qi

---∂t=0, i= ,1…, n

+ + +

ερgCpgbulkCps

( )∂T

---∂t (ερgCpg)u∂T

∂z

--- ρbulk ∂qj --- H∂t∆ j

j=1

n =0

+ +

∂qi

---∂t =ki(qi*–qi)

qi

P t( )=C0+C1exp(–C2t) C0=aPts.

C1=P0–aPts C2 (1 a– )

γ–a

( )

--- ⁄ts ln

=

Table 1. Boundary conditions of each step

Step Concentration Temperature Pressure Velocity

Pressurization yi(t, 0)=yf,i T(t, 0)=Tfeed P=P(t) u(t, L)=0

Adsorption yi(t, 0)=yf,i T(t, 0)=Tfeed P=PH u(t, 0)=ufeed

Blowdown P=P(t) u(t, 0)=0

Evacuation P=P(t) u(t, L)=0

Pressure equalization Depressurized yi(t, L)=yEq T(t, L)=TEq P=P(t) u(t, 0)=0

Pressurized yi(t, L)=yEq T(t, L)=TEq P=P(t) u(t, 0)=0

Rinse Pressurized, cocurrent yi(t, 0)=yproduct T(t, 0)=TEv P=P(t) u(t, L)=0

Constant pressure, cocurrent yi(t, 0)=yproduct T(t, 0)=TEv P=PRn u(t, 0)=uOR2

Pressurized, countercurrent yi(t, L)=yproduct T(t, L)=TEv P=P(t) u(t, 0)=0

Constant pressure, countercurrent yi(t, L)=yproduct T(t, L)=TEv P=PRn u(t, L)=uOR2

(4)

 38 6 2000 12

J £ (1) 0g" GM'. 1Æ GM0 ±‰ O J

£ (2) t6~£‰ £ (3) }~ 6~£ GM$. PSA J• SG" 2 h Ç.  ­ˆ-9 finite difference method(FDM)" M ’%. $. \ convection ¾v

, ‹Œ FDM *~ t °" D w b-9 N

 dJ / upwind method" -%\ J ¶p$

[6, 13-15].

4.  

4-1.   

USG U Ö× ‘v &' ­‰" Ϗl w

J ÔÕ &N   Öבv &' 3 *~ ‹Œ[(1)-(4)]

& ¼Ó" ]$. 7 <=Rº 1 atm, ?=Rº 0.1 atm

.  ±‰" ÒÒ ßï ¦4 ¼ÓJ Fig. 2 ÍA.

Î4 l5 v» Ry USG" '  tu ±‰

U ‘v   ´½ ¾v -%. lJâ 6

. Ý, v» Ry USG U Š5  ~ 7 1%

. 8 6 . “' ‡6ˆ‰ † q" c w <=#æ

> U#æ ¤%ü  ;, USG @ AK" CO2. *

\  H w N' #æ —¢4 àá0. “ï

‡6ˆ c w U#æ / Æ 5 6 %Ç. U

b OP* ‘vKL  H9 6: . ¦4 û. U

‹Œ <=@ Ub OP* K‰ CMb –A K

“Ç.  H0 @%.KL … CMb c 6 % , v

». U ‹Œ ?=0 N2. õ;0 K%. CMb –Æ <

%.F U/ ~ ë 1‰ å=*~ ­‰" cÆ 0. ¦

4 ‡6ˆ‰ q ¶e* USG" V~ ë  ±‰m

¼> ¤? †Æ @ 8 6 . ²' v» *Ry USG ßï / 7 û *Ryl q* ÅP~~Ñ ßï

Æ W ‘v Nä tu “A 8 6 .  !ú

 ßï ~Æ W l CMb CO2 q* †~Æ Ç . U#  CMb CO2q* †~Æ ¦4 †

q CMb. v» *R Æ P [C N4 JBT

. T SG ‘v v». $ 7° U‘v ¶e û

.  1 tu vN#I ; *é ­‰-4 ±‰" c.

¦4 C%. ¶pÆ &N  ¶e û*Ry U‰ Ã

» Ry U J )t0  Â. Æ 9 1.

4-2.  

