• 검색 결과가 없습니다.

Sro|ylq|oflqqdpdwh#))ލÌ#` #)Þ#O á#

N/A
N/A
Protected

Academic year: 2022

Share "Sro|ylq|oflqqdpdwh#))ލÌ#` #)Þ#O á#"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

1. #g«#

kJª 2V® ËB f(flat panel) júb^Ê âæÎ liquid crystal dispay(LCD)ê Ý6 VÆ Â/& âênê Z{ âþV çš

û $– nêV ޚ " šÒ ÊÒ §ÿ®B ² ÚÒ&r nêÒ “ò®6 Þê gê² júb^Ê âæÊ:. N FÂ&rê LCD þš rç¶ ¢ šnKkÎ ·k †û& V² FÂÒ nß

®V:. Z LCD rÆ Kk&rê îÒ¶ G® òš Êÿ®B v

†f& ª[r polyimide(PI) šÚš ² û’² Òk®â Ž

šÚ Z ·k Úæ:® †ûš v®ê ëš ÿ®6 Þ:.1,2 ÊB² rubbingë– i– ÊW® 6Úæ šÚ& žkW’² Wÿ¶

n Þê ûf ¢Ž& Z Kk& Wÿn6 Þ" g_ Kk’² Î

®B nnnê ’, kZ† G® ŽrfR LCD® ז 2ÒW Ž

Kk® rr& $– VBÊ þÊ6 Þ:. gn§‡ 6ÚæÒ ·k

†û’² Êÿ² g†û ë– šg_ ëÊr †Ê® rubbing

ëÊ Vê BB Žrf:š ʶ n Þê ûfš V6 Þ ÊÒ Êÿ² ·k †û FÂV ßn6 Þ:.3-5

gn§‡ 6ÚæÒ LCD® ·k †û Kk& Wÿ®† ZÊrê gn§& ®®B 6Úæ šÚ & k‡nê ÂÆ ªV šÚ Z

·kÚæ:R Žçÿ& ®®B ·k Úæ® †Jš k² û

’² v®BÒ ®Æ, ·kÚæ:š šÚ ²Ê&r WO² Wš V

6 Ž"Ò®ê pretilt angleš k‡¶ n ÞÒ ²:. Z¢ ¢ z gn§‡ 6ÚæÒ ·k –® †û’² Êÿ®ê g†ûë

&ê 6Úæ & B¾r gn§ NOÊ gÆ& ®®B cycloid- dition n§š Ғr šÚ & ʇš 3‡®ê ë,6-15

² gn§‡ NO® ÚÊÒ v®ê ë, trans-cis gʇª ª Ò Êÿ®ê ë GÊ R² Êÿn6 Þ:.16-18 N FÂ&rê poly- vinylcinnamate vÒ †û’² ÿ®B g†û’² ·k Úæ :Ê 6Úæ šÚ ²Ê&r †JÊ vnê ªÊî& V®B Æ

®6 g†ûr ·k® J e ±& V² †û žk‡š F®

V:.

Sro|ylq|oflqqdpdwh#))ލÌ#` #)Þ#O á#

Ï ë.}§'L.}‹£{}‹|?}ì{¸%# ý¬(c#)U"ÌìF<¬|p/#.OJ1Sklolsv#OFG#

+5338T#8#<¼#Q:/#5338T#9#4¼#T,#

#

Oltxlg#Fu|vwdo#Doljqphqw#Vwdelolw|#ri##

Sro|ylq|oflqqdpdwh#Skrwrdoljqphqw#Od|hu#

Ml0Fkxo#Olp*/#Vlh0K|xj#Fkrl*/#Zkdqnl#Nlp/#Vxqj#Vrr#Nlp/#dqg#Nljrrn#Vrqj%# Materials Research Center for Information Display,

Kyung Hee University, Yongin, Gyeonggi-do 449-701, Korea

*LG.Philips LCD, Gumi 730-726, Korea (Received May 9, 2005;accepted June 1, 2005)

