• 검색 결과가 없습니다.

To be updated Announcement

N/A
N/A
Protected

Academic year: 2022

Share "To be updated Announcement"

Copied!
29
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Announcement

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

To be updated

(2)

Chap. 9 Deflections of Beams

9.1 Introduction

9.2 Differential equations of the deflection curve

9.3 Deflection by integration of the bending-moment equation

9.4 Deflections by integration of the shear-force and load equations 9.5 Method of superposition

9.7 Nonprismatic beams

(3)

Differential equations of the deflection curve

Geometry of deflected beam

𝜅 = 1

𝜌 = 𝑑𝜃 𝑑𝑠

𝑑𝑣

𝑑𝑥 = tan𝜃 𝜃 = arctan 𝑑𝑣

𝑑𝑥

(4)

Differential equations of the deflection curve

Beams with small angles of rotation

𝜅 = 1

𝜌 = 𝑑𝜃 𝑑𝑠

𝜅 = 1

𝜌 = 𝑑

2

𝑣 𝑑𝑥

2

𝑑

2

𝑣

𝑑𝑥

2

= 𝑀

𝐸𝐼

(5)

Differential equations of the deflection curve

Beams with small angles of rotation

𝑑

2

𝑣

𝑑𝑥

2

= 𝑀

𝐸𝐼

(6)

Differential equations of the deflection curve

Beams with small angles of rotation

𝑑

2

𝑣

𝑑𝑥

2

= 𝑀 𝐸𝐼

𝐸𝐼 𝑑2𝑣

𝑑𝑥2 = 𝑀 𝐸𝐼 𝑑3𝑣

𝑑𝑥3 = 𝑉 𝐸𝐼 𝑑4𝑣

𝑑𝑥4 = −𝑞 𝐸𝐼𝑣′′ = 𝑀 𝐸𝐼𝑣′′′ = 𝑉 𝐸𝐼𝑣′′′′ = −𝑞

(7)

Differential equations of the deflection curve

Beams with large angles of rotation (Exact expression for curvature)

(8)

Deflections by integration of the bending-moment equation

𝑑2𝑣

𝑑𝑥2 = 𝑀 𝐸𝐼

𝑑3𝑣

𝑑𝑥3 = 𝑉 𝐸𝐼

𝑑4𝑣

𝑑𝑥4 = −𝑞 𝐸𝐼 𝑑𝑣

𝑑𝑥 = 𝜃 𝑣

𝜅 = 1

𝜌 = 𝑑2𝑣 𝑑𝑥2

(9)

Deflections by integration of the bending-moment equation

𝑑2𝑣

𝑑𝑥2 = 𝑀 𝐸𝐼

𝑑3𝑣

𝑑𝑥3 = 𝑉 𝐸𝐼

𝑑4𝑣

𝑑𝑥4 = −𝑞 𝐸𝐼 𝑑𝑣

𝑑𝑥 = 𝜃 𝑣

𝜃𝐵 = −𝑣′(𝐿) = 𝑞𝐿3 6𝐸𝐼

𝜃𝐴 = −𝑣′(0)

𝜃𝐵 = 𝑣′(𝐿) 𝛿𝐵 = −𝑣(𝐿) = 𝑞𝐿4

8𝐸𝐼 𝛿𝐶 = −𝑣 𝐿

2

(10)

Deflections by integration of the bending-moment equation

𝑀 = −𝑞𝐿2

2 + 𝑞𝐿𝑥 − 𝑞𝑥2 2

𝐸𝐼𝑣′′ = −𝑞𝐿2

2 + 𝑞𝐿𝑥 − 𝑞𝑥2 2

𝐸𝐼𝑣′ = −𝑞𝐿2

2 𝑥 + 𝑞𝐿𝑥2

2 − 𝑞𝑥3

6 + 𝐶1

𝐸𝐼𝑣′ = −𝑞𝐿2

2 𝑥 + 𝑞𝐿𝑥2

2 − 𝑞𝑥3 6

𝑣′ = − 𝑞𝑥

6𝐸𝐼 3𝐿2 − 3𝐿𝑥 + 𝑥2

𝑣′(0) = 0

(11)

Deflections by integration of the bending-moment equation

𝑣(0) = 0 𝑣′ = − 𝑞𝑥

6𝐸𝐼 3𝐿2 − 3𝐿𝑥 + 𝑥2

𝐸𝐼𝑣 = −𝑞𝐿2𝑥2

4 + 𝑞𝐿𝑥3

6 − 𝑞𝑥4

24 + 𝐶2

𝑣 = − 𝑞𝑥2

24𝐸𝐼 6𝐿2 − 4𝐿𝑥 + 𝑥2

𝜃𝐵 = −𝑣′(𝐿) = 𝑞𝐿3 6𝐸𝐼

𝛿𝐵 = −𝑣(𝐿) = 𝑞𝐿4 8𝐸𝐼

(12)

