저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게
l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:
l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.
저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.
Disclaimer
저작자표시. 귀하는 원저작자를 표시하여야 합니다.
비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.
변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.
/ B
N < Æ~ Ã Ì < Æ 0 A 7 Hë H
þ
j& h o l Z O ` ¦ : xô Ç @ /× æ §: x W 1à Ô0 >ß ¼ ç
H+ þ A Ã ÐÒ o
Equilibrium of Transit Assignment via Optimization
2016 ¸ 2 Z 4
"
fÖ ¦@ / < Æ § @ / < Æ" é ¶ í
ß
\ O · ¸ / B N < ÆÂ Ò
^
â
ï ´
"
fÖ¦@/<Ƨ @/<Æ"é¶ í
ß
\O·¸/BN<ÆÂÒ íß\O/BN<Æ /BN
^
â
@
/×æ§:x :x'C&ñ ëH]j(transit assignment problem)¢¸H âÐ×þ ëH ]
j(route choice problem)H 5pxÌos ئµ1Ït\"f 3lq&htt #Q" âÐ\¦ :x
# s1lxÙþ¡Ht ÆÒ&ñ,s1lx½+Ét\¦ \V8£¤H כ s.:r 7HëHÉr t
^ o
=?/ :x'`¦ ×ædܼР5pxÌo ñ_ ª$í(taste variation)`¦ìøÍ%òH :x' C
&ñ¸+þA >hµ1Ï\ í&h`¦ ´úÆÒ%3.s\¦ 0AK ñ_ ª$í`¦ ¦9ôÇ l>r
½¨õ\¦&ño%i.Õªo¦'a8£¤÷&H :x'|¾Ó`¦ çH+þA:x'|¾Ós¦ Ц :
x'C&ñ õ çH+þA:x'|¾Ós ÷&¸2¤ H ~½ÓZO:r`¦ ]jr%i. 'Í P:
Ð §:x×¼ X<s'(Smart card Data)Ð ÂÒ' t^o= ?/ 5pxÌos z´]j s6 x ô
Ç âÐ x9 \P\¦ ÆÒ&hH ·ú¦o1pu`¦ >hµ1Ï%i. "fÖ¦t^o=`¦ @/©Ü¼
Ð {9ÅÒ{9çß5pxÌo âÐ\¦ÆÒ&hôÇ õ 90%5pxÌo\ @/K"fâÐÆÒ&h\$í /
B
N%i.
6£§Ü¼Ð5pxÌo ñ_ª$í`¦s1lxrçß,¨85pxx9D¥¸úõ °ú Érq6 xכ¹è _
ñ p'\¦ SXҦúР¦9%i`¦ M:, %iþj&ho(inverse optimiza- tion) lZO`¦ 6 x# ñ p'_ ½+ËSXÒ¦x9¸ <Êú\¦ ÆÒ&ñH s
>
^¦2¤þj&ho(convex quadratic program)¸+þA`¦ >hµ1Ï%i.
t}ܼРÆÒ&ñ)a ½+ËSXÒ¦x9¸ <Êú\¦ 6 x# SXÒ¦&h çH+þA`¦ &ñ_
¦ ¦&ñ&h&ño\¦ 6 x# Õª >rF$í`¦ 7£x"î%i.¢¸ôÇ,çH+þA`¦ >íß
#
Õª õ\¦ z´]j @/½©¸ t^o= W1àÔ0>ß¼\"f 7£x%i. 7£x õ :r
½¨_ :x'C&ñ ~½ÓZOs 5pxÌo ñ_ ª$í`¦ ¦9H @/³ð&h ¸+þA
D
¥½+ËÐf± ¸+þAÐ \V8£¤§4`¦ 10% >h rvHכ `¦ SX%i. Ì
Á³À#a : @/×æ§:x :x'C&ñ, ñª$í, %iþj&ho, t^o= 5pxÌoâÐÆÒ&h,
§:x×¼.
Á þ
£U> : 2011-31005
â
´
±
%K ï´ i
1 "Òeµ 1
1.1 ½¨_ Câ x9 3lq&h . . . 1
1.2 ½¨#30A x97HëH ½¨$í . . . 3
2 e×iµ¥o>Ä© 5 2.1 &ñ&h 6 xçH+þA . . . 5
2.1.1 rÛ¼%7þj&h¸+þA . . . 5
2.1.2 0>×¼\vçH+þA . . . 6
2.1.3 Beckmann¸+þA . . . 6
2.1.4 çH+þAõ rÛ¼%7 þj&hK . . . 7
2.1.5 1lxÂÒ1pxd . . . 10
2.1.6 q+þA ©ÐëH]j . . . 11
2.1.7 ¦&ñ&h &ño . . . 12
2.1.8 Frank-Wolfe·ú¦o1pu . . . 14
2.2 SXÒ¦&h 6 xçH+þA . . . 15
2.2.1 SXÒ¦&h :x'C&ñ¸+þA . . . 15
2.2.2 ½ÓÐf± ¸+þA . . . 17
2.2.3 ½ÓáÔÐc± ¸+þA . . . 20
2.2.4 SXÒ¦&h 6 x çH+þA . . . 20
2.3 ñ_ ª$í`¦ ìøÍ%òôÇ ¸+þA . . . 24
2.3.1 &ñ&h¸+þA . . . 24
2.3.2 SXÒ¦&h¸+þA . . . 25
2.3.3 l>r½¨_ ôÇ> . . . 26
3 mã ¢ [Ëc+ § ßj&P7 29
3.1 5pxÌo âÐ ÆÒ&h . . . 29
3.1.1 5pxÌo âÐ ÆÒ&h ~½ÓZO:r . . . 29
3.1.2 5pxÌo âÐ ÆÒ&h \V]j . . . 34
3.1.3 5pxÌo âÐ ÆÒ&h õ . . . 36
3.2 âÐ×þ_ {9'a$í . . . 38
3.3 D¥¸ús âÐ×þ\ puH %ò¾Ó . . . 39
3.4 5pxÌo ñ_ ª$í 'a¹1Ï . . . 42
4 P-§ ßj:Ça ¿ÌfC 46 4.1 rçßSX©W1àÔ0>ß¼ x9q6 xכ¹è . . . 46
4.2 âÐ|9½+Ë Òqt$í . . . 48
4.3 q6 x<Êú . . . 49
4.4 P-çH+þA_ >rF$í . . . 51
4.5 P-:x'C&ñ·ú¦o1pu . . . 54
5 ¤n>¡õ i'a+ ÚrTҼȷ¿ÁþÊÁ ÍÙÇa 55 5.1 %iþj&ho . . . 55
