• 검색 결과가 없습니다.

Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

** KAIST Õᖅၰ⪹ĞŖ⦺ŝ ᕾၶᔍ☖⧊ŝᱶ (gogyu@kaist.ac.kr)

**** ᯙ⃽ǎᱽŖ⧎Ŗᔍ ᩑǍ}ၽ݉ ᱥྙᩑǍᬱ, Ŗ⦺ၶᔍ (jnh0815@hotmail.com) Received March 26, 2013/ revised June 29, 2013/ accepted September 4, 2013

Copyright ⵑ 2013 by the Korean Society of Civil Engineers

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

 ǣŠ––’ǣȀȀ†šǤ†‘‹Ǥ‘”‰ȀͳͲǤͳʹ͸ͷʹȀ•…‡ǤʹͲͳ͵Ǥ͵͵Ǥ͸Ǥʹ͵ͻ͵ ™™™Ǥ•…‡Œ‘—”ƒŽǤ‘”Ǥ”

⟖⽿↾㦎㯓#⽾⻏#⮲ጎ㰖Ꮾ#㯓㚚⮎#᫮ἶ#⮲㱦⳦#㦇ᆾ

ଗজ ȵճָ෮ ȵଲ਎޹ ȵ୺ْ෮

Yoon, Seok*, Go, Gyu-Hyun**, Lee, Seung-Rae***, Cho, Nam-Hyun****

Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers

ABSTRACT

This research presents an experimental study of heat exchange rate of U, W, 2U and coil type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). The four types of GHEs were installed in a partially saturated dredged soil deposit of Incheon International Airport area. Thermal response tests (TRTs) were conducted for U, W and 2U type GHEs to deduce the ground thermal conductivity. Besides, TPTs were also conducted for U, W, 2U and coil type GHEs to evaluate heat exchanger rates under 100-hr continuous and 8-hr intermittent operation conditions for five days. Coil shaped GHE showed about twice higher thermal performance than the others GHEs. Furthermore, intermittent operation condition showed 30~40% higher heat exchange rates than continuous operation condition.

Key words : Ground heat exchanger, Thermal performance test, Thermal response test, Heat exchange rate

Ⅹಾ

ᅙםྙᨱᕽ۵ᯝၹᙹḢၡ⠱⩶ᨱᕽ᮹U, W, 2U əญŁ⎵ᯝ┡᯦᮹ḡᵲᩕƱ⪹ʑ⩶┽ᄥᩕ⬉ᮉᮥ⠪a⦹ʑ᭥⦽ᝅ⨹ᱢᩑǍෝᙹ⧪⦹ᩡ

݅. ๅพḡḡၹᮝಽᯕ൉ᨕḥᯙ⃽ǎᱽŖ⧎ᱽ2ᩍ~░ၙձᯕÕᖅࢁᇡḡᨱᙹḢၡ⠱⩶ḡᵲᩕƱ⪹ʑaᖅ⊹ࡹᨩ݅. ᬑᖁU, W əญŁ2U

⩶┽᮹ḡᵲᩕƱ⪹ʑෝᯕᬊ⦽⩥ᰆᩕ᮲ݖᝅ⨹ᮥᙹ⧪⦹ᩍḡၹ᮹ᩕᱥࠥࠥෝࠥ⇽⦽⬥U, W, 2U əญŁ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑෝᯕᬊ⦹

ᩍ100᜽eᩑᗮᬕᱥŝ5ᯝ࠺ᦩ᮹ᇡᇥᬕᬊ༉ऽಽ⩥ᰆᩕᖒ܆ᝅ⨹ᮥᙹ⧪⦹ᩡ݅. Ԫႊa࠺᳑Õ⦹ᨱᕽ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑᯕᬊ᜽ӹ ນḡ┡᯦᮹ᩕƱ⪹ʑॅᅕ݅᧞2႑ᱶࠥᩕƱ⪹ᮉᯕᔢ᜚ࡹ۵äᮥ᦭ᙹᯩᨩ݅. ੱ⦽ᇡᇥᬕᱥ༉ऽ᜽ᩑᗮᬕᱥ༉ऽᅕ݅30~40% ᩕƱ⪹

ᮉᯕᔢ᜚ࡹ۵äᮝಽӹ┡ԍ݅.

áᔪᨕ ḡᵲᩕƱ⪹ʑ, ᩕᖒ܆ᝅ⨹, ᩕ᮲ݖᝅ⨹, ᩕƱ⪹ᮉ

1. ᕽು

↽ɝॅᨕḡǍ᪉ӽ⪵, ⪵ᕾᨱթḡŁiಽᯙ⦹ᩍᝁᰍᔾᨱթḡᯕᬊᨱݡ⦽šᝍŝᙹ᫵a۹ᨕӹ໕ᕽḡᩕᬱᩕ⟭⥥᜽ᜅ▽(ground source heat pump systems)᮹ ⦥᫵ᖒᯕ ӹԁᯕ ᷾ݡࡹŁ ᯩ݅. ḡᩕᬱ ᩕ⟭⥥ ᜽ᜅ▽ᮡ ᩑᵲ ᯝᱶ⦽ ḡᵲᩕᮥ ᩕ⟭⥥᮹ ᩕᬱ(heat source)ŝ⯩✙ᝒⓍ(heat sink)ಽ⪽ᬊ⦹ᩍÕྜྷ᮹Ԫӽႊŝɪ┶ᮥ࠺᜽ᨱǍ⩥⦹ʑভྙᨱᦩᱥ⦹Ł⬉ᮉᱢᯙℎᱶᝁᰍᔾᨱթḡᯕ݅.

‡‘–‡…Š‹…ƒŽ‰‹‡‡”‹‰ ݓъėॡ

(2)

Fig. 1. Diagram of GHE

Fig. 2. Drill Log of the Test Site

ੱ⦽ḡᩕᬱᩕ⟭⥥᜽ᜅ▽ᮡᨱթḡᱩ᧞⩶ʑᚁಽ៉ǎԕᨕॵᕽ ӹ ᯕᬊ⧁ ᙹ ᯩ۵ ᮁእ⑝░ᜅ ᨱթḡಽ ᩍĉḥ݅(Geothermal Energy Education Center, 2011). ᯕ ᜽ᜅ▽᮹ Ǎᖒ ᫵ᗭ ᵲ

ḡᵲᩕƱ⪹ʑ(ground heat exchanger)۵ᱥℕ᜽ᜅ▽᮹ᖒ܆ŝ

Ⅹʑᖅ⊹እෝđᱶ⦹۵ᵲ᫵⦽᫵ᗭᯕ໑ᯝၹᱢᮝಽʫᯕ150ⴇ 200m᮹ᙹḢၡ⠱⩶┡᯦ᯕaᰆฯᯕᔍᬊࡹŁᯩ݅. ᙹḢၡ⠱⩶

ᩕƱ⪹ʑ۵ᙹḢᮝಽ⃽Ŗࡽᅕᨕ⪡ŝḡᵲŝ᮹ᩕƱ⪹❭ᯕ⥥, əญŁ ᅕᨕ⪡ŝ ❭ᯕ⥥ ᔍᯕ᮹ ኩ Ŗeᮥ ₥ᬑ۵ ə௝ᬑ✙ಽ

Ǎᖒࡽ݅.

