• 검색 결과가 없습니다.

The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells

N/A
N/A
Protected

Academic year: 2021

Share "The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells"

Copied!
9
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)³¤¥“Èó. * .* a. (2004) 44 4 Korean J Vet Res(2004) 44(4) : 497~505. .FTBOHJBM^

(2) öB

(3) êö~R*('TªjB1,$# ÖzWÊÞ.ÊB~NWöR\. ;>*Áî;.Á;?ö Á‚^Ò

(4). *ÎL >~ ÒL. *§L >~ ÒL , Ún*W \² (²Òߞ: 2004j 11ú 8¢). 1. The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells Soo-hyun Park, Jung-sun Heo, Chang-won Kang1 and Ho-jae Han* Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea 1 Bio-safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea (Accepted= November 8, 2004) Abstract : The proliferation of mesangial cells has been associated with the development of diabetic nephropathy. The cell proliferation has been regulated by diverse growth factors. Among them, insulin like growth factors(IGFs) are also involved in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion and the relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in the mesangial cells. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. High glucose(25 mM) increased IGF-I and IGF-II secretion. High glucose-induced increase of IGF-I and IGF-II secretion were blocked by taurine(2×10−3 M), N-acetyl cystein(NAC, 10−5 M), or GSH(10−5 M) (antioxidants), suggesting the role of oxidative stress. High glucose-induced secretion of IGF-I and IGF-II were blocked by H-7, staurosporine, and bisindolylmaleimide I(protein kinase C inhibitors). On the other hand, high glucose also increased lipid peroxide (LPO) formation in a dose dependent manner. In addition, high glucoseinduced stimulation of LPO formation was blocked by PKC inhibitors. These results suggest that PKC is responsible for the increase of oxidative stress in the action of high glucose-induced secretion of IGF-I and IGF-II in mesangial cells. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via PKCoxidative stress signal pathways in mesangial cells. Key words : Insulin-like growth factors, high glucose, PKC, oxidative stress, mesangial cell, kidney. * †. ^

(5) šž~ ž ^

(6) öBê W>Ú ¶&ªj $º ¶V,ªjf ?f O»j Û~ ÚöB 7º‚ · Ïj ~º ©b‚ > ® [28, 25]. ß® Ëö Bº IGFs& Ë~ B 5 V˖.ö ~º ©b ‚ rJ^ ® [13]. B‚ Ë~ mesangial ^

(7) öB º IGF-I 5 IGF-II Îv B*>º ©b‚ j ^

(8) ~. Insulin-like growth factors(IGFs)º IGF-I IGF-II‚ ª ~>– ÚÚ~ ·‚ &Ò >wö ~º "º‚ W˞¶ 7~ ~¾‚B, "‚ *^

(9) öB W>º ©b‚ > ® [5, 45]. ‚Þ š‚ IGFsº *.  \º ‚]Fê‹Ò 2002jê êL>\*(KRF-2002-003-E00159)~ æöö ~~ šÚHb` šö $Ò ãî . *Corresponding author: Ho Jae Han Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea [Tel: +82-62-530-2831, Fax: +82-62-530-2809, E-mail: hjhan@chonnam.ac.kr]. 497.

(10) ;>*Áî;FÁ;?öÁ‚^Ò. 498. WË 5 >» &7‚ Nš ®º ©b‚ º;> ®. [4, 40]. ÷W Ãf öV¦*Ã~ "º‚ öžš >– ÷ ~¶öB "B Ò ºž~ ~¾& > ®º–  ÷žf . r^ž ©b‚ rJ^ ® [36, 42]. š‚ ÷W Ãf .Ãö ~‚ Ò\Ú ^

(11) ž Vî~ »'ö ~‚ Ò\Ú ãzö Vž~– [33, 36], Ò\Úö *~‚ mesangial ^

(12) š  7º‚ †j ~ ®º ©b‚ rJæ ® [34]. $‚ ÷ W Ã~ B÷ö IGF-I šžöê IGF-IIê N>º © b‚ rJæ ® [14, 43]. ¾ IGFs& ÷  Ë~ mesangial ^

(13) öB Úá² –.>º æö &š Bº jçræ C&ææ p ® . ÷W Ã~ B÷ö ‚WÖ²& 7º‚ †j ‚  > ® [12, 31]. ÷  mesangial ^

(14) öBê ÖzW ÊÞ.Ê Ã&& V>î [7]. $‚ 1; 5 2; ÷ ~¶~ RFj^

(15) 5 .²6öB PKC~ ‚Wš Ã&>º ©b‚  > ® [21, 22]. š‚  f ÷  PKC 5 ÖzW ÊÞ.Ê& 7º‚ †j ‚ º ©j öš " ® . ¾ 