S¨Ü LCD †û’² §ÿ®† Z®B gn§‡ polyvinylcinnamate šÚ Z&r ·k Úæ:® †û& V² FÂÒ nß®V:. vg UVÒ polyvinylcinnamate šÚ& Îg®Ê v3WÎ gn§& ®®B šÚ & Ê‡Ê k‡n6,

šÚ ²Ê& Îg² ·k Úæê 6Úæ– ÚæZ Žçÿ’² 6Úæ †û ûR /Ò² û’² îv:. g†

ûš ÿ² ·k –® J e ±& V² žk‡– †û& UVÒ :2 Îg®6 Jš V²  vr ·k †û  ªÒ wk®B Æ®V:. vg UVÒ BBÞ Îg² šÚ®  î¢ Îg û& VÊ ²Û’² Îg²  g UV® û& †Ò ·k †ûÊ vn:./

Abstract:Orientations of liquid crystal molecules on a surface of a film of photoreactive polyvinylcinnamate were investigated in order to apply as an alignment layer of LCD. When the polyvinylcinnamate film was exposed to linearly polarized UV light, optical anisotropy was induced in the film through a selective photoreaction. Liquid crystal molecules on a surface of the film was aligned along the oriented polymer chain direction through intermolecular interactions.

Thermal and light stability of the photoaligned LC cell were studied by investigating LC alignment changes after the alignment layer was treated with heat and UV light. When the film was exposed with linearly polarized UV several times, the LC alignment was induced only along the final UV exposure direction.

Keywords: liquid crystal, alignment, photoreaction, stability, polyvinylcinnamate.

To whom correspondence should be addressed. E-mail: ksong@khu.ac.kr

(2)

2. /#

N FÂ&rê polyvinylcinnamate &>& fluorineÊ ®®r PVCN- FÒ ÿ®B 6Úæ g†ûš rÆ®V’Æ, Merck® ZLI-3449

·kš ÿ®B ·k –(LC cell)š rÆ®V:. PVCN-Fê mono- chlorobenzeneR dichloroethaneš 1:1² ’¿² ÿ:& ÏB 2 wt%®

ÿ·’² "6 , †f Z& 1800 rpm’² ú–ª[š ² :¢ 60 ×

² 30ÚZ ÊÆ2†:. PVCN-F šÚš 500 W high-pressure mercury lampÒ Êÿ®B 50 mW/cm2 Ž†® UV WC ±’² gÆ®B

šÚ PVCN-F® gn§š v®VêÆ, vgÊ r UV ±Ê

šê¶ ê Glan-Taylor polarizerÒ ÿ®V:. PVCN-F šÚÊ ÛV ¦ r® v †fš 50 µm ¦.® çÊ ¢ÊZ² g¿®

B –š rƲ , ·kš þŽV þR(capillary effect)Ò Êÿ®B

– ² RÛ®V:. ·kš –& RÛ¶ ¢ê ^nê ·k †û

ûR n û’² RÛ®B þŽV þR& ®®B îö n Þê ·k †û þRÒ rÆ®V:.

50 µm – Zÿ® ·k –š ÿ² UV/Vis Úg :.&rê ·k

& ®² ·nV ^Š :r 250 nm&r V†nê ·k Úæ® ·n

’ÂÒ g wk¶ n :. NB² ·k® †ûš UV/Vis Úg :.’² V†®† Z®B ·kR tBr /Ү⠆J®ê Ê

‡ R"(dichroic dye) 1 wt%Ò ·k& ’¿®B –š rƲ  Ê

‡ R"® †ûš V†¾’²¾ ·k® †û ûš vê®V:.

N FÂ&rê 557 nm ·n’ÂÒ Vê ʇ R"Î methylene violetÒ ÿ®VêÆ, Úæ ÂÆ simulation Z²NþÎ HyperChem

š Êÿ®B š ² R methylene violet Úæ® ûëR transition dipole momentV Ê>ê WÊ 6°² Æ® ß®B UV/Vis Úg :.