ᙹḢၡ⠱⩶ḡᵲᩕƱ⪹ʑ۵Ⅹʑ׳ᮡ᜽Ŗእಽᯙ⦹ᩍᅕ݅

׳ᮡᩕ⬉ᮉᮥ᨜ʑ᭥⦽ᩑǍॅᯕฯᯕḥ⧪ࡹŁᯩ݅. ᩕƱ⪹ʑෝ

☖⧕ᕽᵝᄡḡၹŝᩕᮥƱ⪹⦹۵ᩕᱥݍᮡᅕᨕ⪡ԕ᮹ə௝ᬑ✙

᮹ᩕྜྷᖒ, ᩕƱ⪹ʑ┡᯦ၰeĊəญŁᩕƱ⪹ʑ႑ᩕၰᙽ⪹ᙹ

✚ᖒ॒݅᧲⦽ᯙᯱᨱ᮹⧕ᩢ⨆ᮥၼᮝ໑ᯕᨱݡ⦽ฯᮡᩑǍa

ᙹ⧪ࡹŁᯩ݅(Park et al., 2013; Park et al., 2012; Lim et al., 2011; Min and Choi, 2011; Lee et al., 2010; Sohn et al., 2005). ᯝၹᱢᮝಽᙹḢၡ⠱⩶ᨱᕽḡᵲᩕƱ⪹ʑ┡᯦ᮡ᜽Ŗ᮹

⠙ญᖒ॒ᮝಽᯙ⧕Uᯱ⩶ᯕaᰆฯᯕᱢᬊࡹŁᯩᮝӹUᯱ⩶

᫙᮹ ݅᧲⦽ᩕƱ⪹ʑ ┡᯦ᨱ ঑ෙᩕᱥݍ Ñ࠺ᨱ ݡ⦽ᩑǍ۵

ᇡ᳒⦽ ᝅᱶᯕ݅.

঑௝ᕽᅙᩑǍᨱᕽ۵Uᯱ⩶ᅕ݅մᮡᩕƱ⪹ᱲⅪ໕ᱢᮥaḡ ۵Wᯱ⩶ŝ2Uᯱ⩶əญŁᨱթḡ❭ᯝᨱձญᱢᬊࡹŁᯩ۵

⎵ᯝ⩶ḡᵲᩕƱ⪹ʑᨱݡ⦽ᩕ⬉ᮉᮥእƱ⦹Łᯱ⦹ᩡᮝ໑ᯕෝ

᭥⧕ᯙ⃽ǎᱽŖ⧎ᱽ2ᩍ~░ၙձᯕÕᖅࢁᇡḡᨱᙹḢၡ⠱⩶

┡᯦᮹Uᯱ⩶, Wᯱ⩶, 2Uᯱ⩶əญŁ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑෝ

ᖅ⊹⦹ᩡ݅. ᬑᖁ⩥ᰆḡၹ᮹ᩕᱥࠥࠥෝࠥ⇽⦹ʑ᭥⦹ᩍUᯱ⩶, Wᯱ⩶əญŁ2Uᯱ⩶ᩕƱ⪹ʑෝᯕᬊ⦹ᩍ⩥ᰆᩕ᮲ݖ᜽⨹ᮥ

ᝅ᜽⦹ᩡ݅. ə⬥ᩕƱ⪹ʑ⩶┽ᄥᩕƱ⪹ᮉᮥ⊂ᱶ⦹ʑ᭥⦹ᩍ

⩥ᰆᩕᖒ܆ᝅ⨹ᮥᙹ⧪⦹ᩡ݅. ⩥ᰆᩕᖒ܆ᝅ⨹ᮡᬕᱥ᳑Õᄥ

ᩕƱ⪹ᮉ᮹₉ᯕෝᇥᕾ⦹Łᯱ100᜽eᩑᗮᬕᩢ᳑Õŝᇡᇥᬕᩢ

᳑Õ(8᜽eᬕᬊ, 16᜽eݡʑ)ᮝಽ5ᯝeḥ⧪⦹ᩡ݅. ੱ⦽ĥ⊂ࡽ

sᮥ ɝÑಽ ⇵ᖙᖁ ᇥᕾ(regression analysis)ᮥ ☖⦹ᩍ 6}ᬵ

࠺ᦩ᮹ᩕᖒ܆sᮥᩩ⊂⦹ᩡ݅. ⩥ᰆᩕᖒ܆ᝅ⨹ᮥ☖⧕ḡᵲ

ᩕƱ⪹ʑ⩶┽ᄥᩕ⬉ᮉᮥᇥᕾ⦹ᩍᯕ᮹ᱢᬊᖒᨱݡ⧕ם᮹⧕

ᅕᦹ݅.

2. ⩥ᰆᩕᖒ܆ᝅ⨹

2.1 ஺ணવ֗ฅ׆ড౿୺Ս

ᅙᩑǍᨱᕽ۵ᯙ⃽ǎᱽŖ⧎ᱽ2ᩍ~░ၙձÕᖅᇡḡᨱUᯱ⩶

ŝWᯱ⩶ၰ2Uᯱ⩶ḡᵲᩕƱ⪹ʑෝ15cm ᅕᨕ⪡ḢĞԕᨱ

ᙹḢʫᯕ50m ಽᖅ⊹⦹ᩡ݅. ᯝၹᱢᮝಽUᯱ⩶ၰWᯱ⩶ŝ

zᮡ௝ᯙ⩶ᩕƱ⪹ʑ᮹ḢĞᮡ20ⴇ40mm ᱶࠥಽ15cm᮹ᅕᨕ⪡

ḢĞᨱᖅ⊹ࡹʑᨱᅙᩑǍᨱᕽࠥ15cm᮹ᅕᨕ⪡ᮥ⃽Ŗ⦹ᩡ݅.

⦹ḡอ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑ᮹Ğᬑ⎵ᯝ᮹᫙Ğᯕ28cm ᯕʑᨱ

ᅕᨕ⪡ḢĞᮡ30cm ᩡᮝ໑⎵ᯝ⦝⊹eĊ5cmᨱᙹḢʫᯕ

30mಽᖅ⊹ࡹᨩ݅. ḡᵲᩕƱ⪹ʑ۵PB(polybutylene) ᗭᰍ᮹

❭ᯕ⥥(᫙Ğ/ԕĞ: 20mm/16mm)aᔍᬊࡹᨩŁᅕᨕ⪡ԕᇡ۵ᄅ

☁ӹᯕ✙ə௝ᬑ✙ෝ₥ᬕ⩶┽ಽǍᖒࡹᨕᯩᮝ໑ᩕƱ⪹ʑ႑⊹

ᔢ┽۵ Fig. 1ŝ z݅. ᅕᨕ⪡ e eĊᮡ 6m ᯕ໑ ᝅ⨹ḡᩎᨱ

ݡ⧕ḡၹ᳑ᔍෝᙹ⧪⦽đŝᝅ✙ၰ༉௹ḩ♕ᱢ⊖ŝ⣮⪵ᦵ, ᩑᦵ॒ᮝಽǍᖒࡹᨕᯩ݅(Fig. 2). ๅพ⊖᮹N⊹۵2/30ⴇ38/30 ᱶࠥಽๅᬑ۱ᜉ(very loose) ԕḡ᳑ၡ(dense)⦽ᔢ┽ෝӹ┡ԕŁ

ᯩ݅. ੱ⦽♕ᱢ⊖ᮡǔᮡᱱ☁, ᝅ✙ၰ༉௹ᕿᯙᝅ✙⊖ᮝಽǍᖒࡹ

(3)

(a) Drilling of GHE (b) Installation of GHE (C) Bentonite Grouting

(d) Curing of Grout (e) Connection to TPT Equipment Fig. 3. Construction Process of GHE