(16) ö ~‚ IGFs~ ªj·Ï PKC 5 ÖzW ÊÞ .Êf~ NWö &‚ \º –~ šÚæ ®æ p ® . V¢B  \º mesangial ^

(17) öB 

(18) êš IGF-I 5 IGF-II ªjö ~º 'Ë š ·Ï  PKC 5 ÖzW ÊÞ.Êf~ NWj –Òš  ¶ >¯>î . Òò. Òò 5 O». Dulbecco's Modified Eagle's Medium(D-MEM)/ Ham's nutrient mixture F-12(D-MEM/F-12) Class IV collagenase Life Technologies(Grand Island, NY, USA) . D-glucose, staurosporine, H-7, Nacetyl cystein(NAC), glutathione(GSH), taurine TPA Sigma Chemical Company(St. Louis, MO, USA) . Bisindolylmaleimide I Calbiochem(La Jolla, CA, USA) .. f. º ‚¦V \«~&. «~&. f. 5 º ‚¦V \. b‚¦V \«~&. .FTBOHJBM ^

(19) ~ .&V·. þö Òφ > Spague-Dawley ÑÞ(180~210 g) ¢ 24* .Î ê pentobarbital sodium(1 ml/kg)j ; ڂ "Ò~ îÎ r ³~² isolated 3 claps method¢ šÏ~ Ëj ªÒ~, ÿ j Û ~ streptomycin penicillin(100 U/ml)š

(20) ŽB 30 ml ~ Hanks' balanced salts solution(HBSS)j BB® ~. B .‡j j*® B–‚ ê HBSSö TÎB Ò\Ú & šÒ~º bîj Ëb‚¦V ªÒ~& . ªÒ ‚ bî –çj &˂ ^.‚ r HBSSf Žþ 30 mesh 5 60 meshö Î ê  ÛB ò¢ 20 meshö B HBSSöB ^;~& . Ò\Ú& ŽF >Ú ®º HBSS¢  ‚® 120× göB 30.* ö ªÒ~ ç[‡òj >~  1000× göB 1ª* ö ªÒ‚ ê Ž*B òòj j~& . jB  ò¢ RPMI 1640(Sigma) Væ¢ šÏ~ ^;‚ r 1000× göB 1ª* öªÒ ~& . ;BB Ò\Ú b ïj B–~V *~ collagenase(750I U/ml)(Sigma)ö 37 CöB 15ª* BB® L>~šB V·‚ r Z. Ó RPMI 1640 Væ‚ 3® ^;~& . šf ?f ; j Û~ áÚê Ò\Ú ^

(21) j ^

(22) V· 7ö 500 Ò\Ú/cm & >êƒ ª"‚ r D-valineb‚ ~~B Minimum Essential Media Eagle(Sigma)¢ ÒÏ~ 5% CO , 95% O ž CO V·VöB z Òæ pêƒ ; ~ 72* ÿn V·V . šr D-valine Væöº HEPES(15 mM), streptomycin(100 U/ml), penicillin(100 U/ml), fungizon(0.25%), insulin(0.013 µg/ml) Ò 20% fetal bovine serumj ŽF~êƒ ~, šê CO V·V ö V·V . ê& V· öº 5 mM~

(23) êj Ž F‚ DMEM/F-12¢ ÒÏ~& . ò~ * ¾Ò ò Ú IGF f &¦ª Insulin-like growth factor binding proteins(IGFBPs)f ֏B ;‚ šÒ~æ‚ IGFBP‚¦V IGFsj ªÒ~V *~ acid-ethanol [9]  formic acid [6] ºÂ O»j ÒÏ~& . IGF-I~ ª Òº .Ó 200 µlö acid-ethanol(2 M HCl:ethanol=1:7) 800 µl¢ Î&~ b‚ r NöB 30ª* O~ ~ FÒ; ֏;j ªÒV .  ê 4 CöB 30 ª* öªÒ(3000 rpm)~ FÒ IGF-Ij ŽF~º ç [‡ 500 µlö 0.855 M trizma base¢ 200 µl IÚ ªC ö ÒÏ~& . IGF-II~ ªÒº .Ó 50 µlö 0.5% Tween 20j ŽF~º 8.0 M formic acid 100 µl¢ IÚ b~ 350 µl acetonej Î&~& .  ê 4 CöB 15ª* öªÒ(3500× g)~ ç[‡ 200 µlö 1.75 M trisma base 85.7 µl¢ IÚ ªCö ÒÏ~& . šê formic acid-acetone ºÂ»b‚ IGFBPs‚¦V IGF-II¢ ªÒ~ ³ê¢ G;~& . *('T *('*  ** º'¶ B– Chloramin-T O» [26]j £* æ;B ÒÏ~&b–  O»j *® º£~š r ? . 0.2M sodium phosphate buffer (pH 7.4) 10 µlö rhIGFs 1 µgj Î& o. 2. 2. 2. 2. 2. o. o.