5.2 %iþj&ho\¦ 6 xôÇ ½+ËSXÒ¦x9¸<Êú ÆÒ&ñ . . . 56
6 @&P7 61 6.1 z´+«>X<s' x9z´+«>>S\ . . . 61
6.2 D¥½+ËÐf± ¸+þA . . . 62
6.3 EM·ú¦o1pu`¦ 6 xôÇ SXÒ¦ìríÆÒ&ñ . . . 65
6.4 %iþj&ho\¦ 6 xôÇ SXÒ¦ìríÆÒ&ñ . . . 68
6.5 z´+«>õ . . . 70
6.5.1 ¸2£§\ Ér ìr$3 . . . 72
6.5.2 EM·ú¦o1puõ_ q§ìr$3 . . . 73
6.5.3 D¥½+ËÐf± ¸+þAõ_ q§ìr$3 . . . 74
7 ³À»ÈÐ ÍÙÑñ ¥o>Ä© 78 7.1 כ¹ . . . 78 7.2 ÆÒÊ꽨 ~½Ó¾Ó . . . 80
½ Ç
Ô § %K «¹ 82
Æ Z
%K ï´ 88
¸
Ø â ´
2.1 ñ ª$í`¦¦9ôÇ l>r½¨ . . . 28
3.1 2011¸ 11Z4 21{9 X<s' כ¹ . . . 36
3.2 ¨85px¸½+Ë\ Ér âÐÆÒ&h $í/BNÖ¦ . . . 37
3.3 o\ Ér âÐÆÒ&h $í/BNÖ¦ . . . 38
3.4 ÅÒ×æ¸âÐ×þ qÖ¦ . . . 41
3.5 rçß@/\ Ér¸âÐ ×þqÖ¦ o . . . 41
3.6 Fg"î%i-z´%içß ¿º 5pxÌo_ ×þâÐü<@/îßâÐ 5Åq$í . . . . 43
5.1 %iþj&ho\¦ :xôÇ ìríÆÒ&ñ \V]j . . . 59
6.1 SXÒ¦ìrí ÆÒ&ñõ ¸4Sq 7£x\ 6 x)a X<s' . . . 61
6.2 Ðf± ¸+þAõ D¥½+ËÐf± ¸+þA_ p' ÆÒ&ñõ. . . 64
6.3 EM·ú¦o1puܼРÆÒ&ñ)a ½+ËSXÒ¦ìrí . . . 66
6.4 EM·ú¦o1puܼРÆÒ&ñ)a :x>°úכ . . . 67
6.5 L2-¸2£§Ü¼Ð ÆÒ&ñ)a½+ËSXÒ¦ìrí . . . 71
6.6 %iþj&hoÐ ÆÒ&ñ)a SXÒ¦ìrí_:x>°úכ . . . 71
6.7 ¸2£§\ Ér $í0pxìr$3 . . . 73
6.8 EM·ú¦o1puõ_$í0pxìr$3 . . . 75
6.9 D¥½+ËÐf± ¸+þA\ Érq§ìr$3 . . . 76
6.10 P-:x'C&ñõ_ q§ìr$3 . . . 76
6.11 P-:x'C&ñõ Ðf± lìøÍ 6 xçH+þA_ >íßrçß ìr$3 . . . 77
7.1 :r ½¨ õ_ Z>$íx9 __ . . . 80
Ü
«Í Ï â ´
1.1 7HëH½¨$í âì2£§¸ . . . 4
2.1 Pigou_ \V . . . 7
2.2 Braess Paradox_ \V . . . 8
2.3 Boston Big Dig . . . 9
2.4 New Braess Paradox . . . 10
2.5 SXÒ¦&h 6 xçH+þA :¿º >h_ âÐ . . . 20
3.1 4x ;%i-sú%i¨85pxÃи5pxÌo . . . 31
3.2 aË>%i-"fÖ¦%i0px âÐ . . . 31
3.3 aË>%i-y©z%i5pxÌo[þt_ {9©ryõ @©ry1 "é¶ ÕªAáÔ. 32 3.4 aË>%i-y©z%i5pxÌo[þt_ {9©ryõ @©ry2 "é¶ ÕªAáÔ. 33 3.5 aË>%i-|ÃÌr© ¸âÐ . . . 34
3.6 aË>-|ÃÌr©5pxÌo âÐÆÒ&h\V]j . . . 35
3.7 ئµ1Ï-¸ÃÌ%i©Z> ¸âÐ[þt_¨85px¸½+Ë qÖ¦ . . . 37
3.8 2011.11.20∼26 âÐÆÒ&h $í/BNÖ¦ . . . 39
3.9 âÐ×þ_ {9'a$í . . . 40
3.10 Fg"îo-z´ ¸âÐ . . . 43
3.11 5pxÌoaü< b_ Áº Z>/BG s. . . 44
3.12 ¨îçH»1Ñ5px|¾Ó- ?/s1lxrçß\ Ér âÐ×þ qÖ¦ . . . 45
3.13 ¨85pxrú- ?/s1lxrçß\ ÉrâÐ×þ qÖ¦ . . . 45
4.1 rçßSX©W1àÔ0>ß¼ . . . 47
4.2 Fg"îo-z´çß 4>h_âÐ . . . 48
4.3 [j t ¸âÐ\ @/ôÇ 5pxÌo ×þ . . . 50
4.4 y âÐ(P ¢¸H Q) þj_ ×þ Γ_ %ò%i . . . 52
5.1 Fg"î%i-z´%i©\"f âÐ Iõ âÐ II þj_ ×þ Γ_ % ò %i . . . 57
5.2 y âÐ þj_ ×þ Γ_ %ò%iõ 'a¹1Ï)a 5pxÌo ×þ qÖ¦ 59 6.1 z´+«>>S\¸ . . . 62
6.2 EM·ú¦o1pu ½+ËSXÒ¦x9¸<Êú . . . 67
6.3 EM·ú¦o1pu ÅÒ SXÒ¦x9¸<Êú :α . . . 68
6.4 EM·ú¦o1pu ÅÒ SXÒ¦x9¸<Êú :β . . . 69
6.5 EM·ú¦o1pu ÅÒ SXÒ¦x9¸<Êú : 1-α-β . . . 70
6.6 L2-¸2£§ ½+ËSXÒ¦x9¸<Êú . . . 72
6.7 L2-¸2£§ ÅÒ SXÒ¦x9¸<Êú :α . . . 73
6.8 L2-¸2£§ ÅÒ SXÒ¦x9¸<Êú :β . . . 74
6.9 L2-¸2£§ ÅÒ SXÒ¦x9¸<Êú : 1-α-β . . . 75
6.10 X<s' 1_ ·ú¦o1pu ú§4 õ . . . 77
1. " Ò e µ
1.1 ¥o>Ä©+ :¿R â´\
@
/×æ§:x\"f ×æכ¹ôÇ ëH]j ×æ H, 5pxÌos ئµ1Ït\"f 3lq&htt #Q"
â
Ð\¦ :x# s1lxÙþ¡Ht ÆÒ&ñ, s1lx½+Ét\¦ \V8£¤H כ s. s\¦
§:x/BN<Æ\"fH @/×æ§:x :x'C&ñ ëH]j(transit assignment problem) ¢¸H
â
Ð×þ ëH]j(route choice problem)s¦ôÇ [5].
