• 검색 결과가 없습니다.

Conduction Heat transfer: 

N/A
N/A
Protected

Academic year: 2021

Share "Conduction Heat transfer: "

Copied!
45
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Conduction Heat transfer: 

Unsteady state

(2)

Chapter Objectives

For solving the situations that

– Where temperatures do not change with position.

– In a simple slab geometry where temperature vary also with  position.

– Near the surface of a large body (semi‐infinite region)

(3)

Keywords

‐ Internal resistance

‐ External resistance

‐ Biot number

‐ Lumped parameter anaysis

‐ 1D and multi‐dimensional heat conduction

‐ Heisler charts

‐ Semi‐infinite region

(4)

1  Lumped Parameter Analysis

In transient,  T

r=r

= T

r=0.5r

= T

r=0

?

Tr=r

Tr=0.5r Tr=0

TSurr

Figure 1. Several temperatures in the system.

(5)

Lumped Parameter Analysis

Figure 2. A solid with convection over its surface.

)Δt T

hA(T ΔT

mC

p

(1)

(6)

)ΔΔ T

hA(T ΔT

mC

p

 

M : Mass

Cp: Specific heat

h : Convective heat transfer coefficient A : Surface area

T : Bulk fluid temperature

(1)

(2)

Lumped Parameter Analysis

(7)

(3)

Lumped Parameter Analysis

(8)

(5) (4)

(9)

2  Biot Number

Tr=r

Tr=0.5r Tr=0

TSurr

Figure 3. Several temperatures in the system.

T

r=r

= T

r=0.5r

= T

r=0

So, when can we apply  ?

(10)

Biot Number

Bi (Biot Number) 

: Deciding whether internal resistance can be ignored.

(6)

(7)

(11)

Characteristic Length

Characteristic length  ≡ V/A

Path of least thermal resistance

Characteris c length↓ 

= Temperature can be changed in short time

Figure 4. Characteristic lengths for heat  conduction in various geometries.

(8)

(12)

What is the temperature of the egg after 60min?

Figure 5.    Schematic for Example 1.

Example 1

Known:    Initial temperature of an egg

Find:        Temperature of the egg after 60min.

Given data:  T i =   20  air = 38 

h     =   5.2 W/m2K ρ =   1035 kg/m3 Cp =   3350 J/kgK k   =   0.62 W/mK

(13)

Being Bi <0.1, lumped analysis can be applied!

Assumption: 

1. Egg is approximately spherical.

2. Surface heat transfer coefficient provided is an average value.

3. Lumped parameter analysis.

Bi (Biot Number) = hV / Ak = 0.07 < 0.1

Using (Eqn. 5),

Then, T = 29.1 ℃

(14)

Being Bi <0.1, lumped analysis can be applied!

Assumption: 

1. Egg is approximately spherical.

2. Surface heat transfer coefficient provided is an average value.

3. Lumped parameter analysis.

Bi (Biot Number) = hV / Ak = 0.07 < 0.1

Using (Eqn.5),

Then, T = 29.1 ℃

(15)

3 When Internal Resistance Is Not Negligible

Tr=r

Tr=0.5r Tr=0

TSurr

Figure 1: Several temperatures in the system.

The situations, T

r=r

T

r=0.5r

T

r=0 (i.e. Bi ≥ 0.1)

(16)

When Internal Resistance Is Not Negligible

Figure 6. Schematic of a slab showing the line of symmetry at x = 0 and the two surfcaes at x =  L and at x = ‐L maintained at temperature TS. The material is very large (extends to infinity) in  the other two directions.

(17)

When Internal Resistance Is Not Negligible

(9)

(10) (11)

Boundary conditions

(18)

When Internal Resistance Is Not Negligible

(12)

Initial condition

(13)

α (Thermal diffusivity) = k/ρCp

(19)

How Temperature Changes with Time

Figure 7. The terms in the series (n = 0, 1, ... in Equation 5.13) drop off rapidly for values of  time. Calculations are for FO = 0.0048 at 30 s and FO = 0.096 at 600 s for a thickness of L = 0.03  m and a typical α = 1.44 x 10‐7m2/s for bio materials.