RÒ ûë û’² Ês¶ n Þ:. UV/Vis Úg :.– Hitachi U-2000 double beam UV/Vis spectrometerÒ ÿ®V6, g UV/Vis Úg :.&rê sheet k2® vk gfš Êÿ®V:.

¦®ê ¦ gf Ê& Z®² šÚ Bê ·k –š ‚R®

B îzê ^ÊV® Ž†Ò wk®B 2"® g¯ ʇš wk®

V:. Uniphase® 10 mW He-Ne laser (632.8 nm), Oriel® Glan-Thomson

gfR Newport® 818-SL silicon detertorÒ ÿ®V6, silicon detector® 6Ž óCš ZÊ EG&G® trans-impedance preamplifier

– Hewlett-Packard® E3630A DC power supplyÒ ÿ®V’Æ, ‚ RÒ wk®B ʇš wk² :. û®® ‡š Figure 1& î

:.

3. ûG Z ë«

PVCN-F® UV Îg& †Î gn§ ª:î– Figure 2&r JE Ê 6Úæ & ïÞê cinnamoyl NOÊ [22] cycloaddition n

§š Ғúê ْ² ¢zŽ ÞêÆ,8-10 ʖ o– 6Úæ ÂÆ®

ªV ·k Úæ:® †Jš k² û’² v®ê ÙÊ:.

vg UV ±š PVCN-F šÚ& Îg®Ê UV® g ûR  ß² cinnamoyl NO:– UVÒ ·n®B cycloaddition n§š Ғ

úê nÊ n’² Z®² cinnamoyl NO:– ±® ·nV z

" gn§š Ғú  – 2² þšÞâ r:. NB² gÆ

Z&ê G‡Ê® PVCN-F šÚ & gÆ& †Ò cinnamoyl NO ÚB® ʇ(anisotropy)Ê k‡r:. ·k:Ê PVCN-F šÚ Z&r vg UV ûR n’² †ûÊ vnê ٖ v3W

gn§& ®®B šÚ cinnamoyl NO® ÚBV UV– ß²  ûJ: n û& ª $Ê Ê®â nê 6Úæ šÚ® ʇ

¢ŽÊ:. PVCN-F šÚ ²Ê& Îg² ·k ÚæV van der Waals îR o– Úæ Ê® Žçÿ& ®®B 6Úæ® cinnamoyl NO R o– û’² îrâ r:. šÚ ²Ê& Îg®B Þ  –

·k Úæ: ·k Úæ: Ê Žçÿ& ®®B ²Ê&r v

’² þ6 ·k Úæ:Ê Îgr vg UV ûR n’² î rê ÙÊ:.

PVCN-F šÚ& vg UVÒ Îg®Æ šÚ & k‡nê g¯

ʇš Figure 1 :.û®Ò Êÿ®B wk®V:. vg UV ±

® g û& †Ò šÚ cinnamoyl NO:Ê v3WÎ gn Ê îîâ r:. šÚÊ G‡Ò ¢ê ^ÊV ªÊ r² n’

² ¦~r ¦ gfš R® ®:V šÚ & KÊ^Ê k

‡nÊ R®ê ^ÊV® Ž†V óV®², ÊÒ wk®B š Ú Ê‡ k‡ kÒ Æ®V:. vg UV Îg ^†&ê

polarizer

polarizer+.78µ, analyzer (- 45¶)

sample

detector mechanical chopper

controller lock-in Amp.

He-Ne laser

High pressure Hg lamp mechanical

chopper

polarizer

polarizer+.78µ, analyzer (- 45¶)

sample

detector mechanical chopper

controller lock-in Amp.

He-Ne laser

High pressure Hg lamp mechanical

chopper

Figure 1. Schematic diagram of the experimental set-up for film aniso- tropy measurements.