:
x'C&ñëH]jH 5pxÌo y_q6 x`¦þjèo9H 5pxÌo[þt_'I, 7
£
¤,>hZ>&hĺhA(selfish routing)ܼÐ# ĺhA>eܼÐ^¦Ãºe.Õª o
¦ ĺhA >e_ çH+þAÉr §:x/BN<Æ\"f #Q" 5pxÌo¸ 1lq&hܼР&³F
× þ
(âÐ)\¦ ÜãJ 1lxl \OH âì2£§ 0>×¼\v çH+þAõ {9uôÇ. :x'C&ñ ëH ]
j þj&ho_'a&h\"f<ɪpÐîrsÄ»HþjH>es:r\"fH çH+þA_>rF
$ í
÷rëß mz´]jçH+þAK\¦ ½¨H כ s &h ×æכ¹KtH ©S!X< ĺ h
A >e_çH+þA`¦ þj&ho ¸+þA`¦ :xK"f ½¨½+É Ãº eH &hs. :
x'C&ñ ëH]j\¦ Û¦l 0A# tèß 30#¸çß #Q ¸+þAs >hµ1Ï÷&¦ µ1Ï
÷&#QM®o. sQôÇ ¸+þA`¦ ß¼> ¿º tÐ ¾º ¸H 5pxÌos âÐ_ q 6
x`¦ &ñSXy tH &ñ\"f_ &ñ&h :x'C&ñ ¸+þAõ ´ò6 xþj@/
o(utility maximization)s:r_síß×þ¸+þA`¦ lìøÍܼРHSXÒ¦&h :x' C
&ñ ¸+þAs. Õªo¦ ¿º t :x'C&ñ ¸+þA ¸¿º 5pxÌos Ö¼zH âÐ_
q
6 x <ÊÉr´ò6 x`¦ :x'rçßõ °ú Ér'a8£¤0pxôÇq6 xכ¹è\¦6 xôÇq6 x<Êú
Ð ³ð&³ôÇ."f,&³z´&h¸+þA½¨»¡¤`¦0AK"fH 5pxÌo[þts Ö¼zH q6 x
<
Êú &³z´&hܼР¸+þAo÷&#Q ôÇ. q
6 x<Êú\¦ &³z´&hܼР¸+þAoH ~½ÓZO ×æ H :x'[þt_ ñ
ª
$í(taste variations)`¦ ìøÍ%òHכ s.7£¤,1lx{9ôÇ ¸|\"f¸ Ér âÐ
\
¦×þH 5pxÌo[þts>rFHX< q6 x<Êú_q6 xכ¹è p'\¦^5px Ì
o\ @/K_ °úכܼР6 xH âĺ\HsQôÇ &³z´`¦[O"î½+Éú\O.
Õ
ªo¦ [O"î ÷rm \V8£¤s ×æכ¹ôÇ 6£x6 x\"fH \V8£¤§4 ¾Ó©`¦ 0A#
ñ ª$íìøÍ%ò`¦ ìøÍ%òH âĺ´ú§. {
9
ìøÍ&hܼРñ ª$í`¦ ìøÍ%òH ~½ÓZOÉr D¥½+ËÐf± ¸+þA(mixed logit model)õ °ú s q6 xכ¹è_p'\¦SXҦúРÐHכ s.Õªo¦SXÒ¦
ú ØÔH SXÒ¦ìrí\¦ +«>&hܼР&ñ¦ SXÒ¦ìrí_ p'\¦ ÆÒ
&
ñ
#M®o.tëß,þjH+«>&hܼРìrí\¦ &ñH ¸Ãº&h ~½ÓZOÉr &ñ ô
Ç SXÒ¦ìrí\ _ôÇ ¼#¾Ó(bias)\¦ 4R`¦Ãº eH ½¨õ µ1ϳð÷&%3 [31]. "f, +«>&hܼРìrí\¦ &ñt ·ú§¦ Êê&hܼРìrí\¦ &ñ
H q¸Ãº&h ìrí ÆÒ&ñ ~½ÓZO\ @/ôÇ ½¨'÷&¦e.
:
r ½¨\"fH %iþj&ho lZO`¦ 6 x# q¸Ãº&hܼР5pxÌo ñ p
'_ ìrí\¦ ÆÒ&ñ¦ ôÇ. %iþj&hoêøÍ {9ìøÍ&h þj&ho ëH]j ¸+þA _
p' ÅÒ#Q ©S!\"f þj&hK\¦½¨H ìøÍ,%iþj&hoëH]jH 'a 8
£
¤)a þj&hK\¦ :xK ¸+þA_ p'\¦ ÆÒ&ñH כ `¦ 3lq&hܼР9 &ñSX ô
Ǹ+þA_p'\¦ 8£¤&ñt3lw½+ÉM: 6 xôÇ.#Q t כ¹sâÐ
× þ
\ %ò¾Ó`¦ ÅÒH âĺ &ñSX>5pxÌo_ ñ ª$í`¦ 8£¤&ñH כ Ér &³z´
&
h
ܼРԦ0px. tëß, §:x W1àÔ0>ß¼\"fH ·ú¡"f [O"îôÇ@/Ð 5pxÌos
s Ö¼zH þjèq6 xܼРs1lxôÇH&ñ`¦ 6 x# 'a8£¤÷&H :x'|¾Ó
`
¦ çH+þA:x'|¾Ós¦ Ц:x'C&ñõçH+þA:x'|¾Ós ÷&¸2¤H%iþj
&
h
o ëH]j\¦ &ñ_½+Éú e. þ
jH GPS x9 §:x×¼ X<s'ü< °ú s 'a8£¤÷&H :x'|¾Ó\ @/ôÇ &ñÐ
´ ú
§t¦ &ñSXK f\ §:x W1àÔ0>ß¼\"f %iþj&ho lZO`¦ 6 x½+É Ãº e
H 0px$ís7£x¦e.tëß,@/×æ§:x :£¤y t^o=\ @/K"fHþj
Ht &³F 5pxÌo[þt_ s6 x¦ eH z´I\¦ &ñSXy ·ú ú \O%3.7£¤,#QÖ¼
\
P\¦ ¦ ?/§4ܼ 9 ¨85px%is #Qt ·ú ú \O. [16, 34]. "f, :r
½
¨_ 'Í P: 3lq&hÉr§:x×¼ X<s'Ð ÂÒ' z´]j t^o= âÐ×þX<s'
\
¦ SXÐH ~½ÓZO:r`¦ >hµ1ÏH כ s.
¿
º P: 3lq&hÉr z´]j t^o= âÐ×þ X<s'ÐÂÒ' 5pxÌo_ s1lx'I\¦ ì
r$3# âÐ×þ\ %ò¾Ó`¦ÅÒHq6 xכ¹è\¦'a¹1Ϧ&h]XôÇ q6 x<Êú_
+ þ
AI\¦ &ñH כ s. [
j P:3lq&hÉr%iþj&holZO`¦lìøÍܼРH ñ p'_½+ËSX Ò
¦x9¸<Êú\¦q¸Ãº&hܼРÆÒ&ñH~½ÓZO:r`¦>hµ1ÏHכ s.tFKt
% i
þj&hoÐ >hZ>p'_ °úכ`¦ÆÒ&ñH½¨He%3tëßp'_ìr
í\¦ ÆÒ&ñH ½¨H \O%3.
t}ܼРÆÒ&ñ)a ½+ËSXÒ¦x9¸ <Êú\¦ 6 x# SXÒ¦&h çH+þA`¦ &ñ_
¦ Õª >rF$í`¦ 7£x"îôÇ. ¢¸ôÇ,çH+þA`¦ >íß# Õª õ\¦ z´]j @/½©¸ t
^o=W1àÔ0>ß¼\"f7£xôÇ.@/ÂÒìr_½¨\"f5pxÌo_ª$í`¦ìøÍ%òôÇ
¸+þA_7£xÉr :x>&h7£x\²DGôÇ÷&#QM®oܼ 9 ¸+þA_7£x`¦"fÖ¦t^o=õ
° ú
s /BNçß&h,rçß&h #30AHâĺ\H &h6 x)a YV\¦ ¹1ÔÐl #Q9îrz´
&
ñ s.
:
r 7HëH_ 3lq&h`¦&ño 6£§õ °ú .