C% Dô' "m Á U ‘v ' N URº

¦§  tu ¼Ó$. URº PSA  tu ´½ ¾v Fig. 3 ÍE 1‰ Á.  Î4 ?=Rº 0.1R, r»¼* 0.759 ‹Œ URº ¦§ qm ‡6ˆ Í& Î 4%., URº †“6ø qm ‡6ˆ vN P tuê*òª

 · NS%. E 8 6 .  USG*  

´½ ¾v d 8 7 (' ±‰. OJT. Ý, US G CMb r»#µ @ A CMb …" F*#G%. † q

 CMb c ­‰" *õ ;, •' ­‰ CO2m N2 êy<=ï /  [C'. êy<=ï N CO2 …

m Rº  ± ;, “' CO2 ¤t , Rº

 Éd:W l  CO2* <=9 6 .  <=ìª%.

àá5 6 ±‰. Fig. 4 Í& <=ìª lW, Rº

F* ¦4 <=ï ~ 1 8 6 ; U š

CO2 … !ú CO2…m Ü q H Æ Table 2. Characteristics of adsorption bed and operating conditions

Adsorbent Particle size [mesh]

Feed gas composition Bed diameter [mm]

Bed height [mm]

Adsorbent amount [kg]

Bed bulk density [g/cm3] Bed porosity, ε

Heat capacity of adsorbent, Cps [J/g/K]

Heat capacity of gas, Cpg [J/g/K]

Adsorption pressure, PH [atm]

Evacuation pressure, Pev [atm]

Equalization pressure, Peq [atm]

Time for adsorption [s]

Time for blowdown [s]

Time for pressure equalization [s]

Time for rinse/evacuation [s]

Activated carbon 8-12

17% CO2, in N2 41.2

900 0.57 0.47 0.4 1.05 0.9942 1.5 0.1 0.55 300 20 20 360

Table 3. Langmuir parameters and heat of adsorption used in the cal- culation

Parameter CO2 N2

t1*[mmol/g]

t2*[mmol/g]

t3**[atm−1] t4**[K]

∆H [kJ/mol]

23.944

−0.0517 2.1265×10−3

1588.315 24.103

7.052

−0.0106 4.2169×10−4

1680.038 16.928

*qm=t1+t2T

**b=t3 exp(t4/T)

Fig. 2. The effect of flow directions on rinse step.

Case (1): cocurrent pressurization by product, cocurrent pressurized rinse, Case (2): cocurrent pressurization by product, countercurrent pressurized rinse, Case (3): countercurrent pressurization by product, cocurrent pressurized rinse, Case (4): countercurrent pressurization by product, countercurrent pressurized rinse(Reflux ratio=0.75).

(5)

Ç. <=@ A <=5 6 CO2 Ù ~Æ 0.  CO2 R †J :Æ P Ctb. c 6 <=0 CO2 …* F*4 1 àá5 6 . URº k Rº%

. ¿5 ‹Œ, ÒÒ Î Rº  êy<=ï  tu

 ±0. •' ‹v Fig. 3 Ò URº ¦§ tuòª

 æ, 8 6 . Ý, 1R 1.15R, 1.3R%. UR º ÉI 7 tu / “Æ NJ* êy<=ï /

* l F* 1.5R q*  NJ 1%. Í K. ‡6ˆ ‹Œ å=*~. URº NJ‰ E¹ F*

‹v ÍA. Á Ù CMb r»## ‹Œ, Rº †

‹Œ l  CO2* <= Ç. RUSG )L CO2

 Ù ‚POÆ 0. ¦4 ‡6ˆ ¤?ç NJ ‹v *

ì 6.