(24) Mesangial. ^

(25) öB 

(26) êö ~‚ IGFs ªjf PKC 5 ÖzW ÊÞ.Êf~ NWö ‚ \. ‚ ê [ I] (Amersham Life Science, ILL, USA) 1 mCi ¢ Î&~ 0.04 mg/ml~ chloramin-T¢ IÚB ³ ® b‚ ê cellulose CF-ll column (Bio-Rad, CA, USA) ö bbj &‚ r barbital buffer‚ columnj ^¿ ~& .  ê 12% bovine serum albumin(BSA)b‚ Ï ÂÊ, IGF-IIº sephadex G-25(Pharmacia LKB., Biotechnology AB, Sweden) columnj Û~ 0.2M sodium phosphate buffer(0.2% BSA

(27) Ž)ö ÏÂB ª ³ >÷V(20 drops)ö AjB gamma counter(Packard, ILL, USA)‚ cpmj G;~ OÒ˚ 3× 10 cpmš >êƒ '' ª"~ -70 Cö ïÿ ~& . *('T OҚ G;» .Ó Ú IGFs ³êº [ I]-IGFsö polyclonal anti-IGFs ¢ Òς OҚ G;»(radioimmunoassay, RIA)j šÏ~&b–, º£~š r ? . IGFs RIA jχ b‚ 0.5% BSA, 0.12 M NaCl, 0.1% sodium azide¢ Ž F‚ 0.04 M žÖ jχ(pH 7.4)j ÒÏ~& . IGFs R&‡ òö 1,000V ’CÎ polyclonal anti-IGFs 50 µlj Î&~ NöB 1* >wÎ ê ''~ þö [ I]-IGFs(20,000 cpm/100 µl)j Î&~ 4 C öB 18* >wV .  ê horse serum 50 µlf 12% polyethylene glycol #8000 (PEG) 1 ml¢ Î&~ 4,000× göB 30ª* ö ªÒB ֏; j֏;j ª ÒV ֏;~ OÒËj gamma counter‚ G; ~& . -JQJE QFSPYJEF ;W Confluent‚ mesangial ^

(28) öB LPO ;Wf Ohkawa  [32]~ O»ö V¢ malondealdehyde~ ·b‚ G; ~&b–, *Û® º£~š r ? . ^

(29) j >{ ‚ ê .r2‚ ^

(30) ¢ ªê‚ ê, >wχ [8% SDS 100 µl, 0.8% 2-thiobarbituric acid (TBA) 200 µl, 20% acetic acid 200 µl]j If ê 95 CöB 60ª* >w V . šê, ârb‚ N²‚ bö ² ê, jߚ'ž 'ï ï²¢ B–~V *~ n-butanol-pyridine b‡ (15:1, v/v)j Î&‚ ê 4,000× göB 10ª* öªÒ ~ ç[‡j >~& . š ò¢ spectroflurometry (emission 2Ë 553 nm, excitation 2Ë 515 nm)‚ G; ~ nmol/mg proteinb‚ R~& . Ûê¾Ò. þÖ~ Ûê¾Òº Student's t test 5 Analysis of Variance(ANOVA)‚ ~&b–, P 8 <0.05¢ F~‚ N š~ ‚ê‚ ~&, þÖ~ R*f meansÛS.E‚ ~& . 125. 6. o. 125. 125. 499. Ö . 

(31) êš *('* 5 *('** ªjö ~º 'Ë IGF-I ªjö &‚ 

(32) ê~ ΢ rjV *~ , mesangial ^

(33) ö ·‚ *(0~72 hr) 5 ³ê(5~50 mM)~

(34) êj ¾Ò‚ ê IGF-I ªj΢ V~&. . Fig. 1AöBf ?š 25 mM

(35) êj 8* šç ¾ Ò  IGF-I ªj& F~W ®² Ã&>îb– 48* šçöB ‚¢ & . šê z šç Ã& ·Ïf ž ;>æ p~ . 15 mM šç~

(36) ê ³êöB &–` ö jš F~W ®º Ã& ·Ïj &b– 25 mM š çöB š‚ ·Ïf z×z *&~² ¾æÒ (Fig. 1B). V¢B  þöBº .~ –šj Fæ~V *~ 25 mM

(37) êj 72* ¾Ò~& . $‚ 

(38) êš IGF-II ªjö ÚƂ 'Ëj ~ºæ¢ rj ~ . þÖ 

(39) ê ¾Ò  IGF-II ªj& Ã&> º ©b‚ ¾æÒ (Fig. 2). š‚ 

(40) êö ~‚ IGF-II ªjÃ&º IGF-I ªjÃ&f j݂ ·çj . o. o. Fig. 1. Dose course (A) and time response curve (B) of high glucose on IGF-I secretion. Mesangial cells were incubated with different dosage of glucose (5 to 50 mM) or 25 mM glucose at different time intervals (0 to 72 h). Values are means±S.E. of 12 separate experiments performed on 4 different cultures. *p<0.05 vs. control..