• Û¼àÔ ×¼ X<s'Ð ÂÒ' z´]j t^o= âÐ×þX<s' SXÐ
• z´]j t^o= âÐ×þ X<s'Ð ÂÒ' t^o= 5pxÌos1lx 'Iìr$3
• %iþj&hoÐ ñ p'_ ìrí ÆÒ&ñ
• çH+þA`¦ >íߦz´]j @/½©¸ W1àÔ0>ß¼\"f 7£x
1.2 ¥o>Ä© 7D Ðaµ%K Ä©Å]
7
HëHÉr 8úx7>h_ ©Ü¼Ð ½¨$í)a. 2©\"fH þj&ho ¸+þA`¦ 6 xôÇ &ñ&h
6 xçH+þAõq6 x<Êú\SXÒ¦&ht¸ \¦ìøÍ%òôÇSXÒ¦&h6 xçH+þA`¦
¶ ú
(R:r.Õªo¦ 5pxÌo ñ_ ª$í`¦ ¦9ôÇ l>r½¨[þt`¦ è>h¦ Õª ô
Ç>\¦ lÕütôÇ.
3©\"fH §:x ×¼ X<s'\¦ s6 x# t^o= ?/ 5pxÌos z´]j s6 xôÇ
â
Ðx9 \P\¦ÆÒ&hH~½ÓZO:r`¦[O"îôÇ.'a¹1Ï)a5pxÌo_&³r«Ñ(revealed preference)\"f âÐ×þ\ %ò¾Ó`¦ ÅÒH q6 xכ¹è\¦ 'a¹1Ϧ &h]XôÇ q6 x
<
Êú_ +þAI\¦ ]jrôÇ.
4©\"fH 5pxÌo_ ªôÇ ñ\¦ìøÍ%òl 0A# q6 xכ¹è[þt_p '
\¦ SXҦúÐ:r.Õªo¦ s\ @/ôÇ ½+ËSXÒ¦x9¸<Êú ÅÒ#Q&`¦M:, D
hÐîr P-:x'C&ñ ~½ÓZO:r`¦ ]jrôÇ.¢¸ôÇ, P-:x'C&ñ\"f_ SXÒ¦&h çH +
þ
A`¦ &ñ_¦ Õª >rF$í`¦ 7£x"îôÇ.
5©\"fH %iþj&ho\ @/ôÇ [O"îõ <Êa 4©\"f ]jrôÇ P-:x'C&ñ`¦
l0AôÇ ½+ËSXÒ¦x9¸<Êú\¦ %iþj&ho lZO`¦ 6 x# ÆÒ&ñH ~½ÓZO:r
`
¦ [O"îôÇ.
6©\"fH 4© x9 5©\"f ]jrôÇ ~½ÓZO:r`¦ z´]j "fÖ¦ t^o= W1àÔ0>ß¼
\
z´+«>ìr$3ôÇ.¸+þA_ [O"î§4`¦ z´]j âÐ×þ õü< 7£x9 D¥½+ËÐ f
±¸+þAõ °ú s5pxÌo ñ\¦ìøÍ%òHl>r¸+þAõ_$í0px`¦ q§ôÇ.t }
ܼР7©\"fH ½¨õ\¦ כ¹¦ ÆÒÊ꽨\¦ è>hôÇ.
'
aº l>r½¨_ ¦¹1Ï(2©)
z
´]j t^o= âÐ×þ ÃÐÒo x9 :x'ìr$3 (3©)
P-:x'C&ñ ¸+þA >hµ1Ï(4©)
% i
þj&ho\¦ :xôÇ 5pxÌo ñ p' ìríÆÒ&ñ (5©)
t
^o= W1àÔ0>ß¼\"f 7£xz´+«> (6©)
כ
¹ x9 ÆÒÊ꽨 (7©)
?
?
?
?
?
Õ
ªaË> 1.1: 7HëH ½¨$í âì2£§¸
2. e × i µ¥ o >Ä ©
2.1 ÚrÇa\ £ !CÌfC
2.1©\"fH ¸H 5pxÌos âÐ_ q6 x`¦ &ñSXy tH &ñ\"f þj
&
h
o ¸+þA`¦ 6 xôÇ &ñ&h 6 xçH+þA\ @/K"f è>hôÇ. 2.1.1 kâ«`gi¦\¿ÌfC
c∗e\¦ &³FaAß¼e_ ôÇ>q6 x,7£¤c∗e(fe)≡(fe·ce(fe))0ܼР³ðl.Õªo¦ c∗P(f) :=P
e∈Pc∗e(fe).
Å ]
2.1.1 5Åq ĺhA>e(G, r, c)\"f, ¸H ñe\"f x·ce(x)^¦2¤<Ê Ã
º¦ . ÕªQ, f∗ (G, r, c)_ rÛ¼%7 þj&hK |¨c 9כ¹Øæìr¸|Ér
¸H i= 1, . . ., k\ @/K,
∀P, Q∈ Pi :fP >0⇒c∗P(f∗)6c∗Q(f∗). (2.1)
¤
ÃZ 6£§_ þj&hoëH]j\¦Òqty: min{X
P
cP(f)fP : X
P∈Pi
fP =di, fP >0} (2.2)
Õª|½ÓtîßÉr 6£§õ °ú . L(f, λ, ρ, µ) = P
P∈PcP(f)fP +P
iλi¡P
P∈PifP −di¢
−P
P∈PµPfP
(2.3)
^
¦2¤$í\_Kf þjèq6 xâì2£§{99כ¹Øæìr¸|Ér6£§`¦ëß7á¤Hλ,µ>
0 >rFH כ s.
c∗P(f) =λi+µP, P ∈ Pi, i= 1, . . . , k,
µP ·fP = 0, P ∈ Pi. (2.4)
"f f∗ rÛ¼%7 þj&hK{9 M:, fP∗ >0s µP = 0sÙ¼Ð,¸H i\ @/K
¸| (2.1)s $íwnôÇ.
% i
ܼÐ(2.1)s$íwnHâĺ,λi←minP∈Pic∗P(f∗),µP ←c∗P(f∗)−λiÐ Z
~ܼ (2.39) $íwnôÇ.7£¤,f∗ rÛ¼%7 þj&hK)a.
¸Çah 2.1.2 f∗(G, d, c)_þjèq6 xâì2£§{99כ¹Øæìr¸|Ér(G, d, c∗)_
ç
H+þAâì2£§s ÷&H כ s. 2.1.2 3AÞ«¹!CÌfC Ç
a
+ 2.1.3 (3AÞ«¹ !CÌfC[56],Wardrop equilibrium) f\¦ 5Åq ĺhA>
e
(G, d, c)_0pxK¦ .ëß{9f 6£§õ °ú Ér¸|`¦ëß7ᤠ0>×¼
\
v çH+þAs¦ôÇ:¸H i= 1,. . .,k\ @/K,e__P,Q∈ Pi\ @/K,ëß
fP >0s6£§ 'a>$íwnôÇ.
cP(f)6cQ(f). (2.5)
0
>×¼\vçH+þAÉr?//'çH+þA_H&h 5Åq¸+þAsHכ `¦Ð{9úe:éß 0
Aâì2£§`¦ °úH >hZ>5pxÌo[þts (G, d, c)Ð {9§4s ÅÒ#QtH W1àÔ0>ß¼\"f Ä
ºhA>e`¦ ½+É M: µ1ÏÒqtH ?//'çH+þAÉr 5pxÌo_ ú´ú§t 0>×¼\v çH+þA s
)a.