C O O

C O

O

C O O

C O

O

Direction of polarized UV

n F

F

F F

n n

n

Direction of LC alignment

Figure 2. [22] cycloaddition reaction model of PVCN-F.

(3)

PVCN-F šÚ® Ê‡Ê _ÿÞ óV®:V 100^Ò îrê Æ

ªV ê ٚ UV ÎgR /2& šÚ ‚RÒ wk² :.

RÎ Figure 3&r R n Þ:. ʖ o– ‚R wk Rê Î g UV® g û& V®B nR n’² WW :.®B 

 g UV/Vis Úg :. R– /Ò®V:. PVCN-F šÚ:&

V®B Îg UV ûR n e n’² WW – g UV/Vis ú ïR® cinnamoyl NO ’Â(272 nm) ·n® ~Ê(DßD]])Ò Î g 2Z& †Ò Figure 3& ²2®B ‚R :. R– š¦®

V:. g UV/Vis úïR® ·n ~Ê šÚ ‚R wk

R– /Ò®â Îg ^†& _ÿ®â óV²  ª Ê– š Ú& Ê‡Ê óV®  6 Òk² hš v®ê R²Ö†

šÚ ʇ® ªV cinnamoyl NO® ª& ®®B Ââ Wûqê ٚ «Î¶ n Þ:.

vg UVÒ Îg² PVCN-F šÚš †û’² ÿ®B ·k

–š rƲ  – ·k Úæ:® †J ûš g UV/Vis Úg :.’² wk®B Figure 3& šÚ& V² :. R– š¦®B Úæ :R Žçÿ& ®®B 6Úæ Ê v®ê û’

² †ûnêÆ, gÆr šÚš †û’² ÿ²  ·k–

UV Îg û& n’² †ûnÆ šÚ® Îg2Z& †Ò †û kV óV®ê ٚ –® ·n ~Ê(DßD]]) óV²Ö† ¢ n Þ:. Îg2Z& †Ò šÚ® ʇR N šÚš †û’²  ÿ² –® ʇ, ß ·k †û‡Ê oÊ óV®ê ٖ šÚ 6Úæ ® †ûÊ ·k® †ûš v²:ê ٚ ®N²:. ®

® †û ªV ^† gÆ  >‚ ¶Êâ Ê>ê ٚ R n ÞêÆ, Êê 6Úæ †û & Ê‡Ê Æ^" Ê®ªÒ

 ·k Úæ:– Ó⠆û® 6Úæ :Ê v®ê û’

² †Jn† ¢ŽÊ:.

g†û뒲 rƲ ·k –® J e ±& V² žk‡š Æ

®6æ g†ûr †û& UVÒ :2 Îg®6, Jš ª V®ê Figure 4® ÆÊ&r ·k †û® ªÒ Æ®V:. î¢(step 1)&

PVCN-F šÚ& vg UVÒ Îg²  šÚ k‡r 6Úæ®

ʇš wk®6, Ê šÚš †û’² ·k –š rÆ®B –

†ûR – ·k® †û û– g UV/Vis Úg :.&r WW

šÚ® cinnamoyl ’– – ʇ R" ’Â&r® ·nÒ wk®B Æ®VêÆ, Îg UV g ûš †V’² šÚ Bê

–š 10° "zVÆ wk®B Figure 5& W& †Î ·nÒ î

:. PVCN-F šÚ& î¢(step 1) vg UVÒ Îg² ê

Figure 4. Experimental conditions for the LC alignment stability test.

0.93 0.96 0.99

0

30

60

90

120

150 180

210 240 270

300 330

0.93

0.96

0.99

a)

2nd 1st

exposure direction

Step 1 Step 2 Step 3

0.3 0.6 0.9 1.2

0

30

60

90

120

150 180

210 240 270

300 330

0.3

0.6

0.9

1.2

b)

Step 1 Step 2 Step 3

Figure 5. Angular dependence of UV/Vis absorbance of (a) PVCN-F film maxQP DQG E /&FHOOZLWKGLFKURLFG\H max557 nm).

