• 검색 결과가 없습니다.

Frobenius Method (1)

N/A
N/A
Protected

Academic year: 2022

Share "Frobenius Method (1)"

Copied!
24
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Frobenius Method (1)

– Let b(x) and c(x) be any analytic functions at x = 0. Then, ODE

has at least one sol. represented in the form

where r may be any (real or complex) number.

– The ODE has a second sol. (which is linearly independent) similar to above series form with a different r and different coeff. or may

contain a logarithm term.

   

2

0

b x c x

y y y

x x

    

  

0 1 2 2 3 3

0

r m r

m m

y x x a x x a a x a x a x

       a

0

0

(2)

Frobenius Method (2)

– Application example 1 of Frobenius method: Bessel’s eqn.

– Application example 2: hyergeometric DE

– Regular point --- a point x0 at which p(x) and q(x) are analytic. Then, power series method can be applied.

Or, a point x0 at which are analytic, and

– Singular point --- not regular

2 2

2

1 x 0

y y y

x x

  

      

 

b x   1, c x   x

2

2

    0

y   p x y   q x y

      0

h x y   p x y   q x y  , ,

h p q h x  

0

 0

(3)

Indicial Equation (1)

– Multiplying x2 on the given DE

– Expand b(x) and c(x) in power series

– Term by term differentiation of the assumed sol.

   

2

0

x y   xb x y   c x y

 

0 1 2 2

,  

0 1 2 2

b x   b b x b x   c x   c c x c x  

   

1 1 0

 

1

0

m r r

1

m m

y x m r a x x ra r a x

 

           

   

2

0 1

1 1

x

r

r r a r ra x

        

    

2

0

1

m m r

m

y x m r m r a x

 

     

(4)

Indicial Equation (2)

– Substituting into the given DE

– Sum of the coeff. corresponding to xr

– Two roots of the indicial eqn.: r1 and r2

   1 

0

 

0

0 r r b r c

     

   

0 0 1 0

0 1 0 1

1

0

     

 

 

     

r r

r

x r r a b b x x ra

c c x x a a x

Indicial equation of ODE

(5)

Indicial Equation (3)

– Case I: Distinct roots not differing by an integer

– Case II: Double root r1 = r2 = r

– Case III: Roots differing by an integer

  

2

1

r 0

1

2

y x x a a x a x

    

2

2

1

ln 

r 1

2

y x y x x x A x A x

 

1

2

1

r 0

1

2

y x x a a x a x

   

2

2

2

1

ln 

r 0

1

2

y x ky x x x A A x A x

 

1

2

1

r 0

1

2

y x x a a x a x

 

2

2

2

r 0

1

2

y x x A A x A x

(6)

Example of Case III (1)

– DE

– Applying Frobenius method

– Collect all the terms with power xm+r and simplify

x

2

x y xy   y 0

2



2

1

0 0

0

1

0

   

      

 

m r m r

m m

m m

m r m

m

x x m r m r a x x m r a x

a x

 

2

  

1

0 0

1 1 0

 

      

m m r

m m r

m m

m r a x m r m r a x

(7)

Example of Case III (2)

– Set m = s in the first series, and m = s + 1 in the second

– Lowest power is xr-1, and the resulting indicial eqn.

– , differ by an integer, Case III – First sol. y1 corresponding to

– Recurrence formula

 

2

  

1

0 1

1 1 0



      

s s r

s s r

s s

s r a x s r s r a x

  10

r r

1

 1,

2

 0

r r

1

 1 r

  

2 1

1 0

2 1 0

     

 

s s s

s

s a s s a x

  

2

1

2 1

 

s s

a s a

s s

(8)

Example of Case III (3)

– , Taking

– Second sol. y2 --- can be obtained by the reduction of order

– Substituting

– Dividing by x and simplifying

2

1

 ,

2

    ,

2

    2  y y u xu y xu u y xu u

1

 0,

2

 0,

a a

1

1

r 0

y x a x

0

 1 a

x

2

x xu  2 u   x xu u xu 0

x

2

x u x 2 u 0

(9)

Example of Case III (4)

– Partial fractions and integrating

– Taking exponents and integrating

– y1, y2: linearly independent

2

2 2 1

1 ,

      

  

u x

u x x x x

2

ln   ln x  1

u x

2 2

2

1 1 1 1

, ln ,

ln 1

      

  

u x u x

x x x x

y xu x x

(10)

Bessel’s Eqn. and Functions (1)

– Bessel’s DE

– Electrical field, vibrations, heat conduction with cylindrical symmetry ν: real and nonnegative

– Can apply Frobenius method

– Substituting

 

2 2 2

0 x y xy x   y

 

0

r m r

m m

y x x a x

  a

0

0

    

0 0

2 2

0 0

1

0

m r m r

m m

m m

m r m r

m m

m m

m r m r a x m r a x

a xa x

 

    

  

 

 

(11)

Bessel’s Eqn. and Functions (2)

– Collecting the coeff. of xs+r

– Indicial eqn.