2.1.3 Beckmann¿ÌfC
2£§&ño 2.1.2\ _# ñq6 xs h(x) =xce(x)ܼРÅÒ#QtH5ÅqĺhA
>
e (G, d, c)_ þjèq6 xâì2£§õ éß0Aq6 xs h0(x)Ð ÅÒ#QtH 5Åq ĺhA
>
e_ çH+þAâì2£§s 1lx{9<Ê`¦ _pôÇ.Õªo¦ s 7£x"îÉr ñq6 x h(x) ^¦ 2
¤<Êú âĺ,+þAIü< Áº'a.
"f, (G, d, c)_ çH+þAâì2£§Ér h(fe) = Rfe
0 ce(x)dx\¦ ñq6 xܼР°úH (Õªo¦ Qt {9§4Ér °ú Ér) 5ÅqĺhA ¸+þA_ rÛ¼%7 þj&hKe`¦ ·ú ú e
.
¸Çah 2.1.4 f∗(G, r, c)_ çH+þAâì2£§{99כ¹Øæìr¸|Érf∗ ñq6 xs
6£§õ °ú Ér 5Åq ĺhA >e_ þjèq6 xâì2£§s ÷&H כ s. he(fe) =
Z fe
0
ce(x)dx. (2.6)
Beckmann et al. [10]
min{Φ(f) =X
e∈E
Z fe
0
ce(x)dx: X
P∈Pi
fP =di, fP >0}, (2.7)
#
l"f,
Φ(f) :=X
e∈E
Z fe
0
ce(x)dx. (2.8)
2.1.4 !CÌfCø kâ«`g i¦\B U
d 2.1.5 Pigou [48]+ Ud s-t :x'úכ¹1 Aü< °ú Ér ĺhA>e`¦ Ò
q
tyKÐ.âì2£§ªs x{9 M:, y ñ_ éß0Aq6 xÉr c1(x) = 1õ c2(x) = xÐ Å
Ò#Q.
Õ
ªaË> 2.1: Pigou_ \V
¸Hâì2£§\ @/#,c2(x)6c1(x)sÙ¼Ð,¸H 5pxÌoÉre2\¦ :xK >hZ>&h
ĺhA`¦ z´&³ôÇ.7£¤,çH+þAâì2£§Ér f∗= (0,1)s )a.
ô
Ǽ#, ñe1_âì2£§`¦f1s¦ ,q6 x_ ½+ËÉrf1·1+(1−f1)·(1−f1) = f12−f1+ 1, "f rÛ¼%7 þj&hKH fOP T = (1/2,1/2) )a.sM:, q6 x
É
r 3/4s )a. Ç
a
+ 2.1.6 Price of anarchy= çH+þAâì2£§ ×æ\"f þj@/q6 x r
Û¼%7 þj&hâì2£§_ q6 x = (x½¨_\V, 4/3).
Price of anarchyH q6 x<Êú_ :£¤$í\ _>rôÇ. \V\¦ [þt#Q, q6 x<Êú ce q6£§>ú\¦ ú p s ½Ód âĺ, Price of anarchyH p+ 1ss[18].
U
d 2.1.7 Braess Paradox [15]+ Ud
Õ
ªaË>2.2: Braess Paradox_ \V
íl W1àÔ0>ß¼_ 0>×¼\v çH+þAÉrâÐP,Q\ yy1/2`¦Ð?/ 98úx µ1ÏÒqt q
6 xÉr3/2 )a.#l\v→w\ éß0Aq6 xs0aAß¼\¦ÆÒK Ð.Dh
Ðîr âÐ RÉr½Ó©P,QÐéß0Aq6 xs°ú l M:ëH\,çH+þA\"f ¸
H âì2£§`¦ °úH.ÕªQ éß0A q6 xÉr 2 ÷&#Q, 8úx µ1ÏÒqt q6 xs íl W1àÔ 0
>ß¼ Ð8 &. U
d 2.1.8 Braess Paradox+ V Ud- Boston’s Big Dig
• http://blogs.cornell.edu/info2040/2011/09/25/real-life-example-of-braesss- paradox-bostons-big-dig/
Õ
ªaË> 2.3: Boston Big Dig
- A : South Boston→ Broadway subway(ca=x) - B : Broadway subway → Government center(cb = 1) - C : South Boston → Enter CBD(cc= 1)
- D : Enter CBD →Government center(cd=x) - E : Express highway ”Big Dig”(ce= 0)
U
d 2.1.9 Braess Paradox+ V Ud [58]
U
d 2.1.10 Braess Paradox+ ÒR Ud- ÍÙ ÿbæ« kâ«`g i¦\BÐM 5
¤ n
>komï5Ñ !CÌfC j£ ÖR ¤ koÐM UdV.
íl W1àÔ0>ß¼_ çH+þAâì2£§ÉrfP = 0.5,fQ= 0.5→cP(f) = 1.5,cQ(f) = 1.5, C(f) = 1.5. þjèq6 xâì2£§Ér fP = 3/8, fQ = 5/8 → cP(f) = 9/8, cQ(f) = 13/8,C(f) = 1.4375ú&ñ)a W1àÔ0>ß¼\"f_ çH+þAâì2£§Ér fP = 1/3, fQ = 0, fR= 2/3 → cP(f) = 5/3,cQ(f) = 5/3, cR(f) = 5/3, C(f) = 1.666.
Õ
ªaË> 2.4: New Braess Paradox þ
jèq6 xâì2£§Ér fP = 4/14, fQ = 5/14, fR = 5/14 → cP(f) = 17/14, cQ(f) = 24/14,cR(f) = 19/14, C(f) = 1.393
2.1.5 £o>â ÉÙ ÐÏ
1lxÂÒ1pxd(variational inequality; VI) ëH]jH ¸H 0pxâì2£§ x\ @/# (2.9)`¦ëß7á¤Hf∗\¦¹1ÔH ëH]js.1lxÂÒ1pxdÉrªôÇìr\"fçH+þA`¦
½
¨H ëH]jü<x9]XôÇ'a>\¦t¦e."f,1lxÂÒ1pxdõ§:x W1àÔ 0
>ß¼\"fçH+þAs_'a>ü<s\¦½¨l0AôÇ´ú§Ér½¨[þt[53, 20, 21, 42]s
'÷&%3.
c(f∗)T(f∗−x)60 (2.9)
Å ]
2.1.11 1lxÂÒ1pxd`¦ ëß7á¤H f∗H 0>×¼\v çH+þAõ 1lxus.[53]
¤
ÃZ $,0>×¼\v çH+þA`¦ ëß7á¤H fH O-D s_ þjèq6 xâÐ\ëß âì 2
£
§s µ1ÏÒqtټРÉr0pxâì2£§xÐ_âì2£§âÉr 8úxq6 x`¦yèr~´ ú\O
."f,c(f)Tf 6c(f)Tx'a>$íwn÷&¦ sH 1lxÂÒ1pxdëH]j_f∗ ë
ß
7á¤K½+É ¸|õ {9uôÇ. ìøÍ@/Ð, 0>×¼\v çH+þA`¦ ëß7á¤t ·ú§H âì2£§
fP > 0, cP(f) > cQ(f), P, Q ∈ Pi fP\"f fQÐ âì2£§`¦ ¸7áxôÇ 0pxâì2£§ xH 8úxq6 xs yè)a. "f, c(f)Tf −c(f)Tx > 0s÷&#Q 1lxÂÒ1pxd`¦ ë
ß
7á¤t 3lwôÇ.