(a)

(b) Figure 3. Changes in order parameter and transmittance of films and cell

with UV exposure time.

# 3# 433# 533# 633# 733# 833# 933# Exposure time(sec)

417 415 413 31;

319 317 315 313 [(AßAll)/(Aß+All)]

83#

73#

63#

53#

43#

3#

Transmittance(µV)

0 2 4 6 8 0 2 4

Film λmax: 272 nm LC cell λmax: 557 nm

(4)

UV ÎgR nÎ û 90°&r cinnamoyl ’ ·nV ²VÎ n Ê& ß² û 0°&rê ²âΠٚ Figure 5(a)&r R n Þ:.

Ê šÚš †û’² ÿ®B rƲ ·k – ® ·k †û

û šÚ® – /Ò®â Îg û& n’² îîê ٚ Figure 5(b)&r ¢ n Þ:. ·k †û® ±& V² žk‡–

Figure 4® step 1R step 2Ò þ¦ Ʋ PVCN-F šÚR Ê šÚš † û’² ÿ² ·k –® †ûš wk®B Æ®V:. î¢(step 1) gƲ PVCN-F šÚ& î¢ Îg ûR nÎ û’² v

g UVÒ :2 ÎgÊRÊ(step 2) î¢& k‡r šÚ cinnamoyl NO® ÚBV BҎ step 2&r Îg² UV û& nÎ û’

² cinnamoyl ’ Ž†V ²VV r:. Ê šÚš †û’² ÿ

² ·k –&r ²Û Îg û& n’² ·k® †ûÊ Ê>

Ž step 1&r 90°&r JÊ® ²V ·nV 15° ÖR’² „Š

ٚ Figure 5(b)&r R n Þ:. Step 2&r šÚ †û ûR ·k

ûÊ ÓZ ~ÊÒ JÊê ٖ step 1® Wûš šZ®â 

®V† ¢Ž’² Bþ:. ʖ oÊ FãW’² vg UVÒ Îg² &ê šÚ cinnamoyl NO® ÚBV  Îg&

VÊ ²Û’² Îgr g UV® û& n’² ª $Ê Ê

®â nÆ, N R ·k® †û 6Úæ ® cinnamoyl NO R® Žçÿ& ®®B ²Û UV Îg û& n’² †Jnê ÙÊ:. PVCN-F šÚ& vg UVÒ BB Þ(10â Ê) ã®B Îg¶ ¢ –n ÞNê Îgš 0° û&r N6 3n ÞN Îg

– –n ÞN– nÎ 90° û&r Þ^š VÆ ®Vš ¢& ´

® – oÊ Ã ²Û’² Îgr UV® û& n’² š Ú® cinnamoyl NOÊ $Ê Ê®V6 ·k ²Û UV Îg  û& n’² †ûÊ n:.

·k †û® J žk‡– gÆ(step1R step 2)² šÚš PVCN-F

® vZÊ~ 78 ×J: ÓZ – 70 ×&r 20ÚZ VJ®B (step 3) Æ®V:. šÚš vZÊ~ Ê’² VJ®Ê gÆ

² k‡r šÚ Ê‡Ê ZÖ Ò", gƲ šÚš step 3

® Æʒ² VJ î®Ê step 2&r v² šÚ Ê‡Ê N V² Ê®ê ÙÊ Figure 5(a)& JÎ:. ®" Ê šÚš †û’