N URº F*#IW 3-%. tu vN#³ 6 { Ï 6 . Ε Î4 ' *~ ' pM [N5 6  ;  URº F* ¦§ tuê*òª ó. ß ï 6ø q* F* N lÿ-%. PSA  Í

‹v.  <=SG <= CO2 Ù ßï /

7l , 7 ~ 7°. <=SG <=0 CO2* J•

SG" 2 ›› … P CMb. õ 1Ç. Á <=#

æ  ‰* “P ~ ë w A ßï , ‹Œ* <=

0 CO2 Ù F*#µ q" XY † / '. URº

 1.5R“ 7" lW, ßï / w ßï ¦§ q

xH* § URºm ¼>' ‹v%. F* 1%. ÍK

% ßï O~W òª l *ÑÆ F* ‹v lJ:

.  USG <=@ ‰#æ o 14 C Ò0. ‡6ˆ ‹Œ, URº † ‹Œ* P Rºl Î /* F* ‹v Í· Ï 6 . # Q URº

 †6ø ßï ¦§ q / ‚PO ‡6ˆ / R P ±‰" c 6 .  PSA" ¤ÌE P š¢'

l"   ±‰. <=@ S¶* ~W ßï ¦§ ^ - U¤¥ ±0 p€. URº F* q > ‡ 6ˆ F*" 3~Ñ URº F*56ø —¢ N ßï F* q vN ¦§ Tl ‡6ˆ  ­‰* X O

~ 7° õ\d tu Š­‰" *õÆ 0. €     9dW J•U 3D €   ±5 6: . Î

• ¶p"    ñÆ 95 6 { Ï 6 .

4-3.   

Î1W U “' URº‰ T   Ur»¼

¦§ tuê*" #$.  &' tuê*òª Fig. 5 Í A. Î4 l5 Ur»¼* F*56ø q* G NJ

‘v%. T]< Ï 6 . r»¼* 0.89 ‹ŒÈ~ r»¼

 F* ¦4 q Õ\ NJ % ‡6ˆ  

{ 8 6 . ²' Ur»¼ ¦§ tu xH ÀU ßï

  Nä “' ‹v *~ { 8 6 . Ε

Ur»¼* 0.85N9 ‹Œ ßï F* äG  “' q" ß~J, q F* ¼ ‡6ˆ * ÕE 8 6 . Î4 r»¼ 0.85“ 7l 0.9“ 7* q  1% * ï †  ÍA ‡6ˆ Ò ßï P 10% N Õ\

E 8 6 . l )-%. Ur»¼ ¦§ ¾v Ï

l wJ qm ‡6ˆ ÒÒ r»¼ & Í& Î4

Fig. 6‰ 7. Ur»¼* F*E ¦4 z{ ô. q*

Fig. 3. The effect of rinse pressure at PEV=0.1, R=0.75.

Fig. 4. Equilibrium adsorption isotherm of CO2, N2 and O2 on activated carbon at 25oC.

Fig. 5. The performance curve of the Case (5), PEV=0.1 atm, PRN=1.0 atm.

(6)

 38 6 2000 12

NJ ‹v l , Ur»¼ 0.8-0.85 p ó* *Ñ

~ #/ ‹v%. "V 8 6 . ²'  ~›KL ß ï äG q* “Æ NJ< Ï 6 . ‡6ˆ ‹Œ

 Ur»¼ 0.8 *ÑÆ  ‹v ~W 0.8

N ô,\ ÅP~ ÙN *X. ¦4 + () p

'  ?=Rº 0.1R, URº 1R“ 7 Ur»¼

" 0.8N%. ¤Ì 1 ‡6ˆ áW n Q5 6 . m Á ±‰ ßï 10 SLPM U#æ YÁ 190 Â. Ur»¼" xH#³ ‹Œ, 0.8K_ ‰* “PŽ

´'. ¦4 Ur»¼ Š# ^-› oBf, €  Z  M¶p" J  › ñÆ ¨ 6  1 Ï 6 .

4-4.

w ¿[$5 URº r»¼ ¦4  tu ^-

› oBÆ 0. Î1W U  e *~ ­‰m ?=Rº

 xH" # ¼ÓJ ^- tu *~ ¤Ì ¤¥ ¨%d

'. " wJ &N  ¿' ?= > URº ¦§

4*~ ‹Œ" s' ±‰" ÒÒ ¼Ó$ ; " Fig. 8 ÍA

.  4*~ ‹Œ 3-9 ‹v q ‹Œ Ur»¼

F* ¦4 G-%. tu F* ÀU" l9 1‰ ‡6

ˆ ‹Œ ^- Ur»¼* oB' 1. Î4 Ò ò ª 3 › õ§öKL ßï ÒÒ 7.6, 10, 15, 20 SLPM9 ‹

Œ" Í&.

