• 검색 결과가 없습니다.

 1.  Studies on CO /N Mixture Gas Permeation and Separation through Polysulfone Membrane Treated by Plasma Treatment   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Studies on CO /N Mixture Gas Permeation and Separation through Polysulfone Membrane Treated by Plasma Treatment    "

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

   CO

2

/N

2

   

 

 

(2001

Studies on CO

2

/N

2

Mixture Gas Permeation and Separation through Polysulfone Membrane Treated by Plasma Treatment

Hyoung Jun Ahn, Sang Ho Noh, Seong Youl Bae and Sei Ki Moon

Department of Chemical Engineering, College of Engineering Science, Hanyang University, Ansan, Kyunggido 425-791, Korea (Received 16 August 2001; accepted 30 November 2001)

 

  Ar, NH3

  ! "#$% &' ()*+ NH3

0  12 CO2 34&5 ideal separation factor1 67 89:;< Ar   => 10 W-6 min12 ??

8.6744@10−10cm3(STP)cm/cm2AsAcmHg5 14.401!, NH3  => 50 W-8 min12 7.5922@10−10cm3(STP)cm/

cm2AsAcmHg5 17.644 B+. C7   DE$ FGH =>,  1 I 1 J$0 K$ L M%N4 CO25 OP QR  , N21 S CO2 MI TU$  S TU&5 34& VW1 XY*Z [4 \]O+.

Abstract−The surface of polysulfone(PSf) membrane modified by Ar, NH3 plasma treatment is measured before and after the treatment. The membrane modified by Ar plasma treatment is increased the O/C ratio and the hydrophilic group, by NH3 plasma treatment is increased the amine group and the amino group. The CO2 permeation and ideal separation factor of the treated membrane measured good condition. The measurance of Ar-10 W-6 min plasma treatment is 8.6744×10−10 cm3 (STP)cm/cm2· s · cmHg and 14.401, it of NH3-50 W-8 min plasma treatment is 7.5922×10−10cm3(STP)cm/cm2· s · cmHg and 17.644. Having the wettability of polysulfone membrane, the polar functional groups of its surface interacted with CO2 increas- ingly. Because of the soluble selectivity of membrane increased of CO2 than N2, polysulfone membrane improved both the per- meability and the selectivity of CO2.

Key words: Polysulfone, Plasma Treatment, Selectivity, Permeation

1.  

        

      !" #$  %&

 '() *+  , -./  0%1 2+, 3 

4.    +  567 89 :;7 < =

>, ?7  567 ( < @A BC D4.  

 56 EF 1 %G %1 7 ( -. HG, 0 IJ %K, L/ MN, O/ P, QR H,ST U3 VW X4. YZ[,  0N1 -.N H,ST \

]G, ^ 0N H,ST -.N \_1 '`a%1 2+(trade off)  b%& c d , ef7 ghfi1 56" jk%1l

r s t %u ddt AE" v%1 , wE%1l " 

(composite membrane)[ `(x(asymmetric membrane)9

%G, 26 < @A BdG m4. Z `(x, wE%1 yz  {d |}z(dip coating), ~t z(separation casting and lamination), L z(interfacial polymerization) € mdg, 

 + S µm c s t, d1 , wE%1 l 71 ‚ƒ m4[2]. 7, „/ y„+…7†  s , j‡%ˆ

[, s 7 ‰Š G" %1 *‹ Œ9Ž z 3G m 4[3, 4].

*‹ Œ9Ž  ‘ yz 1 ’p ‰Š 56[ s j‡ 7 3K, Œ9Ž  Œ9Ž “   [”

4. Œ9Ž  •o –—X ˜™š(organic vapor) „/ y„

7 r k› Œ9Ž7 r G s 7 œ , fiG,

Œ9Ž “  `ž Ÿ[ ' Ÿ7 non-polymerizable

To whom correspondence should be addressed.

E-mail: bae5272@hanyang.ac.kr

(2)

s j‡ :"  , S m4. Œ9Ž “  Œ9Ž 7

`r E¡ ¢£%G ¤'/  `¥ ˜™š ¦§%d ¨ ©ª 7 •w/b «¬ m­7N ’A%G Ÿ , q  wE

@A1 ®¯ U4[4].

