• 검색 결과가 없습니다.

격자 결합기를 이용한 금속 팁에서의 광 에너지 집속 최적화 박형열

N/A
N/A
Protected

Academic year: 2021

Share "격자 결합기를 이용한 금속 팁에서의 광 에너지 집속 최적화 박형열"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

-63-

격자 결합기를 이용한 금속 팁에서의 광 에너지 집속 최적화

박형열 ․ 구석모 ․ 유선규 ․ 박남규

*

서울대학교 전기컴퓨터공학부, 서울 151-742

(2009년 12월 10일 받음, 최종수정본 2009년 12월 24일 받음)

나노 스케일 크기의 금속 팁 구조에서의 강한 필드의 집속은 근접장 광학 현미경의 분해능 한계를 극복 하는 방법으로 사용되며, 고해상도 전사법, 나노 센싱 등, 다양한 응용에서의 한계점을 극복할 수 있을 것 으로 기대되고 있다. 이에 본 연구에서는 3차원 유한차분법 전산모사를 통해서 금속 팁에서 필드를 강하게 하기 위한 요소들을 분석하고, 금속 팁 끝에 모이는 표면 플라즈몬과 표면 플라즈몬을 발생시키는 결합기의 효율 증가를 위한 최적화 구조를 찾아보았다. 그 결과, 금속 팁의 각도의 최적화 값과 더불어 기울어진 격 자 결합기의 도입을 통해 얻은 구조는 최적화되지 않은 구조에 비해 강한 필드가 집속되는 것을 확인할 수 있었다.

핵심어: 격자결합기, 급속 팁, 나노포커싱, 표면 플라즈몬

_______________________________________________________________________________

Optimization of the Optical Nanofocusing Energy in a Metal Tip Employing a Grating Coupler

Hyeongyeol P AK , Sukmo K OO , Sunkyu Y U and Namkyoo P ARK *

School of Electrical Engineering and Computer Sciences, Seoul National University, Seoul 151-742 (Received 10 December 2009, in final form 24 December 2009)

The strong field enhancement at the end of a nanoscale metal tip, can be used to overcome the resolution limit of conventional near-field optical microscopy, and is thus believed to find future applications in high-resolution lithography or/and nanosensing area. In this paper, using a 3D finite-difference time domain (FDTD) analysis, we study the field enhancement factors at the metal tip, and optimize its structure with respect to the SPP excitation and tip-coupling efficiencies. The results show that it is possible to get factors higher field enhancement, by several orders of magnitude from the optimal structure, compared to the non-optimal cases, by adjusting the metal tip angle and employing blazed SPP grating couplers.

Keywords: Grating coupler, Metal tip, Nanofocusing, Surface plasmons PACS numbers: 42.25.Bs, 42.79.Dj, 73.20.M

* E-mail : nkpark@snu.ac.kr

(2)

earity) s  7 £ x  >  ÷ &“ ¦, s  Qô  Ç q ‚  + þ A$ í `  ¦ s 6   x €  



 H] X  © œ F g † < Æ ‰ & ³p  â (Near-field optical microscopy) [1],

“

¦K  © œ• ¸ „   Z O (High resolution lithography) [2], F g † < Æ

| 9

& h   r– Ð (Photonic Integrated Circuit: PIC)– Ð_  & e  ¦ a A(coupling) [3], ³ ð€   y © œ o  ë ß – í ß –ê ø Í(Surface-enhanced Raman scattering)`  ¦ 6 £ x6   x   H 8 £ ¤& ñ l Õ ü t [4] 1 p x  € ª œô  Ç ì

 r  \ " f ì  r K 0 p x(resolution) _  ô  Ç> & h `  ¦ F G4 Ÿ ¤   H ×  æ כ ¹ ô

 Ç כ ¹™ è | ¨ c  כ Ü ¼– Ð l @ /÷ &“ ¦ e ”   [5,6].

s

\  þ j   H \  – B H — ¸€ ª œ_  F K5 Å q 8 £ ¤€  \  | 9 5 Å q s “ : r c ”

(Focused Ion Beam)`  ¦ s 6   x # Œ    (grating)\  ¦ D h



" f     % ò % i \  y n C`  ¦ › ¸ † < ÊÜ ¼– Ð+ ‹  9 (tip)_  = å Q  Òì  r

\

 ´ ú §“ É r y n Cs  — ¸s   H   õ  µ 1 ϳ ð  ) a   e ”   [6]. ‘ : r  7 Hë  H

\

" f  H    \  ¦ : Ÿ x K  ³ ð€   e  ¦  Ý ¼ 7 H`  ¦ µ 1 ÏÒ q tr & " f  9  = å Q Â

Òì  r \  — ¸“   y n C_  € ª œs   9  = å Q  Òì  r \  f ” ] X  y n C`  ¦ › ¸ ô  Ç  â Ä

º˜ Ð  z  ´] j– Ð y n C_  y © œô  Ç | 9 & h s  { 9 # Q   H t  S X ‰ “   l  0

Aô  Ç 3 " é ¶ Ä »ô  Ç ì  rZ O (Finite Difference Time Domain)

„

 í ß –— ¸  [7]\  ¦ à º' Ÿ  % i  .  8Ô  ¦ # Q F K5 Å q  9 _  ½ ¨› ¸& h “  

#

Œ Q   à º\  ¦ [ O & ñ “ ¦ — ¸€ ª œ`  ¦  7 ˜ Ѐ  " f þ j& h  o  ) a   



½ ¨› ¸ü < F K5 Å q  9 _  — ¸€ ª œ`  ¦ ¹ 1 Ô ˜ Ѐ Œ ¤ .

