• 검색 결과가 없습니다.

Optical Tweezers(광집게의

N/A
N/A
Protected

Academic year: 2022

Share "Optical Tweezers(광집게의"

Copied!
42
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Optical Tweezers(광집게)의

원리와 응용

(2)

Optical tweezers?

두 빔에 의한 포획 광학 부상 (optical levitation)

광 섬 유

빛의 산란에 의한 힘

중력

대물렌즈

Optical tweezers(광집게)

(3)

History and Issues

1970, Ashikin : Optical levitation

1986, Ashikin et al : Optical tweezers

1990, Burns et al : Periodic structures by using interference patterns

1997, Chiou et al : Trapping and manipulation of micro particles by using interference fringes

<Issues>

- Optical force model

- Manipulation(patterning) of multi-particles

- Bio-Medical applications

(4)

1. Optical force models

Optical tweezers

Electromagnetic model

Ray Optics model

- For R <<10 

- For R >>10 

(5)

1) Electromagnetic model

The change in the electrostatic energy ;

 1

 2

dV t

r dV

W T

V V

 

2 1( 2 1 )( E 2 E 1 ) ( 2 2 1 )E 1 2 ( , )

1 1

 

V 1

 

 

   

1 0 2 2 2 2 2 2 2 2

2 exp 2

) 2 2 (

)

(  

w z w

y x

w r P

c E r n

I

dV r c I

n n n

V

 

1

) ) (

(

1

2 1 2

2

 0

(6)

  

  W F

 

 

 

 

 

 

 

 

  

2 0 2

2

2 2 2

0 2

1

2 1 2

2

0 sinh

exp 2 2

) (

4

w R z a w

R a z

w R erf a

c n

P n

F ax n c c c

 

 

 

 

  

 

 

 

 

 

0 2 2 2 2 2 0

1 2 1 2

2

0 sinh

exp 2 2

2 )

( 4

w R a

w R a w

R erf a

w R erf a

c n

P n

F tr n c cc c

(7)

2) Ray optics model

scattering force

(8)

gradient force

(9)

A B

F

beam axis

1 4 2 3

y x

z

O O

r

P

RP

TRP

T

2

RP

F

A

F

s

F

g

F

A

F

B

S

c Q P Fn

1

 collimated beam F g < F s

 focused beam F g > F s

 Generally, optical trapping force

F g : gradient force F s : scattering force

- Optical force

(1) Axial trapping

(10)

dP c q

g n dF

dP c q

s n dF

g g

s s

1 1

ˆ ˆ ,

where,

2 2

1 2

1 2

1

2 2

1 2

1 2

1

2 cos 2

1

] 2 sin )

( 2 2 [sin

cos

2 , cos 2

1

] 2 cos )

( 2 2 [cos

cos 1

 

 

R R

R R T

q

R R

R R T

q

g s

 

 

g s

net d F d F

F

d   

(11)

0

0

2 0 2 2

2 0 0

) sin cos

)(

/ 2 2 exp(

4

   

 g s

ax d dr r r w q q

Q

ax

s g

ax

c Q P n

q q

w r

r dr c d

P F n

1

0

2 0 2 2

2 0 0

1

0

) sin cos

)(

/ 2 2 exp(

4

  

 

 

- Axial trapping efficiency

- Axial trapping force

(12)
(13)

(2) Transverse trapping

(14)

IdS q

c q

dF netn 1 ( g sin   s cos  )

tr

s g

c Q P n

q q

r r

dr c d

P F n

1

0 0

2 0 2

2 0 1

) sin

cos (

) /

2 4 0 exp(

  

 

 

(15)
(16)

Experimental setup

Laser diode

Objctive lens

lens

PBS

lens1 lens2

CCD

Dichroic mirror

Hallogen lamp

Z-axis

Y-axis Motorized translation

stage

(17)

Trapping Image according to trapping direction

Axial trapping

transverse

trapping

(18)

논의점 - 광포획 효율의 변화 (포획 깊이)

(19)

Laser diode

Lens 1 Lens 2

Dichroic mirror

chamber Cover glass

Slide glass Index matching oil R

(aperture size)

Beam radius

stage

Objctive lens

논의점 - 광포획 효율의 변화 (빔반경)

(20)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.005 0.010 0.015

0.11 0.12 0.13 0.14 0.15 0.16 0.17

Q

ratio ( 

0

/ R)

(21)

For small particle

For big particle

3) Beam optics model

(22)

2 0 2

0

2 0 2

0 1

 

 

 

z

r



 



 

 

 

 

2 0 2

0

2 0 2 2

0 2

0

2 0 2

0

1 1

z r z

z r

2 R

0 2

0

2 0 2

0 

 

z z r

z

The calculation for existing model was performed the fixed incident angle for all particle. That is, incident angle independent of particle diameter.