 3   °1 &Z p G 56 7† ±

²³ 56  oS 0N´ 3µ¶7 (r† P%K QR H ©ª7 < @A]7 r  † p

7 (r @A D4[5, 6].

· @A7†1 ±²³ 7 (%& *‹ Œ9Ž" 3, ‘

L/, O/ P Y( ¸d% †, /b s Œ9Ž

“" ¹ 0º -.N »" ¼½%G, Ar(`ž Ÿ)´

NH3(' Ÿ) Œ9Ž “X ±²³  s »" contact angle, ¾%& ¿ YÀ ›7 8Á ¯S »´ ESCA(Electron Spectroscopy for Chemical Analysis)  s Ã5Â, +…  YG ºÂ, %Ä K, AFM(Atomic Force Microscopy)" ¹ r s ˆÅ´ ¤ /Q ®Æ S" ¾%& Œ9Ž “

X Ÿ(CO2/N2=30/70 vol%) 0N PCO2, PN2´ -.N(γ: Actual Separation Factor) É Ê, “f¢ € 4Ë Œ9Ž

EF7 89 ÌW »%1d" ¼½%Ä4.

2.  

Fig. 17† one-dimensional Í Î   3r-Ï

A K, Fick zÐ7 8Á 0 ÑN !7 89  $ ÈX4.

Upstream  –—X  ¤ •o,

(1)

(2)

(3)

Ò (1)-(3) uÓ Ò (4)"  , S m4.

(4)

n

(5)

Ò (5)uÓ Ò (6), ¸NÔ S m4.

(6)

89†,

(7)

Ò (7), Ò (4)7 (—%G % ,

(8) y, 1−y1 GC7 r ¾K x, P1, P21 UÕEF7† –$4. 89

† capillary column7† ¾X PtotuÓ Ò (7), (8), 3%& PCO2, PN2, LÔ S m4.

YG Œ9Ž “X   p, [ÖQ qr ¤

(CO2/N2=30/70 vol%)  X " 0f× -.N γ" A%&

 p »" EØr ÙÚ K, -.N1 4­ Ò  L%

Ä4.

x: upstream concentration y: downstream concentration

^ α(ideal separation factor)" A%& γ´ `Û Â%ÄG, -.

N α1 4­ Î4.

3. 

3-1. 

UÕ7 Ø3X polysulfone FS-1200 film(Tg=190oC, thickness=50µm, Sumimoto, Japan) AE1 Fig. 2´ Î4.

Œ9Ž “ UÕ „7 Ü­Ý ÊÞ(REST-16HT)" Ø3%& ß àS 30¢ ÊÞ%& $+…7† FE%Ä K, GáN Ar(99.999%), NH3(99.999%)´ (CO2/N2=30/70 vol%)" Ø3%Ä4.

3-2.  

UÕ7 Ø3X Œ9Ž «â1 PLASMA SYSTEM 440(Tepla Co.)

㠎ä åæ(microwave)1 –ÝS 2.45GHzb magnetron7 r 600 Wçd k›fè S m K, '(chamber)Q quartz windows7 r éX4.  T2000 controller(Tepla Co.)7 r wK ' JCO2 PCO2

--- xPl ( 1–yP2)

=

JN2 PN2

--- 1 xl [( – )P1–(1 y– )P2]

=

Jtot JCO

2 JN

2

Ptot

--- Pl ( 1–P2)

= +

=

Ptot(P1–P2)

PCO2(xP1–yP2)+PN2[(1 x– )P1–(1 y– )P2]

= JCO

2

JN2 --- y

1 y– ---

=

y 1 y–

--- PCO2(xP1–yP2) PN2[(1 x– )P1–(1 y– )P2] ---

=

y PCO2(xP1–yP2)

PCO2(xP1–yP2)+PN2[(1 x– )P1–(1 y– )P2] ---

=

PCO2(xP1–yP2) Ptot(P1–P2) ---

=

PCO2 yPtot(P1–P2) xP1–yP2 ---

=

PN2 (1 y– )Ptot(P1–P2) 1 x–

( )P1(1 y– )P2 ---

=

γ yCO

2

xCO

2

--- yN

2

xN

2

--- ---

=

α PCO2 PN2 ---

=

Fig. 1. One dimensional permeation diagram of membrane separation. Fig. 2. Structure of polysulfone(FS-1200) membrane.