II.  ¹ ō ˜ m{ ¢   Œ º

„

 í ß –— ¸   H Fig. 1(a) ü < ° ú  s  – B H — ¸€ ª œ\ " f ] X ì ø Í`  ¦ ¸ ú ˜



 · p ¨ î €  \        ½ + Ël (grating coupler)\  ¦ ½ ¨$ í ô  Ç  â Ä

º\  @ /K  €  $  à º' Ÿ  % i  . – B H ½ ¨› ¸\ " f ] X ì ø Í`  ¦ ¸ ú ˜  ¨ î

€

        ½ + Ël \  ¦ ½ ¨$ í ô  Ç s Ä »  H z  ´] j / B N& ñ `  ¦ “ ¦ 9 # Œ

| 9

5 Å q s “ : rc ” Ü ¼– Ð / B N& ñ `  ¦ ½ + É M :    _  U  ·s \  ¦ { 9 & ñ >  Ä

»t  l  0 Aô  Ç [ O > s  . ¢ ¸ô  Ç s  Qô  Ç ½ ¨› ¸\  ¦  6   x † < ÊÜ ¼

–

Ð+ ‹ – B H ½ ¨› ¸_  / B G€   0 A\  ½ ¨$ í >  ÷ &  H    \  _ ô  Ç Â Ò

& h “   ´ òõ \  ¦ \ O î “ q à º e ” “ ¦ ¨ î €  Ü ¼– Ð ³ ð€   e  ¦  Ý ¼ 7 H s 

„

   l  M :ë  H \  2 " é ¶ _ …s ( (taper) ½ ¨› ¸\ " f_  ³ ð€   e

 ¦  Ý ¼ 7 H „   \  _ ô  Ç K $ 3 s  0 p x ½ + É Ã º e ”  .

Figure 1(b)  H yz ¨ î €  \ " f ‘ : r F K5 Å q  9 _  — ¸_ þ v s  . – B H

`

 ¦ ] X ì ø ÍÜ ¼– Ð ¸ ú ˜ " f ¨ î €  \     \  ¦ ½ ¨$ í % i “ ¦,     = å Q

&

h \ " f =  G t & h  t _   o \  ¦ L, – B H _  y Œ •• ¸\  ¦ θ – Ð % i 



. F K5 Å q Ó ü t| 9 “ É r F K(Gold)`  ¦  6   x % i Ü ¼ 9, F K _  Ä »„   © œ

Fig. 1. Half cone and flat surface grating coupler.

Ã

º(ε m )  H × ¼À Ò× ¼ — ¸4 S q(Drude model)\  ¦ & h 6   x % i   [8].

y n

Cs     \  { 9  ½ + É M :    _  Å Òl (Λ)  H  6 £ § d ” \  _  K

   & ñ  ) a   [9].

2π λ sp

= k 0 sin θ ± q 2π

Λ (1)

#

Œl " f y n C“ É r ³ ð€  \  à ºf ” Ü ¼– Ð { 9   % i l  M :ë  H \    



 Å Òl   H Λ = λ sp  ÷ & 9 750 nm– Ð [ O & ñ % i  .   



_  U  ·s (h)  H 1 " é ¶     ½ ¨› ¸\  @ /ô  Ç  A _  Y U{ 9  o

 ~ ½ ÓZ O (Rayleigh’s method) [10]\  ¦ s 6   x # Œ & e  ¦a A ´ ò Ö

 ¦(coupling efficiency) s   © œ Z  }“ É r ° ú כÜ ¼– Ð   & ñ % i  .

Figure 2(a) \ " f    \  ¦ l ï  r Ü ¼– Ð y» ¡ ¤ ~ ½ ӆ ¾ ÓÜ ¼– Ð [ j % ò

% i

`  ¦ ½ ¨ì  r # Œ I% ò % i õ  II% ò % i \ " f_  „  l  © œõ   l  © œ`  ¦ Ð 

oÛ ¼R / ÷(Maxwell) ~ ½ Ó& ñ d ” Ü ¼– Ð   ? /€    6 £ § õ  ° ú   .

% ò

% i  I:

H z (I) (x, y) = e ik

0

0

x−β

0

y) +

+∞

X

−∞

R n e ik

0

n

x−β

n

y) (2)

γ n = sin θ + n λ

d β 2 n = 1 − γ n 2 (3)

% ò

% i  II:

H Z (II) (x, y) =

+∞

X

−∞

A n cos[ nπ

W (x + W

2 )]e

n

h (4)

×(e

n

(y+h) + r n e −iµ

n

(y+h) )

r n = Y n + 1

Y n − 1 Y n = µ n

k 0 Z 1

Z µ 2 n = k 2 0 − ( nπ W ) 2 Z 1

Z = √ ε m

(5) 0

A d ” \ " f % ò % i  Iõ  % ò % i  II  s \   H  6 £ § õ  ° ú  “ É r  â

>

› ¸| s  ë ß –7 á ¤ ÷ &# Q  ô  Ç .

(3)

Fig. 2. (a) Metallic grating coupler (b)Coupling effi- ciency as grating depth.