For visualizing Temperature vs. Position and Time, infinite series should be simplified

(20)

How Temperature Changes with Time

Comparing different terms at each time(t= 30s, t= 600s),

Contribution decays Gradually  at  t= 30s Rapidly      at  t= 600s 

(15)

(16)

(21)

Temperature Change with Position and  Spatial Average

• We can see that temperature varies as a cosine function

• Therefore, we need to define spatial average temperature

(15)

(16) L t

s i

s

e

L x T

T

T

T

2 2

cos 2

4

 

 

L t L

x T

T

T T

s i

s

2

2 cos 2

ln 4

ln 

 

 

 

 

 

   

(22)

Spatial average temperature

(17)

(18)

Applying (5.17) to (5.16) gives

L

av

Tdx

T L

0

1

L t T

T

T T

s i

s av

2

2

2

ln 8

ln 

 

 

 

  

(23)

Temperature Change with Size

(19)

 

 

 

 

s i

s av

T T

T T

L t

ln 8

4

2

2 2

(24)

Charts Developed from the Solutions: 

Their Uses and Limitations.

• It can be seen that temperature is a function of x/L and  αt/L2

• Charts are developed because of the complexity of the  calculation of series.

 

(20)

   

2 2 2

1 2

0

2

1 cos 2

1 2

1

4

n Lt

n

n

s i

s

e

L x n

n T

T

T

T

 

 

(25)

• Charts are developed with the condition of n=0. In other words,  it is a plot of Eqn. 5 And it is also called Heisler chart.

• There are some assumptions for the development of the charts. 

These are:

1. Uniform initial temperature

2. Constant boundary fluid temperature 3. Perfect slab, cylinder or sphere

4. Far from edges

5. No heat generation (Q=0)

6. Constant thermal properties (k, α, cp are constants)

7. Typically for times long after initial times, given by αt/L2>0.2

(26)

Figure 8. Unsteady state diffusion in a large slab

(27)

Example 2. Temperatures Reached During Food Sterilization

• Surface temperature of a slab of tuna is suddenly increased

• Find the temperature at the center of the slab after 30 min

Figure 9. A cylindrical can containing food to be sterilized.

(28)

• Given data:

1. Thickness of slab = 25 mm 2. Thermal diffusivity of the slab, 3. Initial temperature = 40℃

4. Surface temperature = 121℃

5. Time of heating = 1800s

• Assumptions

1. Heating from the side is ignored 2. Thermal diffusivity is constant

s m / 10

2 7 2

(29)

So the temperature T = 120.65℃ after 30 minutes of heating

0125 0 .

0

0 

L n x

 0

hL m k

   

0 . 0125 /    1800 2 . 3

10 2

2 2 2 7

0

2

 

m

s s

m L

Ft

0043 .

 0

T T

T T

i

(30)

Convective Boundary Condition

• We have considered a negligible external fluid resistance to heat  transfer.

• But if we consider external fluid resistance in addition to internal  fluid resistance,

(31)

Figure 10. In convective boundary condition, surface temperature is not the same as the bulk fluid temperature, T, signifying additional fluid resistance .

• At the surface,

The solution is generalized form of Eqn. 5.13 and you can refer to  Heisler chart as well. 

 

  h T T

x

k T

s

s

(32)

Numerical Methods as Alternatives to the  Charts

• In practice, however, such conditions dealt with above are not  that simple

• Limitations of the analytical solutions can be overcome using  numerical, computer‐based solutions

(33)

4 Transient Heat Transfer in a Finite  Geometry‐Multi‐Dimensional Problems

• We should consider the situation two‐ and three‐dimensional  effect yields

• A finite geometry is considered as the intersection of two or  three infinite geometries

(21) slab z inite s

i

s t

z

slab y inite s

i

s t

y

slab x inite s

i

s t

x s

i

s t

xyz

T T

T T

T T

T T

T T

T T

T T

T T

inf ,

inf ,

inf , ,

 

 

 

 

 

 

 

(34)

Figure 11. A finite cylinder can be considered as an intersec tion of an infinite cylinder and a slab

slabinite s

i

s t

z

cylinderinite s

i

s t

r s

i

s t

z r

T T

T T

T T

T T

T T

T T

inf ,

inf ,

,

,



 

 

 

 

(22)

(35)

5 Transient Heat Transfer in a Semi‐

infinite Region

• A semi‐infinite region extends to infinity in two directions and a  single identifiable surface in the other direction

• You can see Fig. 5.11 extends to infinity in the y and z directions  and has an identifiable surface at x=0

Figure 12. Schematic of a semi-infinite region showing only one identifiable surface.