² ÿ² ·k –&rê ·k® †û ûÊ šÚ cinnamoyl N O® †û ûR šZÞ :Êâ 50°² „Š ٚ R n Þ:. J î

 & šÚ® †û û– ®  ®êÆ – ·k® †û

ûÊ ² ٖ 6Úæ šÚ ²Ê&r® vZÊ~V bulk  2J: † ¢Ž& îò Z’² Bþ:.19,20 †û&r ·k

†ûš :r² v®ê 6Úæê šÚ ²Ê& Ê®ê vZÊ

~V – :ʲ vZÊ~ ʮΠ70 ×&r šÚš

VJ®V šÚ ²Ê& Z®² :® †û– J ʚ(thermal relaxation)& ®Ê Òâ r:. ®" †û® VÖښ ~®

ê šÚ Ö® bulk 6Úæ:– VJ & †ûÊ vn², Ê Ê îîê ÙÊ:. šÚ ²Ê 6Úæ® †ûÊ  ʖ

o– šÚ’² ·k –š rÆ®Ê †û& ®² 0° û® ·k k‡r 90° û® flow effect& ®² NN² †û þRV îî g ZÎ 60° ÖR&r ·k® †ûÊ Ê>ê ْ² 3Wr:.

vg UV² Îg² PVCN-F šÚš †û’² ÿ² ·k

–š rÆ®B †Ê LCD Kk&r Êÿ®ê rubbing 뒲 rÆ

² PI šÚ †û® ·k –R Z†g¯ ‡š š¦®V:. 130

Hz® AC Z«š twisted nematic ·k –& ÎV®Æ gfš R

®B î~ ±® Ž†Ò Z«® Ž†& †Ò wk®V:. PI †ûš

rubbing² ·k –Êî g†û뒲 rƲ – þ¦ š ² Z†g

¯ ‡ RÒ Figure 6&r JBRêÆ, ÚZ«Ê 1.7 volt² î

’Æ ‚Rnê ±® Ž†V normally white modeî normally black mode&r þ¦ Æ ~ÊV Ê îî g†ûr PVCN-F šÚš

ÿ² ·k –Ê rubbingr †û® ·k –R /Ò² Z†g¯

‡š Vê ٚ ¢ n Þ:.

4. û«

gn§‡ 6ÚæÒ LCD® ·k †û Kk& Wÿ®† Z®B g Æ  6Úæ šÚ & k‡nê ÂÆ ª– ·k Úæ †û®

VVÒ Æ®V:. PVCN-Fê UV Îg& †Ò 6Úæ &

ïÞê cinnamoyl NOÊ [22] cycloaddition n§š Ғr ·k Úæ:® †ûš v®â r:. vg UVÒ PVCN-F šÚ& Îg

®Ê g ûR ß² cinnamoyl NO:– cycloaddition n§š

Ғr ê nÊ n’² Z®² NO:– gn§š Ғú

‡Ê k‡r:. šÚ ²Ê& Îg² ·k Úæê van der Waals î&

®®B 6Úæ® cinnamoyl NOR o– û’² îrâ n²

šÚ cinnamoyl NO †û ûÎ vg UV– n û’²

·kÊ †J®ê ÙÊ:.

g†ûš ÿ² ·k –® J e ±& V² žk‡š Æ®

6æ –& UVÒ :2 Îg®6 Jš V²  ·k †û ªÒ Æ

®V:. g UVÒ r² n®â ¦ Þ Îg² šÚ®  cin- namoyl NO® ÚBV  Îg& VÊ ²Û’² Îg²  g UV® û& n’² ª $Ê Ê®â nÆ, N R ·k®

†û ²Û UV Îg û& n’² î:. ·k †û® J ž k‡– gƲ šÚš PVCN-F vZÊ~J: ÓZ – ~

&r VJ®B Æ®V:. gÆr šÚš vZÊ~ Ê’

² VJ®Ê šÚ & k‡r Ê‡Ê ZÖ Ò" vZÊ

~J: ÓZ – ~&r VJ®Ê šÚ ʇ– NV² Ê®V:. ®" Ê šÚš †û’² ÿ² ·k –&rê

·k® †û ûÊ šÚ cinnamoyl NO® †û ûR šZÞ :Êâ îîêÆ, Êê 6Úæ šÚ ²Ê&r® vZÊ~V bulk 2J: † ¢Ž& îò Z’² Bþ:.