∂/H z (I)

∂y

!

y=+0

= ∂/H z (II)

∂y

!

y=−0

x ∈ [−w/2, +w/2]

(6)

∂/H z (I)

∂y

!

y=+0

= 0 x∈[−d/2, −w/2] and x∈[−d/2, −w/2]

(7)

H z (I) (x, 0 + ) = H z (II) (x, 0 ) x ∈ [−w/2, +w/2] (8) s

  â > › ¸| `  ¦ s 6   x €   d ” (2)õ  d ” (4)\  e ”   H R n õ  A n `  ¦ ½ ¨½ + É Ã º e ” Ü ¼ 9, y=0“   t & h \ " f_  n=1{ 9  M :

|R +1 | 2 `  ¦ ½ ¨ €   +x ~ ½ ӆ ¾ Ó_  & e  ¦a A ´ òÖ  ¦ s  “ ¦ ½ + É Ã º e ”

Ü ¼Ù ¼– Ð s \  ¦ : Ÿ x K  h° ú כ\    É r & e  ¦a A ´ òÖ  ¦`  ¦ ½ ¨½ + É Ã º e ”

  [11]. Fig. 2(b)  H „  í ß –— ¸ \   6   x ) a   à º[ þ t`  ¦ @ / { 9

 % i `  ¦ M :     U  ·s (h)\    É r & e  ¦a A ´ òÖ  ¦`  ¦   ? /

“

¦ e ”  .  © œ Z  }“ É r ´ òÖ  ¦{ 9  M :_  U  ·s   H 90 ∼ 100 nm & ñ

•

¸s  9 s \         U  ·s   H 100 nm – Ð [ O & ñ % i  .

Fig. 3. Energy density distribution in Half cone structure (a) illumination on grating region (b) off grating region (c) Energy density distribution as tip position.

{ 9

    H y n C“ É r – B H _  y Œ •• ¸ü < › ' a > \ O s  ý aÄ º– Ð — ¸Ž  H % ò

%

i \  y n Cs  › ¸  | ¨ c à º e ” • ¸2 Ÿ ¤ 12 um × 4 um _  V , s \ 

"

f Z~ ½ ӆ ¾ Ó_  „  l  © œ(electric field)\  ¦ t “ ¦ ×  æd ” Å Ò à º

 800 nm, @ /% i ; Ÿ ¤ s  200 nm“   ¨ î €   (Gaussian plane wave)\  ¦  % i  . =  G t & h \ " f — ¸s   H y n C_  € ª œ“ É r Z» ¡ ¤ ~ ½ Ó

†

¾ ÓÜ ¼– Ð =  G t & h õ  200 nm b  # Q”   / B M \ " f 20 nm × 20 nm _  €  & h \ " f ~ à ΍  H € ª œ_  |E| 2 + |H| 2 ° ú כÜ ¼– Ð 8 £ ¤& ñ • ¸ 2

Ÿ

¤ # Œ „  í ß –— ¸ \  ¦ à º' Ÿ ô  Ç Ê ê, y n C`  ¦ ~ à ΍  H €  & h \  @ /K 

&

ñ ½ © o(normalization) # Œ   õ \  ¦ q “ § % i  .

¿

º   P :  H s  Qô  Ç ½ ¨› ¸\ " f    \  _ K  µ 1 ÏÒ q t   H ³ ð

€

  e  ¦  Ý ¼ 7 H _  „    ~ ½ ӆ ¾ Ós  Ÿ í& d ç (focusing)s  ÷ &• ¸2 Ÿ ¤

 

 \  ¦ E $ ™Ý ¼ + þ AI – Ð ½ ¨$ í # Œ y n C_  | 9 5 Å q s   8 y © œ >  { 9 

#

Q   H t  S X ‰ “  K  ˜ Ѐ Œ ¤“ ¦,  t } Œ •Ü ¼– Ð ¢ - a„  ô  Ç – B H — ¸€ ª œ_ 

½

¨› ¸\ " f – B H _  » ¡ ¤ \  à ºf ” “   ~ ½ ӆ ¾ ÓÜ ¼– Ð / B G€  \     \  ¦ ½ ¨

$ í

“ ¦ – B H _  8 £ ¤€  \  à ºf ” “   ~ ½ ӆ ¾ ÓÜ ¼– Ð y n Cs  { 9  ÷ &• ¸2 Ÿ ¤

# Œ „  í ß –— ¸ \  ¦ à º' Ÿ  % i  .

III.  ¹ ō ˜ m{ ¢  + s ÇÊ Ý

Figure 1 _  ½ ¨› ¸\  @ /ô  Ç „  í ß –— ¸    õ , yz ¨ î €  Ü ¼– Ð



 É r é ß –€  \ " f \  -t  x 9 • ¸_  — ¸€ ª œ`  ¦ ˜ Ѐ   Fig. 3õ  ° ú  



. Fig. 3(a)ü < (b)  H       ½ + Ël \  _ ô  Ç ´ òõ \  ¦ S X ‰ “  

(4)

Fig. 4. Energy density as half cone angle, line grating.

l  0 AK  y n C`  ¦     % ò % i \  › ¸ ô  Ç  â Ä ºü <  9 _  = å Q Â Ò ì

 r \  › ¸ ô  Ç  â Ä º\  @ /ô  Ç y Œ •y Œ •_    õ s  . Fig. 3(a)\ 

"

f ˜ Ѐ    9 _  = å Q  Òì  r \  \  -t  — ¸# Œ e ”   H  כ `  ¦ S X ‰ “  

½

+ É Ã º e ”  . z  ´] j # QÖ ¼ & ñ • ¸_  y n Cs  — ¸% i   H t \  ¦ ¿ º  â Ä º

\

 @ /K  q “ § l  0 AK  0 Au \    É r \  -t  ì  r Ÿ í\  ¦ Õ ªA  á

Ô(Fig. 3(c))– Ð   ? / ˜ Ѐ         ½ + Ël \  ¦ s 6   x # Œ ³ ð

€

  e  ¦  Ý ¼ 7 H`  ¦ µ 1 ÏÒ q tr †    â Ä º\  @ /ô  Ç   õ   9  = å Q  Òì  r

\

" f  8  H ° ú כ`  ¦ f ” `  ¦ S X ‰ “  ½ + É Ã º e ”  .