(3)

 40 2 2002 4

 Q   2-stage rotary-vane pump7 r 0.02 mbarçd ¸ dG MKS capacitance cell(MKS instrument, Baratron type 122A)7 r ¾X4.

' 6‡ êB®ëK, Qu ä(WìHìD)1 350ì350 ì350(mm)4. YG –— ¸º MFC(Mass Flow Controller, Brooks Co., 5850TR)7 r Eíî4. «â jïN1 Fig. 37 [ ÖQîG, Œ9Ž “ EF Table 1 Î4.

3-3. 

Œ9Ž “ Ç s O/ AE »" ¼½% qr ATR(Attenu- ated Total Reflectance)yz  FT-IR(Bio-RAD FTS6000), 3%&

Â%Ä4. ATR  Œ9Ž “ Ç 4-5f¢ Q7 È%Ä K, fð1  „çd $FE(vacuum desiccator)Q7 Uñò

ó Ù¼%Ä4. Œ9Ž “X ±²³  s ô(S.E.O 300A contact angle meter) U‹7† ¾%ÄG, s 7õd1 Girifalco- Good-Fowks-Young Method7 r Lî4. Œ9Ž “ Ç ±

²³  s dN´ ˆÅ » ö ¤ /Q ®Æ S"

¼½% qr AFM(PSI Cp Type)" Ø3%& Â%Ä K, ESCA (ARIESARSC-10 MCD-150) X-ray source1 Mg(10 kV)  3î4. Pm ö Pm(Max) ôô 4ì10−10 torr, 2ì10−9 torrî K, take off angle 45o, 23.5 eV´ 350 W EF7† Œ9Ž “X ±²

³  Ã5, +…Â, %Ä4.

3-4. 

 0UÕ Stern € ²L «â´ ¸Ø%W ²L÷w¡%&

SÈ%Ä K, variable volume method7 r ¾îG, Fig. 47 [ ÖQî4[7].

Upstream(high pressure)  –—X 1 porous steel7 G

 m1 ±²³ , ¹r downstream(low pressure)  øùK, 0X (CO2/N2=30/70 vol%)1 3-way valve" ¹r Jtot [cm3/cm2÷

s]" ¾% q capillary column(diameter: 0.05 cm, 1-propanol: specific gravity 0.802-0.807)u  , Â% q gas chroma- tography(Shimadzu, GC-14B)u  [”4. GC Â71 Porapak Q

 ú„X 2 m long column, Ø3%ÄG, carrier Ÿ1 He, Ø3%

Ä K, column TCD ‹NEF ôô 70oC, 75oCî4.

¸—X  0%1 cell ¸: / 19.6 cm2K, rejectX 

 =>, \G ûN ¿" qr stage cut[θ], 0.01 %Ä4.

YG upstream  , ¸d% qr back pressure regulator"

@ü%Ä4[8].

0UÕ 7 atm, 50oC EF7† ++… X Ç7 Uf%Ä K,

Œ9Ž “  $ ý/EF(Ar plasma-10 W, 6 min: NH3 plasma- 50 W, 8 min)%7† saturator" ²â%& dry þæÿb wet þæÿb 0 , `Û Â%Ä4.

4.   

4-1.    

Ÿ 0 ˆe, Ïb%& ý/ EF  ¼½X 10 W, 6 min Ar Œ9Ž “´ 50 W, 8 min NH3 Œ9Ž “X ±

²³ , `Û% qr s Â, fÈ%Ä4.

4-1-1. FT-IR ATR

Fig. 51 Ar NH3 c d 7 Œ9Ž “ „Ç FT- IR ATR Â, ¹ Ÿ ü4. * 3,100-3,100 cm1, 2,800 -3,000 cm−1 =(7† ä(peak)] ôô „/b y>h(aromatic)

¶ CH dyh ¶ äK, 1,300-1,375 cm−1 „/b polysulfone S=O ü äK, 1,375-1,450 cm1ö 800-600 cm1

=(7† ä] CH3 ü aromatic OOP" [ÖQ1   ˆ » ­, S m4. YZn Œ9Ž “ ±²³  bulk property71 4Á =>, –d ¨Ú4G Ô S m4.