(36)

• It can be used practically in heat transfer for a relatively short  time and/or in a relatively thick material

• The governing equation with no bulk flow and no heat  generation is

• The boundary conditions are

•The initial condition is

2 2

x T t

T

 

 

xT

s

T  0 

xT

i

T   

tT

i

T  0 

(23)

(24) (25)

(26)

(37)

• The solution is

 

 

 

t erf x

T T

T T

i s

i

1 2

(27)

The function erf(η) is called error function and given by

t x

 

 2

 

0

2

2

)

( e d

erf

And here,

(38)

Figure 13. Comparison of the complementary error function (1-erf(η)) with an exponential e

(39)

• Heat flux at the surface of the semi‐infinite region can be  calculated with chain rule

0 0

"

x x

s

dx

d d

k dT dx

k dT

q

 

 

t T T

k

e t T

T k

i s

i s



 

 

 

 

2 1 2

0

2

(28)

(40)

• The situation we can approximate semi‐infinite region

Figure 14. Plot of Eqn. 29, illustrating the minimum thickness of a material for which error function solution can be used.

t x

t x

4 2 2

(29)

(41)

• Other boundary conditions

1. Convective boundary condition

 

  h T T

x

k T

surface

surface

The solution is

 

 

 

 

 

 

 

 

 

k t h

t erf x

e

t erf x

T T

T T

k t h k hx i

i

1 2 1 2

2 2

(30)

(42)

2.  Specified surface heat flux boundary condition

"

"

s

surface

q

q

(31)

 

 

 

 

 

t erf x

k x e q

q t T k

T

t s

x s

i

 

1 2

2

" 4 2 "

(32)

The solution is

(43)

Example 3 Analysis of Skin Burns

Figure 15. Section of a skin with degrees of burn superimposed on it.

A thermal burn occurs as a result of an elevation in tissue temperature above a  threshold value for a finite period of time

The intensity of thermal burn is divided into four degrees

(44)

6 Chapter Summary‐Transient Heat  Conduction

• No Internal Resistance, Lumped Parameter

1. The thermal resistance of the solid can be ignored if a Biot number is less  than 0.1.

2. As thermal resistances are ignored, temperature is a function of time only.

(45)

• Internal Resistance is Significant

1. When internal resistance is significant (Bi>0.1), temperature is a function of  both position and time

2. For an infinite slab, infinite cylinder and spherical geometry, the solutions are  given as Heisler chart. You can find it on pages 327~329.

3. For finite slab and finite cylinder, the solutions are intersection of the infinite  slabs and cylinder.

4. Materials with thickness      are considered effectively semi‐infiniteL 4t

수치

Figure 6. Schematic of a slab showing the line of symmetry at x = 0 and the two surfcaes at x =  L and at x = ‐L maintained at temperature T S . The material is very large (extends to infinity) in  the other two directions.
Figure 7. The terms in the series (n = 0, 1, ... in Equation 5.13) drop off rapidly for values of  time. Calculations are for F O = 0.0048 at 30 s and F O = 0.096 at 600 s for a thickness of L = 0.03  m and a typical α = 1.44 x 10‐7m2/s for bio materials.
Figure 8. Unsteady state diffusion in a large slab
Figure 9. A cylindrical can containing food to be sterilized.
+7

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

The builtin package defines error as an interface with a single Error() method that returns an error message as a string.. We’ll see

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

As a result of the thermal conduction analysis, a cooling zone is formed on the surface of the welding metal along the arc by a cooling medium, compared

Also, the design of an optimal heat sink requires a complete knowledge of all heat transfer characteristics between the heat source and the ambient air

24 Comparison between profiles of acoustic pressure and heat transfer augmentation in case of output power level of 300W.. 25 Comparison between profiles of acoustic pressure

 A power series with a nonzero radius of convergence R represents an analytic function at every point interior to its circle of convergence..  The derivatives of this