Figure 4  H – B H _  y Œ •• ¸\     8 £ ¤& ñ ô  Ç \  -t  x 9 • ¸\  ¦ y n C s

 ~ à Γ É r €  & h õ  ™ èÛ ¼– Ð Å Ò# Q”   ¨ î €   \  @ /K  & ñ ½ © oô  Ç

 

õ s  . Fig. 4\ " f ˜ Ð1 p w s  – B H _  y Œ •• ¸ 30 { 9  M : 



© œ ´ ú §“ É r \  -t  — ¸e ” `  ¦ S X ‰ “  ½ + É Ã º e ” % 3 “ ¦ y Œ •• ¸\    É r þ

j@ /° ú כõ  þ j™ è° ú כ_  ´ òÖ  ¦ s   H ³ ð€   e  ¦  Ý ¼ 7 H s  µ 1 ÏÒ q t

  H 780 nm Â Ò   H _   © œ\ " f €  • 30 %_  s  µ 1 ÏÒ q t

% i  . s   H q 2 Ÿ ¤ y n C`  ¦ ~ à ΍  H €  & h \  @ /K  & ñ ½ © oô  Ç    õ

s t ë ß –, ~ à ΍  H y n C_  € ª œ\  @ /ô  Ç € ª œA á ¤ 8 £ ¤€   _ …s (  ½ ¨› ¸

\

" f_  „    ’ < Hz  ´(propagation loss) q Ö  ¦“ É r y Œ •• ¸ 9 þ t à º 2

Ÿ

¤ y Œ ™™ è l  M :ë  H \  y Œ •• ¸ 9 þ t à º2 Ÿ ¤  9  = å Q \  — ¸s   H \ 



-t   H 7 £ x  >   ) a  “ ¦ ½ + É Ã º e ”  . t ë ß – y Œ •• ¸ &  f ”

\     = å Q  Òì  r \ " f_  ì ø Í  ¢ ¸ô  Ç 7 £ x  l  M :ë  H \  ¿ º

‰

&

³ © œ_   © œØ  æ › ' a > (trade-off)\  _ K  þ j& h  o  ) a y Œ •• ¸\  ¦ % 3 

`

 ¦ à º e ”   H  כ s  “ ¦ [ O " î ½ + É Ã º e ”   [12].

Figure 5(a) ü < ° ú  s  E $ ™Ý ¼ + þ AI _     \  ¦ ½ ¨$ í €      

½

¨› ¸\  _ K  Ò q t$ í ÷ &  H ³ ð€   e  ¦  Ý ¼ 7 H _  k 7 ˜' (vector)

~

½ ӆ ¾ ӓ É r  9 _  = å Q`  ¦ † ¾ Ó >  ÷ &# Q ³ ð€   e  ¦  Ý ¼ 7 H s  „   ½ + É M

:_  _ …s (  ½ ¨› ¸\  _ ô  Ç ’ < Hz  ´“ É r ×  ¦ # Q× ¼  H ì ø ̀  ,  9  = å Q

\

" f_  ì ø Í  ´ òõ   H l ” > r f ” ‚       ½ ¨› ¸_   â Ä ºü < ° ú  l  M

:ë  H \   9 \ " f_  \  -t  x 9 • ¸  H 7 £ x ½ + É  כ Ü ¼– Ð \ V © œ½ + É Ã

º e ”   [13]. s \  ¦ S X ‰ “   l  0 AK   9  = å Q`  ¦ ×  æd ” Ü ¼– Ð 



 H " é ¶+ þ A_     \  ¦ ½ ¨$ í # Œ „   — ¸ \  ¦ à º' Ÿ K  ˜ Ѐ Œ ¤ .

Fig. 5. (a) focused grating structure (b) energy density distribution in Half cone structure using focused grating (c) Energy density as cone angle, line grating and focused grating.

Figure 5(c) _    õ  Õ ªA á Ô\  ¦ ˜ Ѐ   30 s Ê ê Ò'  E $ ™Ý ¼ + þ

AI     _  \  -t  x 9 • ¸ f ” ‚      _  \  -t  x 9 • ¸˜ Ð



 ß ¼>      9 40 \ " f þ j@ / 4C  7 £ x Ù þ ¡6 £ §`  ¦ S X ‰ “  

½

+ É Ã º e ”  . s   H y Œ •• ¸  Œ •“ É r  â Ä º\   H ¿ º t      ½ ¨

›

¸\ " f µ 1 ÏÒ q t   H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_  k 7 ˜'  ~ ½ ӆ ¾ Ós 

 H s  \ O t ë ß –, y Œ •• ¸ & | 9 à º2 Ÿ ¤ E $ ™Ý ¼ + þ AI _     \ 

"

f µ 1 ÏÒ q t   H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_  k 7 ˜'  ~ ½ ӆ ¾ Óõ  f ” ‚  

 

 \  _ K  µ 1 ÏÒ q t   H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_  k 7 ˜'  ~ ½ Ó

†

¾ Ós  s  & t l  M :ë  H \  k 7 ˜' _  ~ ½ ӆ ¾ Ós  ×  æd ” `  ¦ † ¾ Ó

>  ÷ &  H E $ ™Ý ¼ + þ AI     \ " f  8  H y n C`  ¦ — ¸`  ¦ à º e ”   H

 כ

s   ½ + É Ã º e ”  .