¢
¸ôÇ, 1lxÂÒ1pxd ëH]jH c(f)_ Jacobian matrix symmetric¦ pos- itive semidefinite(definite) matrixs R
c(f)\¦ 3lq&h<ÊúÐH Beckmann
¸+þA(2.7)õ 1lx1pxK. Å
]
2.1.12 R
c(f) 5Åqs¦ pìr0px½+É M:, Beckmann ¸+þA (2.7)_ þj
&
h
K f∗H 1lxÂÒ1pxd (2.9)_ K)a.
¤
ÃZ t\ @/ôÇ 6£§õ °ú Ér <Êú\¦ &ñ_.φ(t) =R
c(f∗+t(f−f∗)), t∈ [0,1]Hφ(0)\"f þjè°úכ`¦ tټРφ0(0) =c(f∗)T(f−f∗)>0`¦ ëß7á¤Ù¼
Ð f∗H 1lxÂÒ1pxd_ K)a. Å
]
2.1.13 R
c(f)^¦2¤<Êús¦f∗1lxÂÒ1pxd(2.9)`¦ëß7á¤f∗H Beckmann ¸+þA (2.7)_ þj&hK )a.
¤ ÃZ R
c(f)^¦2¤<ÊúsټР¸H0pxâì2£§f\ @/K"fR
c(f)>R
c(f∗) + c(f)T(f −f∗) )a. c(f)T(f −f∗) >0sټР¸H 0pxâì2£§ f\ @/K"f R c(f)>R
c(f∗) ÷&ټРf∗H(2.7) þj&ho ëH]j_ þj&hKs.
t}ܼÐ1lxÂÒ1pxdëH]jH ^¦2¤þj&hoëH]j\"f&³FKx\¯"f− 5 f(¯x)Ty > 0\¦ ëß7á¤H >h~½Ó¾Ó y >rF 3lq&h<Êú f`¦ yè r~´Ãº e
H >h~½Ó¾Ó&ñoü<¸ {9uôÇ. 7£¤, çH+þA\"fH K\¦ 8s© >hr~´ Ã
º \O.
c(f)(f −x)60,∀x∈F ⇔ − µZ f
0
c(f)df
¶T
(x−f)60 2.1.6 j¤n>ÌfC (××%KV
q
+þA©ÐëH]j(nonlinear complementarity problem; NCP)ëH]jH(2.10)`¦ ë
ß
7á¤H f∗\¦ ¹1ÔH ëH]js [30]. 1lxÂÒ1pxdõ ðøÍtÐ q+þA ©Ð ë
H]j¸ §:x W1àÔ0>ß¼\"fçH+þA`¦ ½¨½+ÉM: 6 x)a.
c(f∗)Tf∗ = 0 c(f∗) >0 f∗ >0
(2.10)
Å ]
2.1.14 q+þA ©ÐëH]j_ f∗H 1lxÂÒ1pxd`¦ ëß7á¤H f∗ü< 1lxus
.
$ f∗ (2.10)`¦ ëß7á¤ôǦ e__ âì2£§ x > 0H c(f∗)Tx > 0
)
a. "f, c(f∗)Tx−c(f∗)Tf∗ > 0sټРc(f∗)T(f∗ −x) 60 $íwnôÇ
. ìøÍ@/Ð 1lxÂÒ1pxd c(f∗)T(f∗−x) 6 0`¦ ëß7á¤H f∗H 0pxâì2£§sÙ¼
Ð f∗ > 0, c(f∗) >0\¦ ëß7á¤ôÇ. 0 > c(f∗)Tf∗ > c(f∗)Txs¦ x = 0s c(f∗)Tf∗ = 0s)a.
¸Çah 2.1.15 (2.11)þj&hoëH]j_þj&h3lq&h<Êú°úכs 0 f∗H1lxÂÒ 1
p
xd`¦ ëß7á¤ôÇ.
minc(f)Tf c(f)>0,
f >0
(2.11)
2.1.7 §Ça\ Çah
¦&ñ&h &ño(fixed-point theorem)Ér §:xW1àÔ0>ß¼\"f çH+þAK_ >rF$í`¦
ÐsHX< 6 x÷&H&ños.¦&ñ&h &ñoHBrouwer¦&ñ&h&ño, Kakutani
¦&ñ&h&ño, Lefschetz¦&ñ&h&ño1px ªôÇ +þAIe. e
ÔeµÇah 2.1.16 Brouwer+ §Ça\Çah T Ä»9þtonîß /BNçß(Euclidean space)_ F\"f FÐ_ 5Åq<Êús &h#Q¸ _ ¦&ñ&h 7£¤ T(f) =f\¦ ë
ß
7á¤H âì2£§ f ∈F >rFôÇ.
¦&ñ&h &ñoH ÈÒ%ò¨8(projection operator)`¦ :xK1lxÂÒ1pxdõ 'a>
\
¦ .
e
ÔeµÇah 2.1.17 F Rn\"f {2³ ^¦2¤|9½+Ë(closed convex set){9 M:, x ∈ Rn\ @/K"f (2.12)\¦ ëß7á¤H Ä»{9ôÇ y∈F >rFôÇ.
kx−yk6kx−zk,∀z∈F (2.12)
yHx\¦FÐf§ÈÒ%ò(orthogonal projection)ôÇ כsټР(2.13)ܼР³ð
&
³)a.
y=PFx= arg min
z∈Fkx−zk (2.13)
Å ]
2.1.18 FRn\"f{2³^¦2¤|9½+Ë(closed convex set){9M:,y=PFfH yT ·(z−y)>xT ·(z−y),∀z∈Fü< 1lxus.
Å ]
2.1.19 F Rn\"f {2³ ^¦2¤|9½+Ë(closed convex set){9 M:, f∗∈F
1lxÂÒ1pxd(2.9)\¦ ëß7á¤Hכ Ér γ >0 f∗ =T(f∗) =PF(f∗−γc(f∗))\¦ ë
ß
7á¤H ¦&ñ&hs ÷&H כ õ 1lxus.
¤
ÃZ f∗∈F 1lxÂÒ1pxd c(f∗)T(x−f∗)>0`¦ ëß7᤽+É M:,−γ\¦ YL¦ª A
á
¤\f∗T·(x−f∗)\¦8f∗T·(x−f∗)>(f∗−γc(f∗))T·(x−f∗)s ÷&¦$í|9 2.1.18\ @/K"fy =f∗,x=f∗−γc(f∗)Ð yT·(x−f∗)>xT·(x−f∗)\¦ ë
ß
7á¤Ù¼Ð f∗ = PF(f∗ −γc(f∗))s. ìøÍ@/Ð f∗ = PF(f∗ −γc(f∗))s f∗T ·(x−f∗)>(f∗−γc(f∗))T ·(x−f∗)sÙ¼Ðc(f∗)T(x−f∗)>0s. Å
]
2.1.20 T(f∗) = PF(f∗−γc(f∗))\¦ ëß7á¤H T<Êú F\"f FÐ_
5Åq<ÊúsټРBrouwer_ ¦&ñ&h&ño\ _K &h#Q¸ _ ¦&ñ&h 7£¤ T(f∗) =f∗\¦ ëß7á¤H çH+þAâì2£§ f∗∈F >rFôÇ.