URº‰ ?=Rº xH ¦§ 3 *~ ‹Œ P (5)m (6)

 ‹Œ" ¼ÓJ ?=Rº ' ¾v ϏlW, T SG

?=Rº P~ ‹Œ, l  Ù ?= P qm ‡6ˆ

†J :Æ 0. ¦4 (6) ‹Œ* (5) ‹Œl ù tu l 9. mÁ ‹v Fig. 8 (c)m (d) å=*~. Í ; e Î4 Š# ?=Rº P ‹Œ ù tu l .

 *h; ' *~ ' › ?=Rº  URº F*

 ‹Œl q X  ¾v â p€. #Q, Fig.

8 lW (a)m (b) Î (c)m (d)" ¼Ó5 7 (a)m (c), (b)m (d)

‹Œl q NJ l ÕE 8 6 .  ?=Rº

PÀW ¼Ó- P r»¼ † q Ctb c 6 {

 lJ: 1. •' p€, ?=Rº PL ‹Œ ?=ï

F* ¦4  ‡6ï RP Ç. Á Ur»¼4 U#

ßV r»ï ƒ* RP Æ <%.F Í N%. 8 6 .

3W URº F* , ?=Rº ' ‹Œm ¼Ó\ 7, w m 3&. q F*l ‡6ˆ F** ŒU p€ Ï 6 . Á ?=Rº  URº xH" ]^lW, Fig. 8

(a)m (c), Î (b)m (d)" ¼Ó8 7, ‡6ˆ Õ\ F*

N 8 6 .  , URº †J:W 3-%. ‡6ˆ

F*' p€ lJ: . •' N U Rº †JŸ

%.F <= CO2 Ù F*Æ P ‰#æ _~Ç.

 “PE ±‰. 8 6 . URº 1.5R9 ‹Œ ‡6ˆ

 C Dô' "m Á ^-  *~Æ ; Fig. 8 (c)m (d)

 r»¼ F* P` #›È~ ‡6ˆ F*" 3Æ

<=@ ‰ #› 2 aƒ ‡6ˆ ÅP~ N

ÍAÆ 0. Ý r»¼* P ¾Š r»¼ F* ¦4 … ô,\ F* ‡6ˆ *Ñ\ F* 1. 7 ^&

 oBf  ^& 2 r»¼ q F*   P~ 3&. ‡6ˆ ô,' " ÍAÆ 0. r»¼* P

¾Š ‡6ˆ F* ß URº † ‹Œ, U#

CO2 <=ï F*. cP~ ‡6ˆ F* ­‰* r»¼ F*

' ‡6ˆ '  ­‰l  7°%., U#æ <=

@ *\ ‰ #›È~ q F*m E¹ æ ‡6ˆ

F** Í 1[16].

²' URº † ‹Œ* P ‹Œl r»¼ F* ¦§

p€ Ï 6 . Ý, NR U ßï xH ¦§ q

xH* b òª ó"  Ï 6 . Ε URº

1.5R9 ‹Œ òª ó* *Ñ ßï F* ¦4 q

 xHï /A Ï 6 . ßï ¦§ q NJ /

~ N € ¤Ì P URº † ‹Œ V ßï ‚J ¤Ì 1 ‡6ˆ W ß' ‘vk ´'

. " cX Ϗl ñÆ ÍA wJ ?=Rº 0.05R“

‹Œ, ßï 7.6 SLPM9 ‹Œm 20 SLPM9 ‹Œ" ¼ÓJ qm

‡6ˆ Fig. 9 ÍA. Î4 8 6 "m Á UR º † ‹Œ r»¼ ¦§ ‡6ˆ ^&› Í Æ

;  N r»¼ ´ <=@  H#IÆ P õ\d tu

Fig. 6. The effect of reflux ratio on the purity in the Case (5), PEV=0.1 atm, PRN=1.0 atm.

Fig. 7. The effect of reflux ratio on the recovery in the Case (5), PEV= 0.1 atm, PRN=1.0 atm.