 

 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

 

 

2 0 2

0

2 0 2 2

0 2

0

2 0 2

0

2 0 2

0

2 0 2

0

1 1 1

 

 

z r z

z r

z r ArcSin

ArcSin R

Incident angle

(23)
(24)

2. Manipulation(patterning) of multi-particles

CNT

SWNT

( single-walled cabon nanotube)

MWNT

(Mulit-walled cabon nanotube)

1) Carbon nanotubes

(25)

CNT trap실험 장치도

Lens 1

Laser diode Dichroic

mirror

Lens 2

Cover glass Slide glass Index matching oil

Objctive lens

CCD

Hallogen lamp

PC

(26)

5m

HY letters

X

Y

5m

X,Y letters

CCD image of aligned CNT SEM Image of ring pattern

(27)

시간에 따른 CNT Ring Pattern 형성

00:03

00:10

22:30

00:05

01:30 00:07

00:00

Laser On 5m

Laser Off

Sequential CCD image of CNT to form ring pattern in the chamber

(28)

- OPTICAL TWEEZERS: MICROBUBBLES AND NANOTUBES Dr. Phil Jones , 6 March 2007

- Nanofabrication with Holographic Optical Tweezers

Pamela Korda, Gabriel C. Spalding, Eric R. Dufresne, David G. Grier November 16, 2000

- Single-particle microelectrophoresis with optical tweezers Van Heiningen, Hill, 2007

2) Micro-patterning

(29)

Surface tension-enhanced optical trapping for lateral close-packing

 Cell-to-cell interactions

 Cell fusion dynamics

(30)

1) Raman spectroscopy

Rayleigh Scattering

Raman Scattering

E

3. Bio-Medical applications

 0

 0

  

0

(31)

Rayleigh Stokes Anti-Stoke

m

 

0    m

0

(32)

Schematic Diagram of Experimental Set-up

objective lens CCD camera

chamber dichroic

mirror

beam- splitter

LD

monochromater

PC

PMT

grating dichroic

mirror

source :  0 = 834 nm

(33)

The McCreery Research Group

(The Ohio State spectrum)

(34)

LTRS system 상용 Raman microscopy

5  m

(35)

LTRS system 상용 Raman microscopy

m

2

(36)

포획 깊이에 따른 Raman peak 크기 변화

(1) (2)

(37)

2) Yeast trap and manipulation

PC Laser

CCD

OL

L L

M M

M

M

L : Lens M : Mirror

BS : Beam Splitter OL : Objective lens

BS Michelson

interferometer

(38)

광 포획된 yeast의 발아

발아 하고 있는 yeast

(39)

발아하고 있는 yeast의 딸세포에 대한 주위 세포들의 영향

Yeast의 딸세포의 발아.

(40)

(a) Living yeast cells (b)Dead yeast cells Changan Xie

et. al

. Optics Letters 27, 4, 2002

Tying a knot in the protein actin. By using optical tweezers

to manipulate the ends of the molecule, the chain is curl.

.)

3) Biological applications

(41)

Calibration of optical trapping efficiency Dependence of the optical trapping efficiency of a biconcave red blood cell flowing in a rectangular microchannel on the sphericity index and the channel geometry

Applicational example) Malaria-infected RBC

Combined microchannel-type erythrocyte (RGB) deformabilitytest with optical tweezers

(42)

Cell damage during femtosecond optical trapping

Damagethresholds for biological cells(RBC) Platelet(혈소판)

RBC-under threshold

RBC-above threshold

6 mW 20 mW

Laser power : 90% of the damage threshold (1.8 mW)

t=0 t=7m 30s

t=13m 5s t=20m

t=30m

damage scar

Cell disruption

참조

관련 문서

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

Phase profile of conventional DOE Obtained diffraction image. Optical vortices appear in the diffraction image generated by

The thickness of crose-sectional is decreased, the roughness of top surface is decreased as a function of the oxygen gas flow rate was increased.. The structure and

Fabrication and Optical Properties of Polysiloxane Hybrimer Resin Using Oligohydrosiloxane 1 (OPH 1).. Fabrication and Optical Properties of Polysiloxane Hybrimer

LCD : Liquid Crystal Display PDP : Plasma Display Panel FED : Field-Emitting Display.. OLED O i Li ht E itti Di l OLED : Organic

• Development of systematic methods of analyzing optical systems with numerous elements. • Matrices for analyzing the translation, refraction, and reflection of

The phase difference due to optical path length differences for the front and back reflections is given by.. Analysis of Interference in Dielectric Films Analysis of

electric fields will be built up in such a direction as to restore the neutrality of the plasma by pulling the electrons back to their original positions... Al,