6 £ § Fig. 6(a) ü < ° ú  “ É r ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f · ú ¡_   â Ä º ü

<  ð ø Ít – Ð – B H _  y Œ •• ¸\     – B H = å Q  Òì  r \  — ¸s   H

\

 -t _  € ª œ`  ¦ 8 £ ¤& ñ # Œ Fig. 6(c)\    ? /% 3  . · ú ¡" f

„

 í ß –— ¸  Ù þ ¡~   Fig. 1_  ½ ¨› ¸\ " f_    õ ü < q “ §K  ˜ Ð

€

   © œ s  ´ ú §s     H 32.5 \ " f  H y n C_  | 9 & h s  5C 

 s  ß ¼>  { 9 # Q  9, E $ ™Ý ¼ + þ AI _     \  ¦ ½ ¨$ í Ù þ ¡`  ¦ M : _

 x ß ¼(peak) ° ú כõ  q “ §K ˜ Ѐ   3C   s  7 £ x † < Ê`  ¦ · ú ˜

(5)

Fig. 6. (a) cone structure (b) energy density distribution in cone structure.(c) Energy density as cone angle, flat surface line grating, flat surface focused grating and cone shape curved surface grating.

Ã

º e ”  . s  Qô  Ç ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f  H Fig. 1 _   â Ä º ü

< ² ú ˜o  ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼ 3 " é ¶ / B G€  `  ¦   " f „  

 l  M :ë  H \      ½ ¨› ¸\  _ K  µ 1 ÏÒ q t   H ³ ð€   e  ¦  Ý ¼



7 H _  k 7 ˜'  ~ ½ ӆ ¾ Ós   9 _  = å Q  Òì  r Ü ¼– Ð † ¾ Ó >   ) a  . 7 £ ¤, Fig. 1 _  – B H _   â Ä º\ " f µ 1 ÏÒ q t   H _ …s (  ½ ¨› ¸\  _ ô  Ç ì

 r í ß –(dissipation)s  ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f  H  _  \ O  “ ¦

½

+ É Ã º e ”  .  r  ´ ú ˜ €  , ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f_      ½ ¨

›

¸  H ¨ î €  \  E $ ™Ý ¼ + þ AI      ½ ¨› ¸\  ¦ • ¸{ 9 ô  Ç  â Ä ºü < ° ú  “ É r

´

òõ \  ¦ µ 1 ÏÒ q tr v   H  כ s  . ¢ ¸ô  Ç   õ  Õ ªa Ë >\ " f  © œ y n C _

 | 9 5 Å q s   © œ y © œ >  { 9 # Qè ß – – B H _  y Œ •• ¸ ¨ î €  \  E $ ™Ý ¼ + þ

AI \  ¦ ½ ¨$ í ô  Ç  â Ä ºü < q “ §Ù þ ¡`  ¦ M : ˜ Ð   Œ •“ É r y Œ •• ¸\  + þ A

$ í

s  ÷ &% 3 6 £ §`  ¦ ^  ¦ à º e ”   H X <, s   H 3 " é ¶ – B H ½ ¨› ¸\  ¦ ¨ î €  

\

 ` ˆ • 2 ; “ ¦ Ò q ty Œ • €   Õ ª s Ä »\  ¦ ~ 1 >  s K ½ + É Ã º e ”  .

7

£ ¤, ³ ð€   e  ¦  Ý ¼ 7 H s  ”  ' Ÿ    H – B H _  ³ ð€  `  ¦ 2 " é ¶  © œ\ 

` ˆ

• 2 ; “ ¦ & ñ €   ¨ î €  \  E $ ™Ý ¼ + þ AI _     \  ¦ ½ ¨$ í ô  Ç

—

¸€ ª œõ  ° ú  “ É r ½ ¨› ¸ ÷ & 9, s X O >  ` ˆ • 2 ; 2 " é ¶  © œ_  y Œ •• ¸



 H y n C`  ¦ ~ à ΍  H €  & h Ü ¼– Ð  & ’ `  ¦ M : · ú ¡" f & ñ _ ô  Ç 3 " é ¶ – B H _

 y Œ •• ¸(θ)˜ Ð   H y Œ •• ¸  ) a  .   " f ¢ - a„  ô  Ç – B H _   â

Fig. 7. Blazed grating in cone structure.

Ä

º Õ ªA á Ô_  x ß ¼ ° ú כs  ¨ î €      _   â Ä º\  q K   Œ •“ É r y

Œ

•• ¸\  + þ A$ í ÷ &  H  כ s  . Fig. 6(c)_    õ \ " f ˜ Ѐ   32 s

 \ " f  H y Œ •• ¸ & | 9 à º2 Ÿ ¤ | 9 5 Å q ÷ &  H \  -t  & t t  ë

ß – Õ ª s Ê ê\   H  r  y Œ ™™ è >  ÷ &  H X <, s   H ¨ î €      \  ¦

•

¸{ 9 ô  Ç · ú ¡_   â Ä ºü <  ð ø Ít – Ð y Œ •• ¸ & f ” \      9 

= å

Q Ü ¼– Ð „   ÷ &  H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_  € ª œs  7 £ x  t  ë

ß – s ü < † < Êa   9  = å Q \ " f_  ì ø Í • ¸ 7 £ x  >  ÷ &Ù ¼– Ð 32 s

Ê ê\   H  r  y Œ ™™ èô  Ç “ ¦ ½ + É Ã º e ”  .