4-1-2. Contact Angle

Fig. 6 Uw contact angle ¾ ®d† P N “„ Ù4

NH3Œ9Ž Ù4 < S N—î­, ê S m4. Fig. 7 7† “ f contact angle  5%G cosθ  ß%1 •>, S m1l 1 ¯S >+, [Ö4. ^ Table 27 [Ö

s 7õd »7†N “ f s 7õd ß •>  ¯ S >+, ÏbÔ S m4.

4-1-3. ESCA Fig. 3. The schematic diagram of plasma treatment system.

1. Reactor 6. Mass flow controllers

2. Magnetron(rf=2.45 GHz) 7. Feed gases

3. Wave guide 8. Vacuum pump

4. Baratron 9. Vent gas

5. Main valve

Table 1. Typical experimental conditions of plasma treatment Gas

(99.999%)

Power (W)

Time (min)

Flow rate (ml/min)

Pressure (mbar)

Ar 10, 30 2-10 30 0.1-0.02

NH3 30, 50

Fig. 4. The schematic diagram of gas permeation apparatus.

A: Permeation cell E: Capillary column B: Pressure gauge F: Saturator C: Gas chromatography G: Feed gas D: Back pressure regulator H: Thermostat

(4)

Fig. 8 Œ9Ž “X ±²³ ESCA Ÿ, narrow scan  [Ö 4. 294 eV C1s ä1 “„Ù4 45 ß%Ä G, 541 eV O1s ä1 Œ9Ž “ „Ç7 4Á »" Ùd

¨Ú K, 402 eV N1s ä1 NH3Œ9Ž “ f 7 W +

 , Fig. 87† C1s, O1s, N1s ä » ôô ÏbÔ S m 4. ' “„ ü 7õd  »1 ¼½Ô S 4.

´ Î ESCA Â, ¹r Œ9Ž “ Ç ±²³  s

 N— ÏbîG, NH3Œ9Ž “Ô ©  ®™

 N— Ïbî4.  ü1 contact angle 5 b ¯S

 ß ü´N  ¤â4.

4-1-4. AFM

Fig. 91 “„ Ar Œ9Ž “´ NH3Œ9Ž “7 r  

$ AFM ®d" [ÖQî4. Table 37†1 s Í ˆÅ"

RMS(Route Mean Square) [ÖQîG, ®Æ Í H´ /,

r Ú4. Œ9Ž “7 ±²³  s  “ „

`Û%& !" S m4. fô/ ®d7† “ 7 8Á !

" ÏU%W ÏbÔ S1  [, Table 37† Œ9Ž “X ±

²³  s  Ar Œ9Ž “ •o, ¤ / 221.6µ27† ˆ Å() 11.67† 71.2 ß%ÄG, ®Æ H()1 36.17†

319 ß%Ä4. NH3Œ9Ž “ •o7†N f ¤ / 221.6µ27† ˆÅ()1 11.67† 42.6  ß%ÄG, ®Æ H

()1 36.17† 202 ß%Ä4.

%K, 1 ü ¯S >+, [Ö4.

4-2.     

Œ9Ž “7 =>, –1 b1 Œ9Ž “  à,

–—  ¸º, É Ê, “ f¢, '  ö ' ‹N € m 4. Œ9Ž “7 8Á  0N ö -.N »" ¼½% q r†1 q »S] 0N UÕ EF7† üd1 »S]b 0

 ‹N, Ÿ  ö ¯N &u /  !Jg 4.

4-2-1. Œ9Ž “ ´ É Ê7 8Á =>

Œ9Ž “3  °1 1 O2, N2, NH3´ Î ž H

, G s  "/b ', ¤ i1 ' ´ Ar, He, CO2´ Î Œ9Ž #• Q7† ¸ 9$%, %& s 7 ® Ê cross-linking, ¤ i1 `ž  [& S m4[9].

Fig. 5. FT-IR ATR spectra of plasma treated PSf membrane.

Fig. 6. Contact angle images of plasma modified PSf membrane.

Fig. 7. Effect of plasma treatment time on the water contact angle.