– Two roots:

– Coeff. recurrence for the first root r = r1 = ν

s 2, 3,

 1 

0 0 2 0

0

r rara   a   s 0

r  1  ra

1

   r 1  a

1

 

2

a

1

 0  s 1

sr  s   r 1  a

s

   s r a

s

a

s2

 

2

a

s

 0

r  r 0

 

1

0 ,

2

r    r   

s   r   s  

1

r   a

s

a

s2

 0 0

a

(12)

Bessel’s Eqn. and Functions (3)

– Resultantly,

– We only have the coeff. of even numbers s = 2m

– Even numbered coeff.

s  2   sa

s

a

s2

 0

3

0,

5

0,

aa

2 m 2 2 ma

2m

a

2m2

0

 

2 2 2 2

1 ,

m

2

m

a a

mm

   m  1, 2,

0

 

0

 

2 2

,

4 4

2 1 2 2! 1 2

a a

a a

  

  

  

   

0

  

2 2

1 ,

2 ! 1 2

m

m m

a a

m    m

 

   m  1, 2,

(13)

Bessel Function of the 1

st

Kind J

n

(x) (1)

– Integer ν now denoted by n

– Arbitrary a0 determined as follows:

– Bessel function of the 1st kind of order n --- converges for all x

   

0

  

2 2

1 ,

2 ! 1 2

m

m m

a a

m n n n m

 

   m  1, 2,

0

1 , 2

n

!

an  

 

2 2

1

2 ! !

m

m m n

a

m n m

 

m  1, 2,

   

 

2 2

0

1

2 ! !

m m

n

n m n

m

J x x x

m n m

 

 

(14)

– Bessel function of order 0

   

       

2 2 4 6

0 2 2 2 2 4 2 6 2

0

1 1

2 ! 2 1! 2 2! 2 3!

m m

m m

x x x x

J x

m

        

Bessel Function of the 1

st

Kind J

n

(x) (2)

(15)

Bessel Function of the 1

st

Kind J

ν

(x) (1)

– Extend from integer ν = n to any ν ≥ 0 – Gamma function Γ(ν)

– Integrating by parts

 

1

0

e t

t

dt

 

 

1

0

0 0

1 e t dt

t

e t

t

e t

t

dt

  

1   

      

   

0 0

1 e dt

t

e

t

0 1 1

        

  2   1 1!,   3 2   2 2!,

       

n 1n !

    n 0,1,

(16)

– Now for any ν

– The even numbered coeff.

– Bessel function of the 1st kind of order ν --- converges for all x

 

0

1 1

2 ! 2 1

a  

  

   

2 2

1

2 ! 1

m

m m

a

m m

 

  

   

 

2 2

0

1

2 ! 1

m m

m m

J x x x

m m

 

  

Bessel Function of the 1

st

Kind J

ν

(x) (2)

(17)

General sol. Of Bessel’s DE

– Replacing ν by - ν

– General sol. of Bessel’s DE for non-integer ν

– If ν is an integer, above form is not a general sol. because they are linearly dependent.

   

 

2 2

0

1

2 ! 1

m m

m m

J x x x

m m

 

  

 

1

 

2

 

y xc J

xc J

x

    1

n

 

n n

J

x   J xn 1, 2,

   

   

 

2 2

2 2

0

1 1

2 ! ! 2 ! !

m m n n s s n

n m n s n

m n s

x x

J x

m m n n s s

 

 

 

 

(18)

Properties of Bessel function

– Derivatives

– Recurrence relation

– For half-integer order ν

 

1

 

x J xx J

x

  

 

1

 

x J

xx J

x

   

     

1 1

J x J x 2 J x

x

     

1 1

2

J

xJ

xJ

x

   

1 2 1 2

2 2

sin , cos

J x x J x x

x

x

 

 

(19)

– When ν is an integer, need a second linearly independent sol.