¢

¸ô  Ç – B H _  » ¡ ¤ \  à ºf ” “   ~ ½ ӆ ¾ ÓÜ ¼– Ð    \  ¦ ½ ¨$ í Ù þ ¡l  M : ë

 H \  z  ´] j y n Cs  { 9    9 Ö ¼z   H    _  — ¸€ ª œ“ É r Fig. 7 õ 

° ú

 s  l ” > r _      ½ ¨› ¸\ " f θ/2ë ß –  p u l Ö  ¦ # Q”    כ s   ) a  .

s

X O >  l Ö  ¦ # Q”      \  @ /ô  Ç  6 £ § _  K $ 3 `  ¦ † < ÊÜ ¼– Ð+ ‹ ' Í

  P :ü < ¿ º   P :   õ \  q K  ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f ¨ î ç

 H 3 C _  s  µ 1 ÏÒ q t   H " é ¶ “  `  ¦ · ú ˜ à º e ” % 3  .

Figure 8(a)  H 20 l Ö  ¦ # Q”      \  @ /K  € ª œA á ¤ ~ ½ ӆ ¾ Ó\ 

"

f_  & e  ¦a A ´ òÖ  ¦`  ¦ COMSOL`  ¦ : Ÿ x K  S X ‰ “  ô  Ç Õ ªa Ë >s  .

Fig. 8(b) \ " f ˜ Ð1 p w s  l Ö  ¦ # Qt t  · ú §“ É r    _   â Ä ºü <

q

“ §Ù þ ¡`  ¦ M : ô  ÇA á ¤ ~ ½ ӆ ¾ ÓÜ ¼– Ð_  & e  ¦a A ´ òÖ  ¦ s  3C  & ñ • ¸ 7

£

x Ù þ ¡6 £ §`  ¦ · ú ˜ à º e ”   [14]. 7 £ ¤, l Ö  ¦ # Q”      _  q @ / g A$ í \  _ K  & e  ¦a As  ~ ½ ӆ ¾ Ó$ í `  ¦ ° ú >  ÷ &  H  כ s  . s 

–

Ð+ ‹ Õ ªa Ë >   õ \ " f ˜ Ð# Œ”   ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f | 9 5 Å q ) a

\

 -t \  @ /ô  Ç Õ ªA á ԍ  H E $ ™Ý ¼ + þ AI _     \  _ ô  Ç ´ òõ  ü

< l Ö  ¦ # Q”       ½ ¨› ¸_  ´ òõ  † < Êa    z Œ ™Ü ¼– Ð “  K 

"

f Fig. 1_  ¨ î €       ½ ¨› ¸\  ¦ • ¸{ 9 ô  Ç  â Ä º\  q K  \  - t

 x 9 • ¸ ¨ î ç  H 3 C   s  7 £ x ô  Ç  כ s  “ ¦ ½ + É Ã º e ”  .

Fig. 8(c)  H    _  l Ö  ¦ # Q”   y Œ •• ¸\     & e  ¦a A ´ òÖ  ¦

`

 ¦ S X ‰ “  ô  Ç   õ s  . Õ ªa Ë >\ " f ˜ Ð1 p w s  15 ∼ 20 \ " f þ j

@

/_  ´ òÖ  ¦`  ¦ % 3 `  ¦ à º e ” % 3  . s  y Œ •• ¸  H – B H _  y Œ •• ¸_  ] X  ì

ø Í(θ/2)\  K { © œ   H ° ú כÜ ¼– Ð+ ‹ – B H _  y Œ •• ¸ 30 ∼ 40 { 9  M

: l Ö  ¦ # Q”      _  & e  ¦a A ´ òÖ  ¦ 7 £ x  ´ òõ   © œ ß ¼> 



   9, Õ ª ´ òõ  ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f_    õ \  ì ø Í% ò s

  ) a  כ s  “ ¦ ½ + É Ã º e ”  .

s

 µ 1 Ú\  ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f  H ¨ î €  s      / B G€  \    



\  ¦ D h   l  M :ë  H \  s \  @ /ô  Ç % ò † ¾ Ó`  ¦ “ ¦ 9K   ô  Ç

(6)

Fig. 8. (a) blazed grating COMSOL simulation (b) blazed grating coupling efficiency, forward, backward di- rection and no tilt (c) coupling efficiency as tiled angle.



. × ¼À Ò× ¼ — ¸4 S q`  ¦ & h 6   x ô  Ç F K5 Å q \ " f „      H ³ ð€   e  ¦   Ý

¼ 7 H — ¸× ¼_  Ä »´ ò Ï ã J] X Ò  ¦(effective index)  H ¨ î €  { 9  M :ü <

/

B G€  { 9  M : s  Ò q t|   . / B G€  \ " f_  ³ ð€   e  ¦  Ý ¼ 7 H

—

¸× ¼\    É r Ä »´ ò Ï ã J] X Ò  ¦“ É r  6 £ § _  d ” Ü ¼– Ð > í ß –s  0 p x

  [15].

ε m

k m

I 1 (k 0 k m R) I 0 (k 0 k m R) + ε d

k d

K 1 (k 0 k d R)

K 0 (k 0 k d R) = 0 (9)

k d = p

n 2 − ε d (10)

k m = p

n 2 − ε m (11) s

 d ” `  ¦ 800 nm _   Ä »/ B N ç ß –  © œ\  @ /K  / B G€  _  ì ø Ít  2

£ § R \  @ /ô  Ç n° ú כÜ ¼– Ð & ñ o  # Œ Õ ªA á Ԗ Ð ³ ð‰ & ³ €   Fig.

9 ü < ° ú   .