Table 1. TPT (Thermal Performance Test) Equipment Item Specification

Heater Capacity 5kW Water Tank 20L (SUS 304) Flow meter 220 lpm

Pump 40m head,

100 lpm

Sensor RTD

ᨕᯩᮝ໑9/30ⴇ33/30᮹N sᮥӹ┡ԩ݅. ḡ⦹ᙹ᭥۵ḡ⢽໕ᨱ ᕽGL(-)3.5m ᝍࠥᨱ᭥⊹⧕ᯩᨩᮝ໑GL(-)30m ḡᱱᇡ░⣮⪵

ᦵၰᩑᦵᯕ⇽ᩑ⦹۵äᮝಽӹ┡ԍ݅. ⣮⪵ᦵᮡ༉ᦵᯙ⪵vᦵᯕ

ๅᬑᝍ⦹í⣮⪵ࡽᔢ┽ಽ༉ᦵ᮹᳑Ḣŝ⩶┽۵əݡಽ᯵᳕⦹Ł

ᯩᨩᮝ໑⫊iᔪԕḡݕiᔪᮥӹ┡ԩᮝ໑50/13ⴇ50/2 ᱶࠥ᮹

N sᮥ ᅕᩡ݅. Fig. 3᮹ (a)ⴇ(e)۵ ᝅ⨹ ᱥ ᵝ᫵ ᜽Ŗŝᱶᮥ

ᅕᩍᵝŁ ᯩ݅.

2.2 વনۇਓ෠଀ࠤ

ḡᵲ ᩕƱ⪹ʑ᮹ᩕᱥݍີ⍅ܩ᷹ᮡᩕᱥݍᮁℕaᅕᨕ⪡ԕ᮹

❭ᯕ⥥ԕෝᯕ࠺⦹໕ᕽə௝ᬑ✙ᰍഭ᪡ᵝᄡ᮹ḡၹᮝಽᩕᮥ

⯂ᙹੱ۵ႊ⇽⦹۵ŝᱶᯕ݅. ḡᵲᩕƱ⪹ʑ᪡ᵝᄡḡၹᮝಽ᮹

ᩕᱥݍÑ࠺ᮡᅖᰂ⦹Łᅖ⧊ᱢᯙີ⍅ܩ᷹ᯕ⦥᫵⦹ḡอᯝၹᱢ ᮝಽḡၹᮝಽ᮹ᩕᱥݍᮡᱥࠥᨱ᮹⧕ᯕ൉ᨕḥ݅(Brandl, 2006).

ᩕᱥݍႊᱶ᜾᮹⧕ෝǍ⦹۵ႊჶᮡᖁ⩶ᩕᬱ༉ߙ(line source model), ᬱ☖⩶ᩕᬱ༉ߙ(cylindrical source model) əญŁᙹ⊹

⧕ᕾ༉ߙ॒ᯕᯩᮝ໑ᯕᵲྕ⦽ᖁ⩶ᩕᬱ༉ߙ(infinite line source model)ᮡ ⧕ᕾ᮹ e⠙ᖒŝ ⠙ญᖒᮝಽ ᯙ⧕ aᰆ ฯᯕ

ᔍᬊࡹŁᯩ݅. ྕ⦽ᖁ⩶ᩕᬱ༉ߙᮥᯕᬊ⦽ᮁ⬉ᩕᱥࠥࠥࠥ⇽

ŝᱶᮡᩍ్ྙ⨭ᨱᕽᱽ᜽ࡹŁᯩ݅(Pahud and Matthey, 2001;

Lee et al., 2010). ྕ⦽ᖁ⩶༉ߙᮥ☖⦽ḡᵲᩕᱥࠥࠥ(Ł)۵

Eq. (1)ŝ zᮡ e⠙᜾ᮥ ᔍᬊ⦹ᩍ ᩕ᮲ݖ ᜽⨹ᮥ ☖⧕ ᜽eᨱ

঑ෙᮁℕ᪉ࠥෝ⊂ᱶ⦹Łəđŝෝ­Ƅà “•ƒ᮹ၹݡᙹšĥಽ

ࠥ᜽⦽ ə௹⥥᮹ ʑᬙʑ(š)ෝ ☖⧕ ᔑ⇽⧁ ᙹ ᯩ݅.

Ł á ćªî¥Ñņš (1)

(4)

(a) Temperature Distribution vs. Time

(b) Temperature Distribution vs. lnt

Fig. 4. Fluid Average Temperature Distribution During the TRT (Thermal Response Test) ᩍʑᕽQ۵݉᭥᜽eݚᵝ᯦ࡽᩕప, Lᮡᅕᨕ⪡᮹ʙᯕ,­Ƅ۵

ᮁℕ᮹ ⠪Ɂ ᪉ࠥ, t۵ ᜽eᮥ ஜ⦽݅.

ੱ⦽ḡᵲᩕƱ⪹ʑ᮹ᩕƱ⪹ᮉᮥᔑᱶ⦹ʑ᭥⧕ᕽ۵ᩕᱥݍ

ๅ}ℕ᮹ ᩕ ᱡ⧎ᮥ ᔑ⇽⦹ᩍ ᩕƱ⪹ᮉᮥ ᔑᱶ⦹ᩍ᧝ ⦽݅. ᅙ

ᩑǍᨱᕽ۵ᝅ⨹ᮥ☖⦹ᩍᩕƱ⪹ʑಽᮁ᯦ࡹ۵᪉ࠥෝᯝᱶ⦹í

ᱽᨕ⦹໕ᕽᮁ⇽ᙹ᪉ࠥෝ⊂ᱶ⦽⬥Eq. (2)ෝᯕᬊ⦹ᩍᩕƱ⪹ᮉ

ᮥ ᔑᱶ⦹ᩡ݅.

ªî¥ á ùƋƁÞ­ƄìƇƌƊƃƒà ­ƄìƍƓƒƊƃƒßî¥ (2)

ᩍʑᕽ, ùƋᮡᙽ⪹ᙹ᮹ḩప⮱෥ᗮࠥ(mass flow rate, ƉƅƑàÎ) ᯕŁc۵ᙽ⪹ᙹ᮹እᩕəญŁLᮡᅕᨕ⪡᮹ʫᯕᯕ݅. ᅙᩑǍᨱ ᕽᱽ᯲ࡽᩕᖒ܆ᝅ⨹ʑ۵ḡᵲ᮹ᅕᨕ⪡ᨱๅᖅࡽḡᵲᩕƱ⪹ʑ

ԕᇡෝᙽ⪹ᙹಽŖɪ⦹Łᮁℕ᮹᪉ࠥᄡ⪵ෝqḡ⦹۵᜽ᜅ▽ᮝ ಽ ǍᖒࡹᨕᲙ ᯩ݅. ḡၹ᮹ ᮁ⬉ ᩕᱥࠥࠥෝ ⊂ᱶ⧁ ᙹ ᯩ۵

ᩕ᮲ݖᝅ⨹ᰆ⊹᪡zᯕᙽ⪹ᙹෝŖɪ⦹۵ᙹ᳑ԕᨱ⯩░ෝ

☖⦹ᩍ ᯝᱶ⦽ ᱥಆᮥ Ŗɪ⧁ ᙹ ᯩ݅. ੱ⦽ ⯩░ԕ᮹ ᪉ࠥෝ

ᯝᱶ⦹íᱽᨕ⧁ᙹᯩ۵᪉ࠥᱽᨕʑaᖅ⊹ࡹᨕᯩʑᨱḡᵲ

ᩕƱ⪹ʑಽ⮹్a۵ᮁ᯦ᙹ᪉ࠥෝᯝᱶ⦹íᮁḡ⦹Łᮁ⇽ᙹ

᪉ࠥෝ ĥ⊂⦹໕ ḡၹŝ᮹ ᩕƱ⪹ᮉᮥ ⊂ᱶ⧁ ᙹ ᯩ۵ ʑ܆ࠥ

┲ᰍࡹᨕᯩ݅. ᷪᅙᰆእෝᯕᬊ⦹໕ḡၹ᮹ᩕᱥࠥࠥෝ⊂ᱶ⧁

ᙹᯩ۵ᩕ᮲ݖᝅ⨹ᐱอᦥܩ௝ᩕƱ⪹ᮉᮥ⊂ᱶ⧁ᙹᯩ۵ᩕᖒ܆

ᝅ⨹ࠥa܆⦹݅Ł⧁ᙹᯩ݅. Table 1ᮡᩕᖒ܆ᝅ⨹ʑ᮹ᱽᬱᮥ

ӹ┡ԙ݅.