(7)

" *õÆ 0. •' N ßï P ‹Œ*  ‹Œl

 €\ Í ; ßï / ‹Œ* ‡6ˆ W de ßE

 Ï 6 .

C Dô' "m Á ?=Rº m URº F* '

­‰ b-%. . § ­‰  [CÆ 0. Ý, ƒ

?=ï F*  U# Ub Ù  C ­‰

 2ƒ <=ï F*  U# <=ï  C

­‰. •' ß* ?=Rº $ 7l URº

F*#I ‹Œ* r»¼ F* ¦§ q xHï O~ ! 9 1.

±‰-%., URº F* ?=Rº  ¶e r»¼" 

#³ 6 ­‰" *õÆ ; qW ?=Rº PÀ 1, 3&. ‡6ˆ W URº † 1 l ­‰

-k Ï 6 . f-%.  e *~" ¶e -5 6  Fig. 8. Comparison of the performance curves at different rinse and evacuation conditions.

(a) PEV=0.1 atm, PRN=1.0 atm; (b) PEV=0.05 atm, PRN=1.0 atm; (c) PEV=0.1 atm, PRN=1.5 atm; (d) PEV=0.05 atm, PRN=1.5 atm. : reflux ratio=0.6; :

reflux ratio=0.65;: reflux ratio=0.7; : reflux ratio=0.75; : reflux ratio=0.8; : reflux ratio=0.85; : reflux ratio=0.9.

Fig. 9. The effect of feed flow rate on the purity and recovery at PEV=0.05 atm.

(a) feed flow rate: 7.6 SLPM; (b) feed flow rate: 20 SLPM

(8)

 38 6 2000 12

W *é ù ¤Ð , Ε 7 ¤¥ r»¼" † 1

 tu vN i ~ ë  p€ Ï 6 . r»¼ ¤Ì ¤¥ ¦4 ^-› oBÆ Ctb q g ‡ 6ˆ š ! ö ªÞJ ^- ¤¥ ªü 5 1.

+ () U Rº 1R 1.5R%. †J: 7m

?=Rº 0.1R 0.05R%. PÀ 7, o NRUS G"  c 6 | ‡6ˆl ^& U ) N ‡6ˆ NJ

 c 6  ;,  ‰ r»¼ ¦§ ^- ‡6ˆ o B' p€ 95 6 . 6½-%. lW, 7.6 SLPM ß ï ‹Œ NRU > 0.1R ?=Rº 0.9 r»¼" 

J c 6 q" c w , ?=Rº 0.05R%. P ÀP : 7 r»¼" 0.8. PL 6 ­‰" c 6

%f 7 ‡6ˆ e ) F*$. 3&. URº 1.5

R%. † ‹Œ r»¼" Š# 0.8. PL 6 %f 7

 ‡6ˆ 2.5)* F*$.  e *~ ‹Œ" ¶e -' ‹

Œ r»¼" 0.75. PL 6 %f ‡6ˆ 3)È~ F*$

. + () ' S¶ é½" 5 7, *é ù ¤Ì ¤

¥ 0.05R ?=Rº‰ 1.5R URº 0.75  r»

¼" J P ßï%. ¤Ì 1 ‹-%. *é Œ6E

 95 6 .

5.  

`<=a9 CO2" Ctb. c w' PSA  ^- ¤Ì¤

¥ ¨ w 2ü  3D €  ‚, ¶p"  ^-¤

¥ ¨ w' ¸-%.,  tu vN#I ; —6-9 SG9 U > T SG ¤¥ ¦§ ¾v s$. &N  Zt  <=. ', RºQHm USG*  E0 qr %.

F USG > T SG ¤¥O xH#µ*W tu xH"

¼Ó$. USG Rº F* U# <=ï F*#µ Ctb ‡6ˆ F*#h p€ 95 6 %f 7 r

»¼ F* ‰› È~ ô,' q NJ%. ÍK. ?=

Rº  ?=ï F*#µ r»# ßï F*#I ­‰"

*õf  ô,' q vN%. ÍK. ¦4  e *~

‹Œ ¶e USG r»¼" ‚“ 6 ­‰. /f 7

^- tu c r»¼* oBE 9$. ¦4 " i

¤ÐJ <=@ ‰› A ¤Ì œPTW *é ^-

¤Ì¤¥ c 6 { Ï 6 .