Table 2. Summary of changes of contact angle in plasma modifed PSf membranes

Time (min)

Ar NH3

Angle (o)

Surface energy

(mJ/m2) cosθ Angle (o)

Surface energy(mJ/m2) cosθ Untreat 60.35 40.67 0.58 60.35 40.67 0.58

2 30.26 63.22 0.89 28.35 64.33 0.90

4 30.35 63.16 0.89 41.56 55.63 0.79

6 28.61 64.18 0.90 34.86 60.32 0.85

8 26.81 65.18 0.91 42.27 55.10 0.79

10 29.75 63.52 0.89 43.49 54.18 0.78

(5)

 40 2 2002 4

É Ê1 Œ9Ž  ¸d7 «  =>, ®â1 b

†, ¤'/  É Ê ß% Œ9Ž +…7 m1 –— 7 H 'q 7õd" éó † Œ9Ž (N ß%G, )+

Eô] rX 0— „, ‹ ö Ÿ ] bombardment

*N ß%& “ 567 (%&  =>, ®âW X4.

Fig. 10  ¸º 30 ml/min, '  0.1 mbarb Œ9Ž “

7† ôô 7 (%& ý/ EF f¢(NH3 8 min, Ar 6 min) 7 8Á  0N´ -.N(α)" [Ö 4. Ar Œ9Ž

 ±²³ , “%Ä, •o, É Ê 10 W´ 20 W7†1 “

„ Ù4 0N´ -.N ß" ÏbÔ S m [, 30 W[ 40 W •o7†1 +,‚ “„ Ù4 5 , ê S m4. 1 `ž

 b Ar •o ¤ N + H É Ê7†1 s cross-linking -C [1   ›ôX4. NH3Œ9Ž •o7

†1 +,‚ É Ê ßÔST 0N´ -.N ß%4

60 W7†1 5%1 •> [Ö.4. ^ -.N´ 0N '`

a%1 •> [Ö. [, /í Œ9Ž “1 -.N´ 0N

" ef7 ghfè S m­, ÏbÔ S m4.

4-2-2. Œ9Ž “ f¢7 8Á =>

Fig. 11 Ar Œ9Ž “ “X  “f¢ É Ê7 8 Á CO2 0N´ -.N7 ( =>, [Ö 4. γ1 “„

 `Û%& 2/ ß" Ù0, ê S m K, PCO21 10 W7† 4

 6 “ •o" w1%G1 “„ Ù4 5%Ä K, PN21 É Ê´ ¼L 2*%W 5%Ä4. 1 ¸ 9$% 6ü

7 8Á cross-linking  ©ª9 ›ôX4. `ž Ÿ7 cross-linking CASING(Cross-linking by Activated Species of Inert Gases)

 2 ê‚$ s Û ©ª  Ù&$4[10].

Fig. 8. ESCA spectra(C1s, O1s, N1s) of PSf membranes.

(a) Untreated, (b) NH3 plasma treated, (c) Ar plasma treated.

Fig. 9. Atomic force micrographs of PSf membranes.

Table 3. AFM measurements

Treatment gas RMS roughness (Å)

Particle height(Å)

Surface area (µ2)

Untreated 11.6 36.1 221.1

Ar plasma(10 W, 6 min) 71.2 319 221.6

NH3(50 W, 8 min) 42.3 202 221.6

Fig. 10. Effect of plasma power on the permeabilities for CO2 and ideal separation factor in Ar, NH3 plasma treated PSf membrane.

(6)

Fig. 121 ' b NH3Œ9Ž “ “X  0N UÕ ü4. f γ1 “„ `Û%& 2/ ß" Ù0, ê S m K, 1 Œ9Ž “7 r N—X ´ CO2Ø

acid-base reaction

PCO2´ PN21 “f¢ 3‡ST \_1l, 1 “f¢ 3

47 89 ž b NH3 s etching :7 s crack 7   rÂÔ S m4.

4-2-3. Dry & Wet þæÿb `Û

Fig. 13 141 Ar Œ9Ž´ NH3Œ9Ž “7 8Á dry´ wet +…7† ôô γ´ PCO2" [Ö 4. ¶5 c •o ˜c wet +…¤ © H -.N´ 0N" [ÖQî4.