Deflections by integration of the bending-moment equation

𝑀 = 𝑃𝑏𝑥 𝐿 𝑀 = 𝑃𝑏𝑥

𝐿 − 𝑃 𝑥 − 𝑎

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

𝐸𝐼𝑣′′ = 𝑃𝑏𝑥 𝐿 𝐸𝐼𝑣′′ = 𝑃𝑏𝑥

𝐿 − 𝑃 𝑥 − 𝑎

𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 + 𝐶1 𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 𝑃 𝑥 − 𝑎 2

2 + 𝐶2

𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 𝑃 𝑥 − 𝑎 3

6 + 𝐶2𝑥 + 𝐶4 𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 + 𝐶1𝑥 + 𝐶3

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

(13)

Deflections by integration of the bending-moment equation

𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 𝑃 𝑥 − 𝑎 3

6 + 𝐶2𝑥 + 𝐶4 𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 + 𝐶1𝑥 + 𝐶3 0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

Boundary condition (BC)

1. At x = a, the slopes v’ for the two parts of the beam are the same.

2. At x = a, the deflections v for the two parts of the beam are the same.

3. At x = 0, the deflection v is zero.

4. At x = L, the deflection v is zero.

Deflection equations

𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 + 𝐶1 𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 𝑃 𝑥 − 𝑎 2

2 + 𝐶2

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿 Angle equations

(14)

Deflections by integration of the bending-moment equation

Boundary condition (BC)

1. At x = a, the slopes v’ for the two parts of the beam are the same.

2. At x = a, the deflections v for the two parts of the beam are the same.

3. At x = 0, the deflection v is zero.

4. At x = L, the deflection v is zero.

𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 𝑃 𝑥 − 𝑎 3

6 + 𝐶2𝑥 + 𝐶4 𝐸𝐼𝑣 = 𝑃𝑏𝑥3

6𝐿 + 𝐶1𝑥 + 𝐶3 0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿 Deflection equations

𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 + 𝐶1 𝐸𝐼𝑣′ = 𝑃𝑏𝑥2

2𝐿 𝑃 𝑥 − 𝑎 2

2 + 𝐶2

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿 Angle equations

𝑃𝑏𝑎2

2𝐿 + 𝐶1 = 𝑃𝑏𝑎2

2𝐿 + 𝐶2 𝐶1 = 𝐶2

𝑃𝑏𝑎3

6𝐿 + 𝐶1𝑎 + 𝐶3 = 𝑃𝑏𝑎3

6𝐿 + 𝐶2𝑎 + 𝐶4 𝐶3 = 𝐶4

𝐶3 = 𝐶4 = 0

𝑃𝑏𝐿3

6𝐿 − 𝑃𝑏3

6 + 𝐶2𝐿 = 0 𝐶1 = 𝐶2 = −𝑃𝑏 𝐿2 − 𝑏2 6𝐿

or

or

or

(15)

Deflections by integration of the bending-moment equation

Finally..

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿 𝑣 = − 𝑃𝑏𝑥

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 𝑥2 𝑣 = − 𝑃𝑏𝑥

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 𝑥2 𝑃 𝑥 − 𝑎 3 6𝐿𝐸𝐼

𝑣′ = − 𝑃𝑏

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 3𝑥2 𝑣′ = − 𝑃𝑏

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 3𝑥2 𝑃 𝑥 − 𝑎 2 2𝐸𝐼

0 ≤ 𝑥 ≤ 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿

𝜃𝐴 = −𝑣′(0) = 𝑃𝑏 𝐿2 − 𝑏2

6𝐿𝐸𝐼 = 𝑃𝑎𝑏 𝐿 + 𝑏 6𝐿𝐸𝐼 𝜃𝐵 = 𝑣′(𝐿) = 𝑃𝑏 2𝐿2 − 3𝑏𝐿 + 𝑏2

6𝐿𝐸𝐼 = 𝑃𝑎𝑏 𝐿 + 𝑎 6𝐿𝐸𝐼 𝛿𝐶 = 𝑣( 𝐿 2) = − 𝑃𝑏𝑥

6𝐿𝐸𝐼 𝐿2 − 𝑏2 𝐿4 4

(16)