3. ⩥ᰆᩕ᮲ݖᝅ⨹đŝ

Fig. 3ŝzᯕḡᵲᩕƱ⪹ʑᖅ⊹⬥ḡၹ᮹ᩕᱥࠥࠥෝᔑᱶ⦹

ʑ᭥⦹ᩍU, W əญŁ2Uᯱ⩶ḡᵲᩕƱ⪹ʑᨱݡ⧕⩥ᰆᩕ᮲ݖ

ᝅ⨹ᮥᝅ᜽⦹ᩡ݅. ⎵ᯝ⩶Ʊ⪹ʑ᮹Ğᬑ௝ᯙ⩶┽aᦥܩʑᨱ

Eq. (1)᮹ྕ⦽ᖁ⩶ᩕᬱ༉ߙᮥᱢᬊ⦹ʑ۵ᨕಅᬕäᮝಽ᦭ಅᲙ

ᯩ݅(Yoon et al., 2012). ḡᵲᩕƱ⪹ʑaᖅ⊹ࡽᅕᨕ⪡ᨱᰆእෝ

ᩑđ⦹ᩍ48᜽e࠺ᦩ⩥ᰆᩕ᮲ݖ᜽⨹ᮥᙹ⧪⦹ᩡ݅. ⯩░⚍᯦

ᱥ30ᇥeྕᇡ⦹ᬕᱥᮥ☖⧕ࠥ⇽ࡽḡၹ᮹Ⅹʑ᪉ࠥ۵15.8ⴇ 16.5°C ᩡᮝ໑ ᝅ⨹᜽ ᮁపᮡ ӽඹ ᳑Õ ⩶ᖒᮥ ᭥⦹ᩍ 6ⴇ8 lpm sᮝಽᱽᨕ⦹ᩡŁᙽ⪹ᙹ᪉ࠥᐱอᦥܩ௝ᮁపsࠥ10ᇥ

eĊᮝಽᝅ᜽eᮝಽĥ⊂ᱡᰆ⦹ᩡ݅. Uᯱ⩶ᩕƱ⪹ʑᨱ⚍᯦ࡹ

۵ᩕపᮡ2000W ᩡᮝ໑Wᯱ⩶ŝ2Uᯱ⩶ᩕƱ⪹ʑᨱ۵3000W ᮹ᱥಆᮥ⚍᯦⦹ᩡ݅. 48᜽e࠺ᦩ᮹ᩕ᮲ݖ᜽⨹⬥Ⅹʑᩕᬊపᯕ

ᯝᱶ⦹ḡᦫᮡäᮥŁಅ⦹ᩍⅩʑ12᜽e᪉ࠥߑᯕ░ෝᱽ᫙⦹Ł

Eq. (1)ᮥᯕᬊ⦹ᩍḡၹ᮹ᩕᱥࠥࠥෝᔑᱶ⦹ᩡ݅. Fig. 4۵U, W əญŁ 2Uᯱ⩶ ḡᵲ ᩕƱ⪹ʑ ᯕᬊ᜽ ᩕ᮲ݖ ᝅ⨹ ᜽eᨱ

(5)

Fig. 5. Heat Exchange Rate for 100 Hours Under the Continuous Operation

঑ෙᙽ⪹ᙹ᮹⠪Ɂ᪉ࠥᄡ⪵ෝӹ┡ԙ݅. U, W əญŁ2Uᯱ⩶

ḡᵲᩕƱ⪹ʑᯕᬊᨱ঑ෙḡၹ᮹ᩕᱥࠥࠥ۵bb2.13, 2.15, 2.17W/m·K sᮥ ᅕᩡ݅. ᩕƱ⪹ʑ ⩶┽ᄥ ḡၹ᮹ ᩕᱥࠥࠥa

1ⴇ2% ჵ᭥ ԕᨱᕽ ₉ᯕෝ ᅕᩡᮝӹ ᯕ۵ ḡၹ᮹ Ⅹʑ᪉ࠥa

᪥ᱥ⯩ᯝ⊹⦹ḡᦫᦹᮝ໑ᩕƱ⪹ʑ⩶┽₉ᯕᨱʑᯙ⦽äᮝಽ

❱݉ࡽ݅.

4. ⩥ᰆᩕᖒ܆ᝅ⨹đŝ

ᩕ᮲ݖ ᝅ⨹ ⬥ ࠺ᯝ⦽ ḡၹ ᳑Õ⦹ᨱᕽ U, W, 2U əญŁ

⎵ᯝ⩶ḡᵲᩕƱ⪹ʑaᖅ⊹ࡽᅕᨕ⪡ᨱᕽ⩥ᰆᩕᖒ܆ᝅ⨹ᮥ

ᝅ᜽⦹ᩡ݅. Ԫႊa࠺᜽ෝ༉ᔍ⦹ʑ᭥⧕ḡၹᮝಽ⚍᯦ࡹ۵᪉ࠥ

۵ 31°Cಽ ᯝᱶ⦹í ᱽᨕ⦹ᩡᮝ໑ 100᜽e ᩑᗮ ᬕᩢ ᳑Õŝ

ᇡᇥᬕᩢ᳑Õ(8᜽eᬕᬊ, 16᜽eݡʑ)ᮝಽ5ᯝeḥ⧪⦹ᩍḡᵲ

ᩕƱ⪹ʑ⩶┽ᨱ঑ෙᩕƱ⪹ᮉᮥᔑᱶ⦹ᩡ݅. ᩕ᮲ݖᝅ⨹ŝษ₍

aḡಽ ӽඹ ᳑Õᮥ ⩶ᖒ⦹ʑ ᭥⦹ᩍ ᮁపᮡ 6ⴇ8lpm sᮝಽ

ᱽᨕ⦹ᩡᮝ໑᯦⇽Ǎ᪉ࠥ᪡ᮁపᮡ10ᇥeĊᮝಽᝅ᜽eᮝಽ

ĥ⊂ ᱡᰆ⦹ᩡ݅.