‘

: r  7 Hë  H \ " f „  í ß –— ¸ \  ¦ à º' Ÿ ô  Ç – B H ½ ¨› ¸\ " f    \  K

{ © œ   H % ò % i _  ì ø Ít 2 £ §“ É r – B H s  20 { 9   â Ä º 1.7 um & ñ • ¸ s

 9 45 { 9   â Ä º 4.5 um & ñ • ¸s  . 800 nm_   Ä »/ B N ç ß –

 © œ l ï  r Ü ¼– Ð ¨ î €  \ " f_  Ä »´ ò Ï ã J] X Ò  ¦“ É r 1.016 s “ ¦ 20

–

B H _      % ò % i \ " f / B G€  \  @ /ô  Ç Ä »´ ò Ï ã J] X Ò  ¦“ É r 1.021 – Ð +

‹ 2 %_  7 £ x ´ òõ  µ 1 ÏÒ q tô  Ç . s  M : s  s \  K { © œ 



 H     Å Òl   H 1 %( €  • 5 nm)& ñ • ¸_  s  Ò q tl  9 ¨ î €  

 

 \  K { © œ   H [ O >  ° ú כ˜ Ð  €  • 5 nm_  ˜ Ð& ñ s  € 9 כ ¹ 



. Ä »´ ò Ï ã J] X Ò  ¦ _  7 £ x   H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_   © œs  y

Œ

™™ è† < Ê`  ¦ _ p ô  Ç .   " f „  í ß –— ¸   © œ_      ½ ¨› ¸  H



8  H  Ä »/ B N ç ß –  © œ\  K { © œ   H y n C\ " f & e  ¦a As  ÷ &l  M

:ë  H \  y Œ •• ¸  Œ •`  ¦ à º2 Ÿ ¤ & e  ¦a A ÷ &  H  © œs   H A á ¤ Ü ¼– Ð s

1 l x ) a  “ ¦ ½ + É Ã º e ”  . : £ ¤ y  „  í ß –— ¸ \ " f  H ¢ - a„  ô  Ç / B G

€

 `  ¦ s À ҍ  H  כ s   m   f ” y Œ •_  [ jÕ ª€  à Ô(segment)– Ð



¾ º# Q”   ½ ¨› ¸s l  M :ë  H \   © œ_     o ´ òõ   8 ß ¼> 



 z Œ ¤ “ ¦ ó ø Íé ß –  ) a  . 0 Aü < ° ú  “ É r   õ – Ð p À Ò# Q ^  ¦ M : – B H _

 y Œ •• ¸  H  â Ä º\   H s ü < ° ú  “ É r ˜ Ð& ñ s   H _ p  \ O 

`

 ¦ à º e ” Ü ¼  y Œ •• ¸  Œ •`  ¦ à º2 Ÿ ¤(20 s  ) s  Qô  Ç / B G€  

´

òõ \  @ /ô  Ç ˜ Ð& ñ s  € 9 כ ¹  “ ¦ ½ + É Ã º e ”  ’ x .

0

A\ " f l Õ ü t ô  Ç ì  r$ 3 `  ¦ 7 á x ½ + Ëô  Ç   õ , ¨ î €       ½ ¨› ¸\  ¦ 0

AK " f Õ ªa Ë >_  ½ ¨› ¸\  ¦ ½ ¨$ í   H  כ ˜ Ð  ¢ - a„  ô  Ç – B H ½ ¨› ¸

\

" f  8  H y n C_  | 9 5 Å q s  { 9 # Qz Œ ™`  ¦ · ú ˜ à º e ” % 3  . ¢ ¸ô  Ç ¨ î

€

     \  ¦ E $ ™Ý ¼ + þ AI – Ð ½ ¨$ í # Œ „  í ß –— ¸ \  ¦ à º' Ÿ † < ÊÜ ¼

–

Ð+ ‹     ½ ¨› ¸\  ¦ : Ÿ x K  µ 1 ÏÒ q t÷ &  H ³ ð€   e  ¦  Ý ¼ 7 H — ¸× ¼_  k 7 ˜'  ~ ½ ӆ ¾ Ós    & ñ & h “   % i ½ + É`  ¦ ô  Ç   H  z  ´`  ¦ S X ‰ “   

%

i “ ¦, ¢ - a„  ô  Ç – B H ½ ¨› ¸\ " f  H E $ ™Ý ¼ + þ AI _  ¨ î €       ½ ¨

›

¸ü < ° ú  “ É r ´ òõ  µ 1 ÏÒ q tH † d Ü ¼– Ð “  K  y n C_  | 9 5 Å q s  y © œ o  ) a



  H  z  ´`  ¦ · ú ˜ è ­ q à º e ” % 3  . ¢ ¸ô  Ç ¢ - a„  ô  Ç – B H ½ ¨› ¸_  F

K5 Å q  9 \  y n C`  ¦ | 9 5 Å q r v l  0 AK " f  H – B H _  y Œ •• ¸÷  r ë ß –s 



m      _  — ¸€ ª œ`  ¦ “ ¦ 9K     H X <, – B H _  » ¡ ¤ \  à ºf ” 

“

  ~ ½ ӆ ¾ ÓÜ ¼– Ð    \  ¦ ½ ¨$ í † < ÊÜ ¼– Ð+ ‹ l Ö  ¦ # Qt >  ÷ &  H   



 — ¸€ ª œ“ É r ~ ½ ӆ ¾ Ó$ í `  ¦ ° ú   H & e  ¦a A ´ òõ  µ 1 ÏÒ q t >  ÷ &# Q



8 ´ ú §“ É r y n C`  ¦ | 9 5 Å q r ~  ´ à º e ” >   ) a  .   " f ³ ð€   e  ¦   Ý

¼ 7 H s  „    # Œ  9 \  y n Cs  — ¸ t   H þ j& h  o  ) a – B H _  y Œ •

•

¸“   32.5   H l Ö  ¦ # Q”      _  þ j& h  o  ) a y Œ •• ¸ θ/2=15 ∼ 20 ü < – B H  ^ ‰_  þ j& h  o y Œ •• ¸ † < Êa  % ò † ¾ Ó`  ¦ p • 2 ;   õ 



“ ¦ ½ + É Ã º e ” `  ¦  כ s  .