Figure 6. Electro-optical characteristics of twisted nematic LC cells.

0 0 0 0 0 0

Rubbing Photoalignment 130 Hz square wave, at 25 oC

Normally white mode

Normally black mode

433

;3 93 73 53 3

Transmittance(%)

318# 413# 418# 513# 518# 613# 618# Applied voltage(V)

(5)

[÷£ KÜN FÂê æ&Ö ~ŽVkJjúb^ʆvrr

> &(RrގAOD-3/F0004041)& ®®B nßn :.

ƒ+S

1. T. Sugiyama, S. Kuniyasu, and S. Kobayashi, Mol. Cryst. Liq. Cryst., 231, 199 (1993).

2. S. Kobayashi and Y. Iimura, SPIE Proc., 2175, 122 (1994).

3. K. Ichimura and Y. Hayashi, Thin Solid Films, 235, 101 (1993).

4. W. Lee, J. Lim, S. Paek, K. Song, and J. Chang, Korea Polym., J., 9, 339 (2001).

5. M. Schadt, H. Seiberle, and A. Schuster, Nature, 381, 212 (1996).

6. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, 2155 (1992).

7. M. Schadt, H. Seiberle, A. Schuster, and S. Kelly, Jpn. J. Appl. Phys., 34, 3240 (1995).

8. M. Obi, S. Morino, and K. Ichimura, Chem. Mater., 11, 656 (1999).

9. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997).

10. H. Tomita, K. Kudo, and K. Ichimura, Liq. Cryst., 20, 171 (1996).

11. Y. Iimura, T. Satoh, S. Kobayashi, and T. Hashimoto, J. Photopolym. Sci.

Tech., 8, 258 (1995).

12. K. Ichimura, Y. Akita, H. Akiyama, Y. Hayashi, and K. Kudo, Jpn J. Appl.

Phys., 35, L992 (1996).

13. N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, Macromolecules, 33, 1698 (2000).

14. B. Lee, S. Choi, Y. Kim, and K. Song, Mol. Cryst. Liq. Cryst., 316, 197 (1998).

15. B. Lee, S. Ham, J. Lim, and K. Song, Polymer(Korea), 21, 1059 (1997).

16. K. Ichmura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Langmuir, 4, 1214 (1988).

17. K. Ichmura, H. Akiyama, K. Kudo, N. Ishizuki, and S. Yamamura, Liq.

Cryst., 20, 423 (1996).

18. K. Ichimura, Liq. Cryst., 3, 67 (1996).

19. J. L. Keddie, R. A. Jones, and R. A. Cory, Europhys. Lett., 27, 59 (1994).

20. T. Kajiyama, K. Tanaka, and A. Takabara, Macromol., 28, 3482 (1995).

참조

관련 문서

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

When a polarizer is placed between the light source and the surface with transmission axis aligned as shown, the intensity of the reflected light:. (1) Increases (2)

학생 본인이 농어촌 소재지 학교에서 중학교 입학 시부터 고등학교 졸업 시까지 교육과정을 이수하고 본인 및 부모가 농어촌 지역에 거주한 자. 학생 본인만

G1-phase arrested Fc cells were prepared by deprivation of both light and silicate for 1 d, and the synchrony of cell cycle was induced by culturing cells in the complete

To improve the thermal stability of the dense BAM:Eu phosphor, the spherical BAM:Eu particles were coated with pure BaMgAl 10 O 17 layer using the hydrolysis reaction

On the lunar surface, however, the performance of initial alignment decreases from that on Earth, and it cannot be improved by applying multiposition alignment method owing

The light receiving unit is a standard-package product with connector and opto-electric component packaged with PD and I/V amplifier IC.. The function of unit changes the light

To evaluate the light extraction capacity of the light scattering layer and wrinkle, we fabricated three types of devices: First, a planar OLED was fabricated as a