--- Bessel function of the 2nd kind Yn(x) – n = 0: Bessel function of the 2nd kind Y0(x)

– Indicial eqn. has double root, , Case II – Second desired sol. of the form

0 xy    yxy

0 r

   

2 0

1

ln

m m

m

y x J x x A x

  

0 1

2 0

1

ln

m m

m

y J x J mA x

x

     

 

2

0 0

2 0 2

1

ln 2 1

m m

m

J J

y J x m m A x

x x

        

Bessel Function of the 2

nd

Kind Y

0

(x) (1)

(20)

– Substituting into the DE and resulting eqn.

– Expression for J’0(x)

– Resulting eqn.

– Collecting the power of x0, x2s

 

1 1

0

1 1 1

2 1

m m m m m m

0

m m m

J m m A x mA x A x

        

   

 

   

2 1 2 1

0 2 2 2 1

1 1

1 2 1

2 ! 1 !

2 !

m m m m

m m

m m

mx x

J x

m m m

 

  

  

   

2 1

2 1 1

2 2

1 1 1

1 0

2 ! 1 !

m m

m m

m m

m

m m m

x m A x A x

m m

   

   

1

0,

3

0,

5

0,

AAA

Bessel Function of the 2

nd

Kind Y

0

(x) (2)

(21)

– Even numbered coeff.

– Expression for the second linearly independent sol. y2(x)

– Another basis if y2 replaced by an independent particular sol. With (γ: Euler const.)

 

 

1

2 2 2

1 1 1 1

1 ,

2 3

2 !

m

m m

A m m

 

         m  1, 2,

     

 

1

2

2 0 2 2

1

ln 1

2 !

m

m m

m m

y x J x x h x

m

   

1

1 1

1, 1

m

2

h h

     m m  2, 3,

2 0

, 2 , ln 2

a ybJ ab   

Bessel Function of the 2

nd

Kind Y

0

(x) (3)

(22)

– Bessel function of the 2nd kind of order 0 --- Neumann’s function of order 0

     

 

1

2

0 0 2 2

1

2 1

ln 2 2 !

m

m m

m m

x h

Y x J x x

m

    

            

Bessel Function of the 2

nd

Kind Y

0

(x) (4)

(23)

Bessel Function of the 2

nd

Kind Y

n

(x) (1)

– When ν = n = 1,2,…, y2 can be obtained as in Case III – Standard second sol. for all ν

--- Bessel function of the 2nd kind of order ν, Neumann’s function of order ν

– n = 1,2,…: Bessel function of the 2nd kind of order n Yn(x)

  1   cos  

Y x sin J x J x

x

     



  lim  

n n

Y x Y x

       

 

1

2 2

0

2 1

ln 2 2 ! !

n m

m m n m

n n m n

m

h h

x x

Y x J x x

m m n

 

 

       

(24)

Bessel Function of the 2

nd

Kind Y

n

(x) (2)

 

1

2 2

0

1 !

2 !

n n

m m n

m

x n m

m x

  

– Furthermore

– General sol. of Bessel’s DE

– Bessel function of the 3rd kind of order ν, 1st and 2nd Henkel function of order ν

      1

n

n n

Y

x   Y x

 

1

 

2

 

y xc J

xc Y

x

 

     

 

     

1 2

H x J x iY x

H x J x iY x

 

 

참조

관련 문서

□ Such a collection of edges is called a tree because if any vertex is taken to be the root, we form a tree by treating the adjacent vertices as children, and so

• Assume the features are not statistically independent, and each feature has the different variance, but every class has the same covariance matrix, that

Second, to see a similarity factor among the relation between a factor which forms peer group and the attitudes toward school life, in case of the

However, preparatory entrepreneur who lacks career and social experience has different point of view of startup success, because of their situation which

Efficacy of syringe irrigation, RinsEndo and passive ultrasonic irrigation in removing debris from irregularities in root canals with different apical

The sublimation purification method is similar to the vapor deposition process ,in which crystallization occurs after evaporation from a solid state to a

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.. 이것은 이용허락규약 (Legal Code) 을 이해하기

-another type of stereoisomer when Compound having carbon (chiral carbon) with 4 different groups attached carbon (chiral carbon) with 4 different groups