Deflections by integration of the bending-moment equation

Maximum angle of rotation

Maximum deflection of the beam 𝜃𝐴 = −𝑣′(0) = 𝑃𝑏 𝐿2 − 𝑏2

6𝐿𝐸𝐼 𝑑𝜃

𝑑𝑏 = 0 ; 𝑏 = 𝐿 3 𝜃𝐴 max = 𝑃𝐿2 3 27𝐸𝐼

𝛿max = − 𝑣 𝑥=𝑥1 = 𝑃𝑏 𝐿2 − 𝑏2 3 2 9 3𝐿𝐸𝐼

; 𝑥1= 𝐿2 − 𝑏2

𝑣′ = − 𝑃𝑏 3

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 3𝑥2 =0

0 ≤ 𝑥 ≤ 𝑎 Condition:

0 ≤ 𝑥 ≤ 𝑎 𝑣 = − 𝑃𝑏𝑥

6𝐿𝐸𝐼 𝐿2 − 𝑏2 − 𝑥2 Condition:

(17)

Deflections by integration of the shear-force and load equations

𝑉 = −𝑃 2

𝑉 = 𝑃 𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝐸𝐼𝑣′′′ = −𝑃 2 𝐸𝐼𝑣′′′ = 𝑃

𝑀 = 𝐸𝐼𝑣′′ = 𝑃𝑥 + 𝐶2 𝑀 = 𝐸𝐼𝑣′′ = −𝑃𝑥

2 + 𝐶1

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

(18)

Deflections by integration of the shear-force and load equations

𝑀 = 𝐸𝐼𝑣′′ = 𝑃𝑥 + 𝐶2 𝑀 = 𝐸𝐼𝑣′′ = −𝑃𝑥

2 + 𝐶1

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝑣′′ 0 = 0

𝑣′′ 3𝐿

2 = 0

𝐶1 = 0

𝐶2 = −3𝑃𝐿 2

𝑀 = 𝐸𝐼𝑣′′ = 𝑃𝑥 − 3𝑃𝐿 2 𝑀 = 𝐸𝐼𝑣′′ = −𝑃𝑥

2

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

(19)

Deflections by integration of the shear-force and load equations

𝑀 = 𝐸𝐼𝑣′′ = 𝑃𝑥 − 3𝑃𝐿 2 𝑀 = 𝐸𝐼𝑣′′ = −𝑃𝑥

2

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝐸𝐼𝑣′ = −𝑃𝑥2

4 + 𝐶3 𝐸𝐼𝑣′ = −𝑃𝑥 3𝐿 − 𝑥

2 + 𝐶4 𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝐸𝐼𝑣 = −𝑃𝑥2 9𝐿 − 2𝑥

12 + 𝐶4𝑥 + 𝐶6 𝐸𝐼𝑣 = −𝑃𝑥3

12 + 𝐶3𝑥 + 𝐶5

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝑣′ 𝐿 = 𝑣′ 𝐿

𝑣 0 = 0

𝑣 𝐿 = 0

(20)

Deflections by integration of the shear-force and load equations

𝐸𝐼𝑣 = −𝑃𝑥2 9𝐿 − 2𝑥

12 + 𝐶4𝑥 + 𝐶6 𝐸𝐼𝑣 = −𝑃𝑥3

12 + 𝐶3𝑥 + 𝐶5

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝐶5 = 0; 𝐶3 = 𝑃𝐿2

12 ; 𝐶4= 5𝑃𝐿2

6 ; 𝐶6 = −𝑃𝐿3 4

𝐸𝐼𝑣 = −𝑃𝑥2 9𝐿 − 2𝑥

12 + 5𝑃𝐿2

6 𝑥 − 𝑃𝐿3 4 𝐸𝐼𝑣 = −𝑃𝑥3

12 + 𝑃𝐿2 12 𝑥

𝐿 < 𝑥 < 3𝐿 2 0 < 𝑥 < 𝐿

𝛿𝐶 = −𝑣 3𝐿

2 = 𝑃𝐿3 8𝐸𝐼

(21)

= +

Method of superposition

𝑣′ = − 𝑞

24𝐸𝐼 𝐿3 − 6𝐿𝑥2 + 4𝑥3 𝑣 = − 𝑞𝑥

24𝐸𝐼 𝐿3 − 2𝐿𝑥2 + 𝑥3 𝑣 = − 𝑃𝑥

48𝐸𝐼 3𝐿2 − 4𝑥2 𝑣′ = − 𝑃

16𝐸𝐼 𝐿2 − 4𝑥2

= +

(22)