1  ¶7 r 67 © dry +…´ `Û%& -.N´

CO2 0N1 +8, >+, ê S m4. Contact angle ¾ü7†

N 9+î: Œ9Ž “7  s S ß b

m4.  %u N—1 CO21 HCO3 … „K 7 N—

X  YÀ[ S´ ´ Î ;I<=7 r Qu '

, ¤ >4.

Lewis M  à1 CO2´ Ar Œ9Ž´ NH3 Œ9Ž7

%& ±²³ 7 ›X  YÀ S´ Qu ' CO2

Fig. 11. Effects of plasma treatment time and power input on perme- abilities for CO2, N2 and actual separation factor in Ar plasma treated PSf membranes.

Fig. 12. Effects of plasma treatment time and power input on perme- abilities for CO2, N2 and actual separation factor in NH3 plasma treated PSf membrane.

Fig. 13. Effects of plasma treatment time on permeabilities and actual separation factor in Ar plasma treated wet and dry PSf mem- branes at 10 W, 6 min.

(7)

 40 2 2002 4

4-2-4. 0 ‹N7 8Á =>

, ¹  07† «  =>, ®â1 EF 0 ‹

N9 Ô S m4. 1 chemical potential gradient" Ae  ?1

`4 7† 0 ¡  Qu 7õd !7 free

volume7 r ‹N óS [ÖQd1 3r-Ï ;I<= ¼

LÒ  ²@ ©ª4.

Fig. 151 Ar Œ9Ž´ NH3 Œ9Ž “X ±²³  0

-.N UÕ f ' ‹N7 8Á α´ PCO2 »" [Ö 4.

α´ PCO21 ‹N 30oC7† 60oC +ó7 89 ß%1 •>

, ÙK, ôô ‹NEF7† -.N´ 0N „/  '`a

%1 2+, Ùdg „/ 1 ´ Î '`a%1 2+, ¿ A%1 ˜, S m4. 1 CO2 ÏLS ‹N BC7 8 9 ß%G, ^ +(/  N27 `r CO2 ‹N ‘ ä41

, [Ö4.

89†  ED +7† G   QR Eq Q7†

‹N EF, »f>4 0N´ -.N7† ghÔ g ü

"  , S m,   ›ôX4.

5. 

· Fª7†1 Œ9Ž “X ±²³ , 3%& 

(CO2/N2=30/70 vol%) 0 UÕ, È%Ä K, Œ9Ž “ „Ç s »´ 0 -. 7 8Á Œ9Ž “ :" ¼½

%Ä4.

Œ9Ž “Ç FT-IR ATR  ü „/b ±²³ Ÿ

 4Á !" [ÖQd ¨­ † Œ9Ž “ : s 7g K, Œ9Ž “ Ç contact angle, ¾%& S

N— Œ9Ž “ „ `Û%& ßX ü" ¼½Ô S mî 4. Œ9Ž s “ Ç s Ã5, +… €, Ïb% q

ESCA Â7† Ar Œ9Ž “%Ä, © s 7 ¿, G1 O/

C `; ß%& S N— ÏbîG, NH3 Œ9Ž

“%Ä, © , ®™ N— Ïbî4.  ü1 contact angle

Ž “ Ç ±²³  s ¶/ ‡, êÙ q AFM   ü Ar, NH3Œ9Ž “ Ç s ˆÅ ˜c ß%Ä4 1 ØU, ÏbÔ S mî4.

Œ9Ž “ Ç  s »1 Œ9Ž “ -.X c à `ž b Ar´ žb NH3 Œ9Ž “7 s 7† cross-linking, Etching :´ ¼H m K, ü ]

•I/b ¼L7 %&   0N´ -.N7 ", ¢/b =

>, '4G Ô S m4.

CO2 0N´ α7 ( ý/EF Ar Œ9Ž •o71 10 W- 6 min´ 30 W-4 minK NH3 Œ9Ž •o71 30 W-6 min´ 50 W- 8 min ü"  î4.  EF7† 0N´ α1 Ar Œ9Ž •o 10 W-6 min7† ôô 8.6744ì1010cm3(STP)cm/cm2÷s÷cmHg´ 14.401

K, NH3 Œ9Ž •o 50 W-8 min7† 7.5922ì10−10cm3(STP)cm/

cm2÷s÷cmHg´ 17.644"  î4.