4.1 100ਏԩ٣ࢺԧܛ઴ু૶ୢਓ෠էր

U, W, 2U əญŁ⎵ᯝ⩶ḡᵲᩕ⪹ʑʑᖅ⊹ࡽᅕᨕ⪡ᨱ100᜽

e࠺ᦩᩑᗮᮝಽᩕᖒ܆ᝅ⨹ᮥᙹ⧪⦽⬥Eq. (2)ෝᯕᬊ⦹ᩍ

100᜽e ⠪Ɂ ᩕƱ⪹ᮉ sᮥ ᔑᱶ⦹ᩡ݅. እಾ ⎵ᯝ⩶᮹ Ğᬑ

ʫᯕ᪡ᅕᨕ⪡݉໕ᱢ᮹մᯕaӹນḡᩕƱ⪹ʑ᪡݅෕݅⦹޵௝

ࠥ ᩕᖒ܆ ᝅ⨹ᨱ ᮹⧕ ᨜ᨕḡ۵ ᩕƱ⪹ᮉᮥ ᅕᨕ⪡᮹ ʙᯕಽ

ӹ٩݉᭥ʫᯕݚᩕƱ⪹ᮉಽእƱ⦹ᩡ݅. ᅕᨕ⪡ԕ᮹݅ෙ⩶┽᮹

ᩕƱ⪹ʑ ၰᅕᨕ⪡ ໕ᱢ ॒ᮡᅕᨕ⪡᮹ ᩕᱡ⧎ᨱ ᩢ⨆ᮥᵝᨕ

᯦⇽Ǎ᮹᪉ࠥ₉đŝᨱᩢ⨆ᮥᵝအಽEq. (2)ಽᇡ░ᔑᱶࡽⅾ

ᩕƱ⪹ᮉsᨱᯕၙၹᩢࡹᨩ݅Ł⧁ᙹᯩ݅. Uᯱ⩶ᩕƱ⪹ʑ

ᯕᬊ᜽35.71W/m, Wᯱ⩶ᩕƱ⪹ʑᯕᬊ᜽40.76W/m, 2Uᯱ⩶

ᯕᬊ᜽۵39.03W/m əญŁ⎵ᯝ⩶ᩕƱ⪹ʑᯕᬊ᜽76.8W/m ᮹ᩕƱ⪹ᮉᮥᅕᩡ݅. Wᯱ⩶ŝ2Uᯱ⩶ḡᵲᩕƱ⪹ʑᯕᬊ᜽

Uᯱ⩶ᨱእ⧕10ⴇ15% ᱶࠥᩕƱ⪹ᮉᯕᔢ᜚ࡹ۵äᮥ⪶ᯙ⧁

ᙹᯩᨩ݅. ᯕ۵Wᯱ⩶ŝ2Uᯱ⩶ḡᵲᩕƱ⪹ʑ۵Uᯱ⩶ᨱእ⧕

޵մᮡᩕƱ⪹ᱲⅪ໕ᱢᮥaḡʑ৥ྙᯙäᮝಽ❱݉ࡹ໑Wᯱ⩶

ᯕ2Uᯱ⩶ᅕ݅4ⴇ5% ׳ᮡᩕƱ⪹ᮉsᮥᅕᩡᮝӹᕽಽeᨱ

ᔢݡᱢᯙᬒᖒᮥaḡḡ۵ᦫ۵äᮝಽ❱݉ࡽ݅. ⎵ᯝ⩶ḡᵲ

ᩕƱ⪹ʑᯕᬊ᜽ӹນḡ┡᯦ॅᅕ݅ᅕᨕ⪡݉᭥ʙᯕݚᩕƱ⪹ᮉ

ᮡݡఖ2႑ᱶࠥ׳ᮡᩕƱ⪹ᮉᮥӹ┡ԕᨩ۵ߑ⎵ᯝ⩶ᩕƱ⪹ʑ᮹

ⅾʙᯕaݡఖ350mᯙäᮥqᦩ⦹໕əอⓝə௝ᬑ✙᪡᮹ᩕᱲⅪ

໕ᱢᯕմʑᨱ׳ᮡᩕƱ⪹ᮉsᮥaḡ۵äᮝಽ❱݉ࡽ݅. ʑ᳕᮹

ᩑǍ đŝᨱᕽࠥ ⎵ᯝ⩶ ḡᵲ ᩕƱ⪹ʑ۵ ᯝၹ ௝ᯙ⩶ᨱ እ⧕

ᩕƱ⪹܆ಆᯕᬑᙹ⦽äᮝಽ᦭ಅᲙᯩ݅(Cui et al., 2011; Man et al., 2010). ⦹ḡอ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑ۵ᯝၹ௝ᯙ⩶ᨱእ⧕

ᅕᨕ⪡໕ᱢᯕⓍíᗭ᫵ࡹʑᨱᨱթḡ❭ᯝŝzᯕᅕᨕ⪡ʫᯕ᪡

ḢĞᯕᯝᱶ⦹íŁᱶࡽ᳑Õᨱᕽᱢᬊ⧁Ğᬑᅕ݅ᬑᙹ⦽ᖒ܆ᮥ

ӹ┡ԝäᮝಽ❱݉ࡽ݅. Fig. 5۵100᜽eᩕᖒ܆ᝅ⨹ᨱ঑ෙ

ᩕƱ⪹ᮉᮥ ᅕᩍᵝŁ ᯩ݅. ᩕƱ⪹ᮉ sᯕ ᔢݡᱢᮝಽ ᯲ᮡ U, WəญŁ 2Uᯱ᪡ zᮡ௝ᯙ⩶ ḡᵲ ᩕƱ⪹ʑ۵ᝅ⨹ ᜽᯲ ⬥

ݡఖ1000ᇥᯕḡӽ⬥ᨱᩕƱ⪹ᮉsᯕÑ᮹ᯝᱶ⧕ḡ۵ᱶᔢᔢ┽

ᨱࠥݍ⧩ᮭᮥ᦭ᙹᯩᨩ݅. ⦹ḡอ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑ᮹Ğᬑ

ᝅ⨹⬥ݡఖ3000ᇥᱶࠥḡӽ⬥ᱶᔢᔢ┽ᨱࠥݍ⧉ᮥᅕᩡ۵ߑ

ᯕ۵⎵ᯝ⩶᮹ Ğᬑ ᅕᨕ⪡᮹ḢĞᯕ ⍅ ᅕᨕ⪡ᯱℕa ᅕᮁ⦽

ᩕᬊపᯕⓍʑᨱəอⓝ௝ᯙ⩶ᩕƱ⪹ʑᅕ݅ᱶᔢᔢ┽ᨱࠥݍ⦹

۵ ᜽eᯕ ᪅௹ Ùฑ݅۵ äᮥ ᦭ ᙹ ᯩ݅.

4.2 ٣ࢺԧܛऀं૶ୢਓ෠էր

ᝅᱽḡᩕ᜽ᜅ▽a࠺᜽⩥ᝅᱢᮝಽᩑᗮᬕᱥ᳑Õᅕ݅۵ჶᱶ

ɝಽ᜽eᯙ8᜽eᬕᱥ16᜽e⮕ḡෝaᱶ⦽ᇡᇥᬕᱥ᳑Õᮝಽ

5ᯝeᩕᖒ܆ᝅ⨹ᮥᙹ⧪⦹ᩡ݅. ᩑᗮᬕᱥ᳑Õđŝಽᇡ░Wᯱ

⩶ŝ ⎵ᯝ⩶ ḡᵲ ᩕƱ⪹ʑ᮹ ᅕᨕ⪡ ݉᭥ ʙᯕݚ ᩕƱ⪹ᮉᯕ

ᬑᙹ⦹íӹ┡ԍʑᨱᇡᇥᬕᱥ᳑Õ᮹ᩕᖒ܆ᝅ⨹ᨱᕽ۵Wᯱ⩶

ŝ⎵ᯝ⩶ ᩕƱ⪹ʑᨱ ݡ⧕ᝅ᜽⦹ᩡᮝ໑ ᮁ᯦ᙹ ᪉ࠥၰ ᮁప

॒᮹ ᝅ⨹ ᳑Õᮡ ᩑᗮ ᬕᱥŝ ࠺ᯝ⦹ᩡ݅. Fig. 6ᮡ Wᯱ⩶ŝ

⎵ᯝ⩶ḡᵲᩕƱ⪹ʑᯕᬊ᜽5ᯝeᇡᇥᬕᱥᨱ঑ෙᩕƱ⪹ᮉᮥ

ӹ┡ԙ݅. 5ᯝe᮹ᇡᇥᬕᱥᝅ⨹đŝWᯱ⩶ᩕƱ⪹ʑᯕᬊ᜽

⠪ɁᩕƱ⪹ᮉsᮡ54.16W/m, ⎵ᯝ⩶ᩕƱ⪹ʑᯕᬊ᜽۵⠪Ɂ

103W/m᮹ᩕƱ⪹ᮉsᮥᅕᩡ݅. ᇡᇥᬕᱥ᳑Õᯕᩑᗮᬕᱥ

᳑Õᨱእ⧕30ⴇ40% aప׳ᮡᩕƱ⪹⬉ᮉᮥᮁၽ⦹۵äᮝಽ

ӹ┡ԍ݅. ᯕ۵ᩑᗮᬕᱥ᳑Õᮡᇡᇥᬕᱥ᳑Õᨱእ⧕ḡၹᮝಽ

(6)