IV. + s Ç Â ] Ø

–

B H — ¸€ ª œ_  F K5 Å q  9  8 £ ¤€  \        ½ + Ël \  ¦ • ¸{ 9  # Œ, ³ ð

€

  e  ¦  Ý ¼ 7 H \  ¦  9 _  = å Q  Òì  r Ü ¼– Ð „   r v   H ~ ½ ÓZ O Ü ¼

(7)

–

Ð  9  = å Q \  y © œô  Ç y n C`  ¦ — ¸`  ¦ à º e ”  . ‘ : r  7 Hë  H \ " f  H   



   ½ + Ël \  ¦ • ¸{ 9 ô  Ç F K5 Å q  9 _  3t  ½ ¨› ¸ 7 £ ¤, ] X ì ø Í_  – B H

½

¨› ¸\  f ” ‚       ½ ¨› ¸\  ¦ • ¸{ 9 ô  Ç  â Ä ºü < ] X ì ø Í_  – B H ½ ¨› ¸

\

 ¨ î €   E $ ™Ý ¼ + þ AI      ½ ¨› ¸\  ¦ • ¸{ 9 ô  Ç  â Ä º, Õ ªo “ ¦ ¢ - a

„

 ô  Ç – B H ½ ¨› ¸\  @ /K  y Œ •y Œ • 3 " é ¶ Ä »ô  Ç ì  rZ O  „  í ß –— ¸ \  ¦ Ã

º' Ÿ  % i  . s  õ & ñ `  ¦ : Ÿ x K   ” ¸Ÿ í& d ç \  % ò † ¾ Ó`  ¦ p u 



 H – B H _  y Œ •• ¸,    _  — ¸€ ª œõ  U  ·s \  @ /ô  Ç K $ 3 `  ¦ ½ + É Ã º e ”

% 3 “ ¦, s  Qô  Ç K $ 3 `  ¦  „ ½ ÓÜ ¼– Ð       ½ + Ël \  ¦ s 6   x ô  Ç

–

B H — ¸€ ª œ F K5 Å q  9 \ " f_   ” ¸Ÿ í& d ç \  € 9 כ ¹ô  Ç þ j& h _  ½ ¨

›

¸\  ¦ ¹ 1 Ô`  ¦ à º e ” % 3  .

Y

c p w Š à U Ø ”  ô

[1] C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau and T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007).

[2] Werayut Srituravanich, Nicholas Fang, Cheng Sun, Qi Luo and Xiang Zhang, Nano Lett. 4, 1085 (2004).

[3] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y.

Laluet and T. W. Ebbesen, Nature 440, 508 (2006).

[4] T. Ichimura, N. Hayazawa, M. Hashimoto, Y. In- ouye and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).

[5] C. C. Neacsu, G. A. Reider and M. B. Raschke, Phys. Rev. B 71, 201402 (2005).

[6] C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke and C. Lienau, Nano Lett. 7, 2784 (2007).

[7] Allen Taflove, Susan C. Hagness, Computa- tional Electodynamics The Finite-Difference Time- Domain Method, 3rd Edition, Artech House, INC.

Norwood (2005).

[8] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R.

R. Bell, Jr.,R. W. Alexander and C. A. Ward, Appl.

Opt. 22, 1099 (1983).

[9] Stefan A. Maier, Plasmonics: Fundamentals and Applications, Springer, UK, 44-47 (2007).

[10] Ping Sheng, R. S. Stepleman and P. N. Sanda, Phys.

Rev. B 26, 2907 (1982)

[11] A. Barbara, P. Qu´emerais, E. Bustarret1, T. L

´opez-Rios and T. Fournier, Eur. Phys. J. D 23, 143 (2003).

[12] Michael W. Vogel and Dmitri K. Gramotnev, Jour- nal of Nanophotonics, 2, 021852 (2008).

[13] Frederik Van Laere, Tom Claes, Jonathan Schrauwen, Stijn Scheerlinck, Wim Bogaerts, Dirk Taillaert, Liam O’Faolain and Roel Baets, IEEE Photonics Technology Letters, 19, 23 (2007).

[14] Nicolas Bonod, Evgeny Popov, Lifeng Li, Boris Chernov, Optics Express, 15, 18 (2007).

[15] M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).

수치

Fig. 1. Half cone and flat surface grating coupler.
Fig. 3. Energy density distribution in Half cone structure (a) illumination on grating region (b) off grating region (c) Energy density distribution as tip position.
Fig. 4. Energy density as half cone angle, line grating.
Fig. 7. Blazed grating in cone structure.
+2

참조

관련 문서

It is thought to minimize the possible errors in the floating architecture design work by providing the materials to build information centered design

(5) From experimental results it is found that when wave height increases the magnitude of cross flow displacement increases, this results can be easily seen in

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&amp;P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

The results show that physical education teachers think that the purpose of establishing school athletic teams is to give opportunities of various career

We define what rules are safe, because it is possible to write rules that can generate an infinite number of tuples in the view relation.. It is possible to write

The g pressure correction so obtained is used only to correct the velocity field so that it satisfies continuity, i.e., to obtain. The new pressure field is calculated

I.e., if competitive ratio is 0.4, we are assured that the greedy algorithm gives an answer which is &gt;= 40% good compared to optimal alg, for ANY input... Analyzing