 

+ ()‰ 'j º()! ~! k 6] %f  p lmW.



bi : Langmuir parameter [atm1]

Ci : gas concentration of component i [mol/cm3] Ctotal : total gas phase concentration [mol/cm3] Cps : heat capacity of adsorbent [J/g/K]

Cpg : specific heat of gas mixture [J/g/K]

∆Hi : heat of adsorption of component i [KJ/mol]

ki : overall mass transfer(LDF) rate coefficient of component i [s−1] L : bed height [cm]

qi : amount adsorped of component i on the solid phase [mol/g]

q*i : amount adsorped of component I in equilibrium with gas phase [mol/g]

qm : langmuir parameter [mol/g]

t : time [s]

t1 : Langmuir parameter [mol/g]

t2 : Langmuir parameter [mol/g]

t3 : Langmuir parameter [atm−1] t4 : Langmuir parameter [K]

T : temperature [K]

To : feed temperature [K]

u : interstitial gas velocity [cm/s]

ufeed : interstitial velocity of feed gas [cm/s]

uOR : interstitial velocity of rinse gas [cm/s]

yEQ,i : mole fraction of component i fed in pressurized equalization step yf, i : mole fraction of component i in gas mixture

yProduct,i: mole fraction of component i fed in rinse step ρg : density of gas mixture [g/cm3]

ρbulk : bulk density [g/cm3] ε : bed porosity [-]



1. Yang, R. T.: “Gas Separation by Adsorption Process,” Butterworths, Boston(1987).

2. Ruthven, D. M., Frarooq, S. and Knaebel, K. S.: “Pressure Swing Adsorption,” VCH, New York(1994).

3. Kikinides, E. S., Yang, R. T. and Cho, S. H.: Ind. Eng. Chem. Res., 32, 2714(1993).

4. Suh, S.-S. and Shin, C. B.: HWAHAK KONGAK, 32, 414(1994).

5. Hassan, M. M., Raghavan, N. S. and Ruthven, D. M.: Chem. Eng.

Sci., 42, 2037(1987).

6. Kim, Y., Yeo, Y.-K., Lee, H., Song, H.K., Chung, Y. and Na, B.-K.:

HWAHAK KONGAK, 36, 562(1998).

7. Suh, S.-S. and Wankat, P. C.: AIChE J., 35(3), 523(1989).

8. Chue, K. T., Kim, J. N., Yoo, Y. J., Cho, S. H. and Yang, R. T.: Ind.

Eng. Chem. Res., 34, 591(1995).

9. Jhang, Y.: M. S. Dssertation, Sogang Univ., Seoul, Korea(1997).

10. Karanth, N. G. and Hughes, R.: Chem. Eng. Sci., 29, 197(1974).

11. Farooq, S., Hassan, M. M. and Ruthven, D. M.: Chem. Eng. Sci., 43, 1017(1987).

12. Doong, S.-J. and Yang, R.T.: AIChE J., 32, 397(1986).

13. Fernandez, G. F. and Kenney, C. N.: Chem. Eng. Sci., 38, 827(1983).

14. Sun, L. M. and Meunier, F.: AIChE J., 37, 244(1991).

15. Press, W. H. and Fannery, B. P.: “Numerical Recipes in C,” Cam- bridge Univ. Press, London(1990).

16. Chou, C. and Huang, W.: Ind. Eng. Chem. Res., 33, 1250(1994).

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Abstract − In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and carry out theoretical analysis by means of modelling

Since the performance of the mining process is highly associated with the length of the sequences and the number of different symbols in se- quences, the abstracted

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

O Interact with the customers and provides solution for the process issues of the assigned project or customer site. O Conduct machine process performance analysis,

Levi’s ® jeans were work pants.. Male workers wore them

To evaluate the performance of dye-sensitized solar cells using the C, Co-TMPP/C, and Pt/C electrodes, as shown in Fig. 6 and Table 1, photocurrent-voltage curves