Fig. 6. Heat Exchange Rate for Five Days Under the Intermittent Operation

Fig. 7. Heat Exchange Rate by Regression Analysis

Fig. 8. Heat Exchange Rate for Sixth Months Under the Continuous Operation Condition

Fig. 9. Heat Exchange Rate for Sixth Months Under the Intermittent Operation Condition

ᩕᯕ ĥᗮ⇶ᱢࡹʑᨱ ᩕᱥݍ ⬉ᮉqᗭa Ⓧí ӹ┡ӽäᮝಽ

❱݉ࡽ݅.

4.3 ٣ࢺԧܛ6Թଁୋ׆নۇુ౸էր

100᜽eᩑᗮᬕᱥᝅ⨹đŝ᪡5ᯝᇡᇥᬕᱥᝅ⨹đŝᔑ⇽ࡽ

ᩕƱ⪹ᮉ sᮥ ɝÑಽ Figs. 5 and 7᮹ ⇵ᖙᖁ ᜾ᮥ ᯕᬊ⦹ᩍ

⫭ȡᇥᕾᮥ☖⧕6}ᬵԪႊa࠺᜽ᩕƱ⪹ᮉsᮥ⇵ᱶ⦹ᩡ݅.

ྜྷುᯝၹᱢᯙᔢᨦᬊÕྜྷᯕ௝⧁ḡ௝ࠥ⩥ᝅᱢᮝಽ6}ᬵ࠺ᦩ

Ԫႊa࠺ᮡᇩa܆⦹ḡอᅙᩑǍᨱᕽ۵ᇡᇥᬕᱥၰᩑᗮᬕᱥ᮹

ᰆʑeእƱᇥᕾᮥ᭥⦹ᩍ6}ᬵ࠺ᦩ᮹Ԫႊa࠺᳑Õ⦹ᨱᩕᖒ܆

ᩩ⊂ᮥᝅ᜽⦹ᩡ݅. ĥ⊂ࡽᝅ⨹sᮥɝÑಽᔑ⇽ࡽ⇵ᖙᖁ᜾᮹

«Ïsᮡ༉ࢱ0.9 ᯕᔢᮝಽᅙ⫭ȡᇥᕾᮥ☖⦽3}ᬵ࠺ᦩ᮹ᩕƱ⪹

ᮉsᮥᩩ⊂⦹۵ߑⓑ᪅₉ᨧᯕᔍᬊࢁᙹᯩ۵äᮝಽ❱݉ࡽ݅.

ᇡᇥa࠺᮹ĞᬑWᯱ⩶ŝ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑᨱݡ⧕ᕽอᙹ⧪

⦹ᩡʑᨱࢱaḡ⩶┽ᨱݡ⧕ᕽอ6}ᬵᰆʑᖒ܆ᮥᩩ⊂⦹ᩡ݅.

Fig. 7ᮡ5ᯝe᮹⠪ɁᩕƱ⪹ᮉsᮥᯕᬊ⦽⇵ᖙᖁ᜾ᮥᅕᩍᵝŁ

ᯩ݅. Fig. 8ᮡḡᵲᩕƱ⪹ʑ᮹6}ᬵᩑᗮᬕᱥ᜽ᩩᔢࡹ۵ᩕƱ⪹

ᮉᮥӹ┡ԕŁᯩᮝ໑Fig. 9۵Wᯱ⩶ŝ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑ᮹

6}ᬵᇡᇥᬕᱥ᜽ᩩ⊂ࡽᩕƱ⪹ᮉᮥᅕᩍᵝŁᯩ݅. Table 2۵

ḡᵲ ᩕƱ⪹ʑ ⩶┽ᄥ ᝅ⨹đŝ᪡ 6}ᬵ e ᩩ⊂ࡽ ᩕƱ⪹ᮉᮥ

᫵᧞⦹ᩍᅕᩍᵝŁᯩ݅. ᜽eᯕḡԁᙹಾḡၹᮝಽႊ⇽ࡹ۵ᩕప ᯕ⇶ᱢࡹʑᨱəอⓝᩕƱ⪹ᮉsᯕqᗭࡹ۵äᮥ᦭ᙹᯩ݅.

6}ᬵᩩ⊂ᨱᕽࠥᇡᇥᬕᱥ᳑Õᯕᩑᗮᬕᱥ᳑Õᨱእ⧕30ⴇ40

%aప׳ᮡᩕƱ⪹⬉ᮉᮥᮁၽ⦹۵äᮝಽӹ┡ԍ݅. ᯝၹᙹḢ

ၡ⠱⩶᮹ᩕƱ⪹ᮉᯕ40ⴇ70W/m ᯙäᮥqᦩ⧁ভ(European Geothermal Energy Council, 2008) ᅙᩑǍᨱᕽĥ⊂ࡽᩕƱ⪹ᮉ

sᮡ⎵ᯝ⩶ᮥᱽ᫙⦹Ł۵݅ᗭԏᮡsᮥӹ┡ԕŁᯩ݅. ᯕ۵

(7)

Table 2. Summary of TPT (Thermal Performance Test) Results

GHE

Heat exchange rate under the continuous operation (W/m)

Heat exchange rate under the intermittent operation (W/m) 100hr average 6-month average 1day 2day 3day 4day 5day 5-day

average

6-month average

U 35.74 24.10 - - - - - - -

W 40.76 27.11 58.7 55.6 53.6 52.2 50.7 54.2 40.63

2U 39.03 27.62 - - - - - - -

Coil 76.8 32.84 117.5 107.1 100.6 96.4 94 103.1 65.6

ᖅ⊹ࡽ ᅕᨕ⪡ ᙹḢʫᯕa 30ⴇ50mಽ ᧶Ł ḡᵲ ᩕᱥࠥࠥa

2.15W/m·K ɝ⃹ಽ݅ᗭԏí⊂ᱶࡹᨩʑভྙᯙäᮝಽ⇵ᱶࡽ݅.

5. đು

ᅙםྙᨱᕽ۵ๅพḡḡၹᮝಽǍᖒࡽᯙ⃽ǎᱽŖ⧎ᱽ2ᩍ~

░ၙձᯕÕᖅࢁᇡḡᨱU, W, 2U əญŁ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑෝ

ᖅ⊹⦹ᩍ⩥ᰆᩕ᮲ݖၰᩕᖒ܆ᝅ⨹ᮥᝅ᜽⦹ᩍḡၹ᮹ᩕᱥࠥࠥ

ၰᩕƱ⪹ᮉᮥᔑᱶ⦹ᩡ݅. ᅙᩑǍෝ☖⧕݅ᮭŝzᮡđುᮥ

ࠥ⇽⦹ᩡ݅.