¤
ÃZ f§ÈÒ%ò PFü< f − γc(f)s yy 5Åq<ÊúsټРT(f) = PF(f − γc(f))¸ 5Åq<Êús. T(f) 5Åq<ÊúsټРBrouwer_ ¦&ñ&h&ño\ _
K &h#Q¸ _¦&ñ&hs >rFôÇ.
2.1.8 Frank-Wolfe N±Ó§hæ¸
(2.7) þj&ho ëH]j\¦ ÉÒH @/³ð&h ·ú¦o1puܼÐH Frank-Wolfe ·ú¦o1pu [28]s e. Frank-Wolfe ·ú¦o1puÉr :rA 2 >S\ZO(quadratic program- ming)`¦ ÉÒH ·ú¦o1puܼР]jr÷&%3. Frank-Wolfe·ú¦o1puÉr 3lq&h<Êú f(x){9M:, ìøÍ4¤éß> k 3lq&h<Êú\¦ f(xk) +5f(xk)T(x−xk)Ð +þA
H(linear approximation)# (2.14)_ +þA>S\ëH]j_ þj&hK yk+1\¦ ½¨
¦ xkü< yk+1_ ^¦2¤¸½+Ë ×æ 3lq&h<Êúf(x) þjè÷&H xk+1`¦ ¹1Ô ìøÍ4¤
&
h
ܼРK\¦ ¹1ÔH ~½ÓZOs.
minx∈Kf(xk) +5f(xk)T(x−xk) (2.14) N
±
Ó§hæ¸ 2.1.21 Frank-Wolfe ·ú¦o1pu`¦ (2.7)\ &h6 x 6£§õ °ú . Step 0. ílo : n= 0, fen=fe0= 0, e∈E, ² >0.
Step 1. aAß¼_ q6 x °úכ >íß :cne =ce(fen), e∈E.
Step 2. 3lq&h<Êú\¦ +þAH# &³F âì2£§ fn\"f_ +þA>S\ëH]j (2.15)\¦ Û¦#Q þj&h 0pxâì2£§ yn\¦ ½¨ôÇ.
s
M:, þj&h 0pxâì2£§ ynH (2.15) ñ_ q6 xs âì2£§ fn\"f ¦&ñ÷&%3 6
£
§Ü¼Ð y O-D©_ þjéßâÐÐ C&ñH כ õ °ú .
min P
ece(fen)yen
s.t P
P∈PiyP =di, ∀i∈I yP >0, P ∈ P
(2.15)
Step 3. (2.16)_þj&hs1lxß¼lλn\¦&ñôÇ.{9ìøÍ&hܼÐÃÐÒo(line search)`¦ 6 xôÇ.
λnmin∈[0,1]
X
e
Z fn
e+λn(yen−fen) 0
ce(w)dw (2.16)
Step 4 : :x'|¾Ó`¦ ÌqtôÇ.
fen+1=fen+λn(yen−fen), e∈E.
Step 5. 7áx«Ñ¸| : - ëß,
P
e∈EP|fen+1−fen|
e∈Efen 6² s,·ú¦o1pu 7áx«Ñ,&³F K\¦ ئ§4; - u´ âĺ, n←n+ 1, Step 1 ܼРs1lx;
2.2 È·\ £ !CÌfC 2.2.1 È·\ § ßj:Ça¿ÌfC
2.1©\"f êr :x'C&ñ ¸+þAÉr q6 x<Êú &ñ&h ¸+þAs. tëß,
&
³z´\"fH þjéßâÐ âÐ\¦ s6 xH 5pxÌo[þts 'a¹1Ï÷&HX< sH (2.5)_ 0>×¼\v çH+þA\ 0AC)a.s\¦ [O"îl 0A# §:x/BN<Æ\"fH z´ ]
j :x'q6 xõ :x' tH :x'q6 x çß_ ¸ µ1ÏÒqt½+É Ãº e¦
&ñH SXÒ¦&h:x'C&ñ¸+þA`¦]jr%i.l:r&hܼÐSXÒ¦&h :x'C&ñ
É
r 5pxÌo[þt_ âÐ×þ`¦ ×þ 0pxôÇ âÐ ×æ \¦ ×þH síß×þ¸ +
þ
A(discrete choice)ܼРÒqtyôÇ. S
X
Ò¦&h :x'C&ñ\"f 6 xH âÐ×þ q6 x<ÊúH SX&ñ&h q6 xõ SX Ò
¦&h q6 x`¦ ½+Ë#âÐ_q6 x`¦&ñHX<,Õª l:r+þAIH6£§õ °ú
.
CP =cP +²P, ∀P ∈ P. (2.17)
cPÉr âÐ P_ &ñ&hq6 x`¦,²PÉr t¸ q6 x`¦ _pôÇ.CP\¦ â
Ð P_ tq6 x(perceived cost)s ôÇ. (2.17)\"f t¸ ½Ó_ l@/
° ú
כ, E[²P]`¦ 0s &ñ,âÐq6 x_ l@/°úכÉr E[CP] =cP, ∀P ∈ Pܼ
Ð jþt ú e.
â
Ðq6 x_ SXÒ¦ìrí ÅÒ#Qt, ¸|9éß\"f ½ ü> &ñôÇ 5pxÌos
×þôÇ âÐ\ @/ôÇSXÒ¦°úכ`¦>íß½+Éúe.âÐP\¦×þ½+ÉSXÒ¦`¦PP
,Õª °úכÉr âÐq6 x CP_ °úכs Ér @/îß âÐ_ âÐq6 xÐ °ú
`¦ SXÒ¦s.
PP =P[CP 6CQ, Q∈ P, Q6=P], ∀P ∈ P.
Å ]
2.2.1 0pxâì2£§ f\"f âÐ P_ ×þSXÒ¦ PP(f)H 6£§`¦ ëß7á¤ôÇ [51].