YG ±²³  ¯ &u´ 0 ‹N ß 0N´

-.N7 ®â1 =>, êÙ q UÕ7†  ¯ ¸d 7 •o, Œ9Ž “7 r s 7 X ¿ ¡3] CO2´ Qu ' ß%G, N27 `%& CO2 3r -. ß%&

-.N´ 0N ef7 >+1 :" ¼½%Ä4.

 

 Fª 2000J Ë(OÛ ÛQ@A` dà  @AK K

7 Ø_Æ<4.

Fig. 14. Effects of plasma treatment time on permeabilities and actual separation factor in NH3 plasma treated wet and dry PSf mem- branes at 50 W, 8 min.

Fig. 15. Effect of temperature on the CO2 permeability and ideal sepa- ration factor in Ar, NH3 plasma treated membranes.

(8)



J : diffusion flux through membrane [cm3(STP)/cm2· s]

l : thickness of membrane [µm]

P : mean permeability [cm3(STP)cm/cm2· s · cmHg]

P1 : low pressure(downstream) [atm]

P2 : high pressure(upstream) [atm]

x : mole fraction at upstream feed side

y : mole fraction at downstream(permeation) side

γ : actual separation factor for CO2 relative to N2 defined as PCO2/PN2 α : ideal separation factor for CO2 relative to N2 defined as PCO2/PN2 θ : stage cut defined by the ratio of the volumetric flow rate of permeation to the sum of the volumetric flow rate of permeation and rejection

Barrer=10−10 [cm3(STP)cm/cm2· s · cmHg]



1. Freeman, B. D.: Macromolecules, 32, 375(1999)

2. The Membrane Society of Korea: “Membrane Separation,” Free Acad-

emy, Seoul, 309(1996).

3. Urrutia, M. S., Schreiber, H. P. and Wertheimer, M. R.: J. Appl.

Polym. Sci., 42, 305(1988).

4. Kramer, P. W., Yeh, Y. S. and Yasuda, H.: J. of Membrane science, 46, 1(1989).

5. Hopkins, J. and Badyal, J. P. S.: Langmuir, 12, 3666(1996).

6. Steen, M. L., Hymas, L. H. E. D., Capps, N. E., Castner, D. G. and Fisher, E. R.: J. Membrane science, 188, 97(2001).

7. Yasuda, H.: J. Macromol. Sci-Chem., A10(3), 383(1976).

8. Hopkins, J. and Badyal, J. P. S.: J. American Chemical Society, 12, 3666(1996).

9. Cormia, R. and Kolluri, O.: R&D Magazine, July(1990).

10. Chang, F. Y.: J. Appl. Polym. Sci., 17, 2915(1973).

11. Okamoto, K. I., Yasugi, N., Kawabata, T., Tanaka, K. and Kita, H.:

Chemistry Letters, 328(1996).

참조

관련 문서

Results show that besides two physisorption configurations, CO 2 preferably tends to perform [2+2] addition on B-N bonds of the cluster which are shared between

Many perpendicular magnetic anisotropy(PMA) systems have researched, for examples, [Co/Pt] n multilayers, [Co/Pd] n multilayers, L1 0 compounds(CoPt, FePt). In order to

탄소중립 실현을 위한 CO 2 로부터 연료 및 화학소재 생산 기술. Conversion of CO 2 to fuels and chemicals for

Due to the toxicity and flammability of CO and phosgene, the more environmentally benign and sustainable carbon sources CO 2 and derivatives have been actively employed

Co on nccllu ussiio on n:: These results suggest that the blood pressure was decreased significantly after GGSGW Pharmacopuncture at the acupoint GV 4 in SHR and that

New CO 2 -soluble 8-hydroxyquinoline (8-HQ) chelating agents were synthesized and tested for solubility and metal ion extraction ability in supercritical CO 2 (Sc-CO

The terms used in the study are explained

Treatment of HFD-fed mice with aloe formula for eight weeks significantly reduced plasma insulin levels.. Using the plasma glucose and insulin levels obtained, homeo-