(1) U, W əญŁ 2Uᯱ⩶ ḡᵲ ᩕƱ⪹ʑ ᯕᬊᨱ ঑ෙ ḡၹ᮹

ᩕᱥࠥࠥ۵bb2.13, 2.15, 2.17W/m·K sᮥᅕᩡ݅. ᩕƱ⪹

ʑ ⩶┽ᄥ ḡၹ᮹ ᩕᱥࠥࠥa 1ⴇ2% ჵ᭥ ԕᨱᕽ ₉ᯕෝ

ᅕᩡᮝӹ ᯕ۵ ḡၹ᮹ Ⅹʑ᪉ࠥa ᪥ᱥ⯩ ᯝ⊹⦹ḡ ᦫᦹŁ

ᩕƱ⪹ʑ⩶┽᮹₉ᯕᨱʑᯙ⦽äᮝಽ❱݉ࡽ݅. ঑௝ᕽᩕƱ

⪹ʑ⩶┽᪡šĥᨧᯕྕ⦽ᖁ⩶ᩕᬱ༉ߙᮥᱢᬊ⦹ᩍᩕ᮲ݖ

ᝅ⨹ᮥ ☖⧕ ḡၹ᮹ ᩕᱥࠥࠥ ⇵ᱶᯕ a܆⦹݅.

(2) U, W, 2U əญŁ⎵ᯝ⩶ḡᵲᩕƱ⪹ʑaᖅ⊹ࡽᅕᨕ⪡ᨱ

100᜽e࠺ᦩᩑᗮᮝಽԪႊᬕᱥ᳑Õᮝಽᩕᖒ܆ᝅ⨹ᮥ

ᙹ⧪⦽⬥⠪ɁᩕƱ⪹ᮉsᮥᔑᱶ⦽đŝUᯱ⩶ᩕƱ⪹ʑ

ᯕᬊ᜽35.71W/m, Wᯱ⩶ᩕƱ⪹ʑᯕᬊ᜽40.76W/m, 2Uᯱ

⩶ᯕᬊ᜽۵39.03W/m əญŁ⎵ᯝ⩶ᩕƱ⪹ʑᯕᬊ᜽76.8W/m ᮹ ᩕƱ⪹ᮉᮥᅕᩡ݅. Wᯱ⩶ŝ2Uᯱ⩶ḡᵲᩕƱ⪹ʑᯕᬊ᜽

Uᯱ⩶ᨱእ⧕10ⴇ15% ᱶࠥᩕƱ⪹ᮉᯕᔢ᜚ࡹ۵äᮥ⪶ᯙ

⧁ᙹᯩᨩ݅. ᯕ۵Wᯱ⩶ŝ2Uᯱ⩶ḡᵲᩕƱ⪹ʑ۵Uᯱ⩶ᨱ

እ⧕޵մᮡᩕƱ⪹ᱲⅪ໕ᱢᮥaḡʑভྙᯙäᮝಽ❱݉ࡹ

໑Wᯱ⩶ᯕ2Uᯱ⩶ᅕ݅4ⴇ5% ׳ᮡᩕƱ⪹ᮉsᮥᅕᩡᮝӹ

ᕽಽeᨱᔢݡᱢᯙᬒᖒᮥaḡḡ۵ᦫ۵äᮝಽ❱݉ࡽ݅.

⦹ḡอᯝၹᱢᯙUᯱ⩶ᩕƱ⪹ʑ۵30ⴇ40mm ḢĞ᮹HDPE (high densitypPolyethylene) ❭ᯕ⥥aᔍᬊࡹ໑150mm᮹

ᅕᨕ⪡ḢĞᨱ30mm ᯕᔢ᮹Wᯱ⩶ᩕƱ⪹ʑෝᖅ⊹⦹ʑᨱ۵

᜽Ŗᔢᨕಅᬡᯕⓕäᮝಽ❱݉ࡽ݅. ঑௝ᕽ20ⴇ25mm ḢĞ ᮹Wᯱ⩶ᩕƱ⪹ʑ᪡30ⴇ40mm ḢĞ᮹Uᯱ⩶ᩕƱ⪹ʑ

ᱢᬊ᜽ᔢݡᱢᯙᩕᖒ܆ᮥእƱᇥᕾ⦹۵ᩑǍa⦥᫵⧁äᮝ ಽ❱݉ࡽ݅. ੱ⦽⎵ᯝ⩶ḡᵲᩕƱ⪹ʑᯕᬊ᜽ӹນḡ┡᯦ॅ

ᅕ݅ ݡఖ 2႑ ᱶࠥ ׳ᮡ ᩕƱ⪹ᮉᮥ ӹ┡ԕᨩ۵ߑ ⎵ᯝ⩶

ᩕƱ⪹ʑ᮹ⅾʙᯕaݡఖ350m ᯙäᮥqᦩ⦹໕əอⓝ

ə௝ᬑ✙᪡᮹ᩕᱲⅪ໕ᱢᯕմʑᨱ׳ᮡᩕƱ⪹ᮉsᮥaḡ ۵ äᮝಽ ❱݉ࡽ݅.

(3) Wᯱ⩶ŝ ⎵ᯝ⩶ ḡᵲ ᩕƱ⪹ʑෝ ᯕᬊ⦹ᩍ 5ᯝe᮹ ᇡᇥ

ᬕᱥᝅ⨹đŝWᯱ⩶ᩕƱ⪹ʑᯕᬊ᜽⠪ɁᩕƱ⪹ᮉsᮡ

54.16W/m, ⎵ᯝ⩶ᩕƱ⪹ʑᯕᬊ᜽۵⠪Ɂ103W/m᮹ᩕƱ

⪹ᮉ sᮥ ᅕᩡ݅. ᷪ ᇡᇥ ᬕᱥ ᳑Õᯕ ᩑᗮ ᬕᱥ ᳑Õᨱ

እ⧕ 30ⴇ40% aప ׳ᮡ ᩕƱ⪹ ⬉ᮉᮥ ᮁၽ⦹۵ äᮝಽ

ӹ┡ԍ݅. ᯕ۵ᩑᗮᬕᱥ᳑Õᮡᇡᇥᬕᱥ᳑Õᨱእ⧕ḡၹᮝ ಽ ᩕᯕ ĥᗮ ⇶ᱢࡹʑᨱ ᩕᱥݍ ⬉ᮉ qᗭa Ⓧí ӹ┡ӽ

äᮝಽ❱݉ࡽ݅. ੱ⦽ĥ⊂ࡽsᮥɝÑಽ⇵ᖙᖁ᜾ᮥᔑ⇽⦹ᩍ

6}ᬵᩕƱ⪹ᮉsᮥ⇵ᱶ⦽đŝUᯱ⩶ᩑᗮᬕᱥ᜽24.10W/m, Wᯱ⩶᮹Ğᬑᩑᗮᬕᱥ: 29.19W/m, ᇡᇥᬕᱥ: 40.63W/m ᮹ sᮥ ӹ┡ԩ݅. ੱ⦽ ⎵ᯝ⩶᮹ Ğᬑ 6}ᬵ ᩑᗮ ᬕᱥ᜽

32.84W/m, ᇡᇥᬕᱥ᜽۵65.58W/m sᮥӹ┡ԩ݅. ᜽eᯕ

ḡԁᙹಾḡၹᮝಽ᮹ႊ⇽ࡹ۵ᩕపᯕ⇶ᱢࡹʑᨱəอⓝᩕƱ

⪹ᮉsᯕqᗭࡹ۵äᮥ᦭ᙹᯩ݅. 6}ᬵᩩ⊂ᨱᕽࠥᇡᇥ

ᬕᱥ ᳑Õᯕ ᩑᗮ ᬕᱥ ᳑Õᨱ እ⧕ 30ⴇ100% aప ׳ᮡ

ᩕƱ⪹ ⬉ᮉᮥ ᮁၽ⦹۵ äᮝಽ ӹ┡ԍ݅.