PP(f) = ∂E(C(f))
∂cP(f) (2.18)
¤
ÃZ ²[þt_|9½+Ë AP\¦ 6£§õ °ú s&ñ_¦ cP(f) +²P < cQ(f) +²Q;∀Q6=
P;AP_ the indicator functionIP(²1, . . . ²N)\¦ 6£§õ °ú s &ñ_
IP(²1, . . . ²N) =
1 (²1, . . . ²N)∈AP 0 (²1, . . . ²N)∈/ AP e
__ ئµ1Ï-¸ÃÌ n © i_âÐj = 1, . . . , Nt e,Cj(f) = cj(f) + ²js¦ (²1, . . . ²N)Ér SXҦú 7' )a. sM:, ½+ËSXÒ¦x9¸<Ê Ã
º(joint density function)\¦ g(²1, . . . ²N)¦ ×þ âÐ_ tq6 x C(f) = min
j Cj(f)_ l@/tq6 xÉr (2.19)s)a. E(C(f)) =
Z
· · · Z
minj (cj(f) +²j)g(²1, . . . ²N)d²1. . . d²N (2.19) cP\ @/ôÇ l@/ôÇ>tq6 x(marginal expected perceived cost)
∂min
j (cj(f) +²j)
∂cP(f) =IP(²1, . . . ²N) (2.20)
∂E(C(f))
∂cP(f) =R
· · ·R ∂minj (cj(f)+²j)
∂cP(f) g(²1, . . . ²N)d²1. . . d²N
=R
· · ·R
Ip(²1, . . . ²N)g(²1, . . . ²N)d²1. . . d²N
=P((²1, . . . ²N)∈AP)
=PP(f)
t¸ ½Ó ²P_ SXÒ¦ìrí ÅÒ#Qt âÐq6 x_ SXÒ¦ìrí\¦ &ñ½+É Ã
º e.@/³ð&h \VÐ ½ÓÐf± ¸+þA(multimonial logit model)õ ½ÓáÔÐ c
±
¸+þA(multinomial probit model)seHX<,$ ½ÓÐf± ¸+þAÉrt¸
½
Ó_SXÒ¦ìrí1lqwn&hs9(independently and identically distributed;IID), 1
l
x{9> ^¦(gumbel)ìrí\¦ sÀÒ¦ e¦ &ñôÇ. ½ÓáÔÐc± ¸+þAÉr
t¸ ½Ó_ ½+ËSXÒ¦ìrí |¾Ó &ñ½©ìrí\¦sÀÒ¦ e¦ &ñôÇ. 2.2.2 /××=¿ÌfC
½ÓÐf± ¸+þAÉr t¸ ½Ó_ SXÒ¦ìrí1lqwn&hs9,1lx{9>^¦ ìrí
\
¦ sÀÒ¦ e¦ &ñôÇ. ½ÓÐf± ¸+þAÉr âÐ_ ×þ SXÒ¦s `+þAdܼ
Ð q§&hçßéß> >íß÷&#Q V,o&h6 x÷&HSXÒ¦&h :x'C&ñ¸+þAs. Å
]
2.2.2 ½ÓÐf± ¸+þA\"f 5pxÌos âÐ P\¦ ×þ½+ÉSXÒ¦Ér (2.21)°ú . PP = e−θcP
P|P|
i=1
e−θci
, ∀P ∈ P. (2.21)
¤
ÃZ âÐ_ q6 xs &t ´ò6 x(utility)H tټРâÐ_ q6 x\ 6£§Ãº
−θ\¦ YL# âÐP_ SXÒ¦&h´ò6 x UP =−θcP +²P\¦&ñ_.çßéß>
θ= 1Ð &ñ.$,5pxÌos ´ò6 xs Ér âÐÐ Z}Ér âÐ P\¦ ×þ
½ +
É SXÒ¦Ér(2.22)õ °ú .
PP =P rob(UP > UQ,∀Q6=P)
=P rob(−cP +²P >−cQ+²Q,∀Q6=P)
=P rob(²P −²Q> cP −cQ,∀Q6=P)
=P rob(²Q< cQ−cP +²P,∀Q6=P)
(2.22)
ë ß
²P ÅÒ#Q&¦ ²Q ^¦ìrí\¦ ØÔ¦ 1lqwn&hs¦ &ñ (2.23)`¦ ëß7á¤> )a.
PP|²P = Q
∀Q6=P
RcQ−cP+²P
−∞ (e−²Qe−e−²Q)d²Q,
= Q
∀Q6=P
e−e−(cQ−cP+²P) (2.23)
²P\ @/ôÇ ¸|ÂÒ SXÒ¦`¦ s6 x (2.22)H(2.24)Ð >h)a.
PP = Z
Y
∀Q6=P
e−e−(cQ−cP+²P)
e−²Pe−e−²Pd²P (2.24)
cP−cP = 0sÙ¼Ðe−e−(cP−cP+²P) =e−e−²P\¦s6 x(2.24)H(2.25)Ð
>h)a.
PP = Z
Y
∀Q
e−e−(cQ−cP+²P)
e−²Pd²P
= Z
exp(−e−²P X
Q
e−(cQ−cP))e−²Pd²P
(2.25)
e−²P\¦tÐ u¨8 dt=−e−²Pd²P ÷&¦ s\¦ &h6 x(2.26)s )a.
PP = Z 0
∞
exp(−tX
Q
e−(cQ−cP))(−dt)
= Z ∞
0
exp(−tX
Q
e−(cQ−cP))dt
=
·exp(−tP
Qe−(cQ−cP))
−P
Qe−(cQ−cP)
¸
(2.26)
t}ܼРPP(∞) ' −exp(−∞) = 0s¦ PP(0) = exp(0)
−P
Qe−(cQ−cP) =
−P 1
Qe−(cQ−cP)sټРþj7áx&hܼÐ(2.27)s )a. PP = P 1
Qe−(cQ−cP) = 1
e−cPP
Qe−cQ = Pe−cP
Qe−cQ (2.27)
¸Çah 2.2.3 ²P\¦^¦ìríÐ &ñ½+ÉM:,PP(f) = exp(−θcP(f))/P
j
exp(−θcj(f))s Ù
¼Ð $í|9 2.2.1õ (2.21)\ _K"f l@/tq6 xÉr (2.29)s. exp(−θcP(f))
P
j
exp(−θcj(f)) = ∂E(C(f))
∂cP(f) (2.28)
E(C(f)) =−1 θlnX
j
exp(−θcj(f)) (2.29)
l
@/tq6 x`¦ e__ âÐ P\ @/K &ño fP = Pexp(−θcP)(f)
j
exp(−θcj)(f) × disټРP
jexp(−θcj(f)) = exp(−θcP(f))fdi
P \¦ ëß7á¤Ù¼Ð (2.30)s. E(C(f)) =−1θlnP
jexp(−θcj(f)) =−1θln
³
exp(−θcP(f))dfpi
´
=cP(f) +1θlnfP −1θlndi
(2.30)
¸Çah 2.2.4 l@/'a8£¤q6 x E(c(f))H (2.31)ü< °ú . E(c(f)) =
P
jcj(f)exp(−θcj(f)) P
jexp(−θcj(f)) (2.31)
¸Çah 2.2.5 E(C(f))6min{c1, c2,· · ·, cN}6E(c(f))\¦ ëß7á¤ôÇ.
$, min{c1, c2,· · ·, cN}6E(c(f))\¦Ðsmin{c1, c2,· · ·, cN}\¦ e_ _
ck¦ (2.32)\¦ ëß7á¤ôÇ. min{c1, c2,· · ·, cN}=ck(f) =
P
jck(f)exp(−θcj(f)) P
jexp(−θcj(f)) 6E(c(f)) (2.32)
6£§Ü¼Ð E(C(f))6min{c1, c2,· · ·, cN}\¦ Ðs (2.33)õ °ú . P
jexp(−θcj) >min{exp(−θc1),· · ·,exp(−θcN)}
lnP
jexp(−θcj) >min{−θc1,· · ·,−θcN}
−1θlnP
jexp(−θcj) 6−1θmin{−θc1,· · ·,−θcN} E(C(f)) 6min{c1,· · ·, cN}
(2.33)
t¸ µ1ÏÒqtt ·ú§H¦ &ñ 5pxÌoÉr þjèq6 x âÐ\¦ s6 x
½ +
É כ sټР2£§&ño 2.2.5Ð SXÒ¦&h :x'C&ñ\"f 5pxÌos Ö¼zH l@/
t
q6 xÉr &ñ&h:x'C&ñ_q6 xÐHtëß l@/'a8£¤q6 xÉr &ñ&h :x '
C&ñ_ q6 xÐH &tH &h`¦ ·úúe.
/××=¿ÌfC+ ø5N
· ú
¡\"f [O"îôÇכ õ °ú s ½ÓÐf± ¸+þAÉr ìr"îôÇ ©&h`¦ t¦ eH ¸+þA s
tëßSheffi [50]/åLôÇ%!3¿º tH:r&h ôÇ>\¦ t¦ e.'Í