= +

Method of superposition

𝑣′ = − 𝑞

24𝐸𝐼 𝐿3 − 6𝐿𝑥2 + 4𝑥3 𝑣 = − 𝑞𝑥

24𝐸𝐼 𝐿3 − 2𝐿𝑥2 + 𝑥3 𝑣 = − 𝑃𝑥

48𝐸𝐼 3𝐿2 − 4𝑥2 𝑣′ = − 𝑃

16𝐸𝐼 𝐿2 − 4𝑥2

(23)

Method of superposition

Appendix G

(24)

Method of superposition

Appendix G

(25)

Method of superposition

Distributed loads

Angle of rotation Midpoint deflection

Use Table G-2, Appendix G

(26)

Method of superposition

Distributed loads Midpoint deflection Angle of rotation

(27)

Nonprismatic beams

𝑀 = 𝑃𝑥

2 0 ≤ 𝑥 ≤ 𝐿

2 𝐸𝐼𝑣′′ = 𝑃𝑥

2 𝐸 2𝐼 𝑣′′ = 𝑃𝑥

2

0 ≤ 𝑥 ≤ 𝐿 4 𝐿

4 ≤ 𝑥 ≤ 𝐿 2 Equation for Moment

Conditions

1. At support A (x=0), deflection is zero (v=0) 2. At point C (x=L/2), slope is zero (v’=0)

3. At point B (x=L/4), slope should be continuous 4. At point B (x=L/4), deflection should be continuous

(28)

Nonprismatic beams

0 ≤ 𝑥 ≤ 𝐿 4 𝐿

4 ≤ 𝑥 ≤ 𝐿 2

𝑣′ = 𝑃𝑥2

4𝐸𝐼 + 𝐶1

𝑣′ = 𝑃𝑥2

8𝐸𝐼 + 𝐶2

2. At point C (x=L/2), slope is zero (v’=0)

𝐶2 = − 𝑃𝐿2 32𝐸𝐼

3. At point B (x=L/4), slope should be continuous

𝑃 4𝐸𝐼

𝐿 4

2

+ 𝐶1 = − 3𝑃𝐿2

128𝐸𝐼 𝐶1 = − 5𝑃𝐿2 128𝐸𝐼

(29)

Nonprismatic beams

0 ≤ 𝑥 ≤ 𝐿 4 𝐿

4 ≤ 𝑥 ≤ 𝐿 2 𝑣′ = 𝑃𝑥2

4𝐸𝐼 5𝑃𝐿2 128𝐸𝐼 𝑣′ = 𝑃𝑥2

8𝐸𝐼 𝑃𝐿2 32𝐸𝐼

𝑣 = − 𝑃

128𝐸𝐼 5𝐿2𝑥 −32𝑥3

3 + 𝐶3

𝑣 = − 𝑃

32𝐸𝐼 𝐿2𝑥 − 4𝑥3

3 + 𝐶4

0 ≤ 𝑥 ≤ 𝐿 4 𝐿

4 ≤ 𝑥 ≤ 𝐿 2

1. At support A (x=0), deflection is zero (v=0) 𝐶3 = 0

4. At point B (x=L/4), deflection should be continuous

𝑃

32𝐸𝐼 𝐿2 𝐿

4 4 3

𝐿 4

3

+ 𝐶4 = 𝑣 𝐿

4 = − 13𝑃𝐿3

1536𝐸𝐼 𝐶4 = − 𝑃𝐿3 768𝐸𝐼

참조

관련 문서

*”태양광”,에너지관리공단

[r]

Use the average shear flow method to calculate the shear throughout each of the panels in the idealized tapered box beam pictured in Figure 4 9 13 Table 4 9 4 lists the

특히 간 절제술과 간이식을 맡고 있는 외과 왕희정 교수팀은 국내 최초로 혈액형이 다른 간이식을 성공한 데 이어 간이식 수술을 통해 혈우병과 간암을 동시 치

지난 해 이후 오피스 임대시장 호황으로 오피스 빌딩은 꾸준히 높은 수요를 보이고 있는 가운데 공급과 매물이 수요에 못 미치면서 도심, 강남, 마포여의도 등 주요

생업의 경험으로부터 나온 지식뿐만 아니라 강원대학교 시설농업학과에서 배운 전문적인 지식을 통해 저는 더욱 더 발전한 저의 모습을 발견할 수 있게 되었고, 이를

A phylogenetic tree obtained by the neighbor-joining method revealed that five sequence (SMS-1, 2, 5, 6, 7) from the squirrel monkey and three sequences (NM6-4, 5, 9) from

MeOH(극성 양성자성 용매, 약한 친핵체) 속에서 2-Chloro-3-phenylbutane의 가용매분해 반응.. β-제거 반응의 주생성물은