(4) ᯕ᪡zᯕḡᵲᩕƱ⪹ʑ⩶┽ᄥᩕƱ⪹ᮉᮡⓑ₉ᯕෝᅕᯕ۵

äᮥ᦭ᙹᯩ݅. ੱ⦽ᬕᱥ᳑Õᨱݡ⧕ᕽࠥḡၹᮝಽ⇶ᱢࡹ۵

ᩕపᮝಽᯙ⧕ᩕƱ⪹ᮉᮡ30ⴇ100% ᱶࠥ₉ᯕaӹ۵äᮥ

᦭ᙹᯩ݅. ᝅᱽḡᩕ᜽ᜅ▽a࠺᜽ᩑᗮᬕᱥᅕ݅۵ᵝʑᱢᮝ ಽᬕᱥᮥ⦹۵äᯕⓑ⬉ŝෝᅝᙹᯩᮥäᮝಽ❱݉ࡹ໑

ᅙᩑǍᨱᕽ۵ḡᵲᩕƱ⪹ʑ⩶┽ᄥᩕ⬉ᮉอᇥᕾ⦹ᩡʑᨱ

⨆⬥ᨱ۵ḡᵲᩕƱ⪹ʑ⩶┽ᄥ᜽Ŗእෝᔑᱶ⦹ᩍĞᱽᖒᮥ

Łಅ⦽ḡᵲᩕƱ⪹ʑᖒ܆ᇥᕾᯕ⦥᫵⧁äᮝಽ❱݉ࡽ݅.

(8)

qᔍ᮹ɡ

ᅙᩑǍ۵ǎ☁Ʊ☖ᇡǎ☁Ʊ☖ŝ⦺ʑᚁḥ⯆ᬱÕᖅʑᚁ⩢ᝁᔑ ᨦ(11ʑᚁ⩢ᝁE04)ŝၙ௹₞᳑ŝ⦺ᇡ⦽ǎᩑǍᰍ݉᮹ʑⅩŝ⦺

ᩑǍᔍᨦ(2012-0005074)᮹ḡᬱᔍᨦᮝಽᙹ⧪ࡹᨩᮝ໑, ᯕᨱʫ

ᮡ qᔍෝ ऽพܩ݅.

References

Brandl, H. (2006). “Energy foundations and other thermo-Active ground structures.” Geotechnique, Vol. 56, No. 2, pp. 81-122.

Cui, P., Li, X., Man, Y. and Fang, Z. (2011). “Heat trasnfer analysis of pile geothermal heat exchangers with spiral coils.” Applied Energy, Vol. 88, pp. 4113-4119.

European Geothermal Energy Council. (2008). Ground source heat pump: A guide book, Brussel.

Geothermal Energy Education Center. (2011). Geothermal system design, Konkiwon (in Korean).

Lee, C., Park, M., Min, S., Choi, H. and Sohn, B. (2010).

“Evaluation of performance of grouts and pipe sections for closed-loop vertical ground heat exchanger by in-situ thermal response test.” Journal of Korean Geotechnical Society, Vol. 26, No. 7, pp. 93-106 (in Korean).

Lim, H. J., Kong, H. J., Kang, S. J. and Choi, J. H. (2011). “The effect of the installation condition of ground loop heat exchanger to the thermal conductivity and borehole resistance.” Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.

23, No. 2, pp. 95-102 (in Korean).

Man, Y., Yang, H., Diao, N., Liu, J. and Fang, Z. (2010). “A new model and analytical solutions for borehole and pile ground heat exchangers.” International Journal of Heat and Mass Transfer, Vol. 53, pp. 2593-2601.

Min, K. C. and Choi, J. H. (2011). “Effect of the design parameters of goethemral heat exchanger design length.” Journal of Korean Society of Geothermal Energy Engineers, Vol. 7, No. 2, pp. 10-15 (in Korean).

Pahud, D. and Matthey, B. (2001). “Comparison of the thermal performance of double U-pipe borehole heat exchangers measured in situ.” Energy and Building, Vol. 33, pp. 503-507.

Park, H. K., Lee, S. R., Yoon, S. and Choi, J. C. (2013). “Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation.” Applied Energy, Vol.

103, pp. 12-24.

Park, M. S., Lee, C. H., Park, S. W., Shon, B. H. and Choi, H. S.

(2012). “Evaluation of ground thermal conductivity by performing in-situ thermal response test (TRT) and CFD back-analysis.”

Journal of Korean Geotechnical Society, Vol. 28, No. 12, pp.

5-15 (in Korean).

Sohn, B. H., Shin., H. J. and Park, S. K. (2005). “Evaluation of effective thermal conductivity and thermal resistance in ground heat exchanger boreholes.” Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 17, No. 8, pp. 695-703 (in Korean).

Yoon, S., Lee, S. R., Park, H. and Park. S. (2012). “Thermal conductivity estimation of soils using coil shaped ground heat exchanger.” Journal of Korean Society of Civil Engineers, Vol.

32, No. 5C, pp. 177-183 (in Korean).

수치

Fig. 1. Diagram of GHE
Table 1. TPT (Thermal Performance Test) Equipment Item Specification
Fig. 4. Fluid Average Temperature Distribution During the TRT (Thermal Response Test)ᩍʑᕽQ۵݉᭥᜽eݚᵝ᯦ࡽᩕప, Lᮡᅕᨕ⪡᮹ʙᯕ,­Ƅ۵ᮁℕ᮹ ⠪Ɂ ᪉ࠥ, t۵ ᜽eᮥ ஜ⦽݅.ੱ⦽ḡᵲᩕƱ⪹ʑ᮹ᩕƱ⪹ᮉᮥᔑᱶ⦹ʑ᭥⧕ᕽ۵ᩕᱥݍๅ}ℕ᮹ ᩕ ᱡ⧎ᮥ ᔑ⇽⦹ᩍ ᩕƱ⪹ᮉᮥ ᔑᱶ⦹ᩍ᧝ ⦽݅
Fig. 5. Heat Exchange Rate for 100 Hours Under the Continuous  Operation ঑ෙᙽ⪹ᙹ᮹⠪Ɂ᪉ࠥᄡ⪵ෝӹ┡ԙ݅
+3

참조

관련 문서

Seok Ho Song, Jung Hwan Park, Jin Young Heo, and Jeong Ik Lee(KAIST). Preliminary Thermal Sizing of PRHRS Heat Exchanger for Innovative Next

H, 2011, Development of Cascade Refrigeration System Using R744 and R404A : Analysis on Performance Characteristics, Journal of the Korean Society of Marine Engineering, Vol.

Also, the design of an optimal heat sink requires a complete knowledge of all heat transfer characteristics between the heat source and the ambient air

24 Comparison between profiles of acoustic pressure and heat transfer augmentation in case of output power level of 300W.. 25 Comparison between profiles of acoustic pressure

A Study on Heat Dissipation Design and Performance Evaluation of Lithium-ion Battery Pack for Automated Logistics Robot Using Infrared Thermal Imaging

S., An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System, Korean Journal of Air-Conditioning

Histologic evaluation of early human bone response to different implant surfaces2. Histologic evaluation of human bone integration on machined and

▪ Local temperature of PMSM can be calculated through thermal resistance model and heat generation model, presenting the cooling performance thermal