(41) ;>*Áî;FÁ;?öÁ‚^Ò. 500. Fig. 2. Dose course (A) and time response curve (B) of high glucose on IGF-I secretion. Mesangial cells were incubated with different dosage of glucose (5 to 50 mM) or 25 mM glucose at different time intervals (0 to 72 h). Values are means±S.E. of 12 separate experiments performed on 4 different cultures. *p<0.05 vs. control.. & . 

(42) êö ~‚ *('* 5 *('** ªj ·Ï Ö zW ÊÞ.Êf~ NW 

(43) êö ~‚ IGF-I ªj ·Ïš ÖzW ÊÞ.Ê f N~ºæ¢ rjV *~ ڞW ÖzBž H O (10 M)¢ mesangial ^

(44) ö 72* ¾Ò~& .. þÖ IGF-I 5 IGF-II ³êº &–`ö j~ F~W ®² Ã&>î (Fig. 3). r ê‚B 

(45) êö ~ ‚ IGF-I 5 IGF-II ªj ·Ïö ÖzW ÊÞ.Ê& ç 7 N~º æ¢ rjV *~ “ÖzBž NAC (10 M), GSH(10 M) $º taurine(2× 10 M)j 25 mM

(46) ê ¾Ò 30ª *ö ¾Ò ~& . þÖ š “ ÖzB j * ¾Ò~&j r 

(47) êö ~‚ IGF-I 5 IGF-II ªj ·Ïf N>º ©b‚ ¾æÒ . ç7' b‚ mesangial ^

(48) ö 25 mM

(49) êj ¾Ò~ * &ê‚ LPO ;Wj G;‚ Ö, 4* šçöB LPO ;Wf &–`ö jš F~W ®º Ã&·Ïj &b – ³êꂺ 15 mM šç~

(50) ê ¾Ò  Ã&>º 2. 2. −5. −5. −5. −3. Fig. 3. Involvement of oxidative stress on high glucoseinduced stimulation of IGF-I (A) and IGF-II (B) secretion. Mesangial cells were incubated with NAC (10−5 M), GSH (10−5 M), taurine (2 mM) for 30 min prior to the treatment of 25 mM glucose or were incubated with 25 mM glucose alone or together with hydrogen peroxide (10−5 M) for 72 hr. Values are means ±S.E. of 9 separate experiments performed on 3 different cultures. *p<0.05 vs. control, **p<0.05 vs. 25 mM glucose.. ©b‚ ¾æÒ (Fig. 4). 

(51) êö ~‚ *('* 5 *('** ªj ·Ï 1,$ f~ NW 

(52) êö ~‚ IGF-I ªj ·Ïš PKCf N~º æ¢ rjV *~ PKC ‚WBž TPA(100 ng/ml)¢ 72* ¾Ò~&j r IGF-I 5 IGF-II ³êº &–`ö j~ F~W ®² Ã&>î (Fig. 5). r ê‚B 

(53) êö ~‚ IGF-I 5 IGF-II ªj ·Ïö PKC& ç7 N~º æ¢ rjV *~ PKC ÛBBž staurosporine(10 M), H-7(10 M) 5 bisindolylmaleimide I(10 M)j 25 mM

(54) ê ¾Ò 30ª *ö ¾Ò~& .. þ Ö PKC ÛBB f 

(55) êö ~‚ IGF-I 5 IGF-II ªj ·Ïj F~W ®² N~& . $‚ PKC f ÖzW ÊÞ.Êf~ NWj ÚÚV *~ PKC ÛBB j * ¾Ò‚ ê 25 mM

(56) êj ¾Ò~ −8. −6. −4.

(57) Mesangial. ^

(58) öB 

(59) êö ~‚ IGFs ªjf PKC 5 ÖzW ÊÞ.Êf~ NWö ‚ \. Fig. 4. Time (A) and dose (B) response of high glucose in lipid peroxide formation. Mesangial cells were incubated with 25 mM glucose at different time intervals (0 to 72 hr) or different dosage of glucose (5 to 50 mM). Values are means ±S.E. of 9 separate experiments performed on 3 different cultures. *p<0.05 vs. control.. ;Wj G;~& . 25 mM

(60) êö ~‚ LPO ; W Ã&·Ïf staurosporine, H-7 5 bisindolylmaleimide I ¾Ò  F~W ®² N>î . LPO.  V.  þöB ^

(61) ö 

(62) ê ¾Ò  ªj& F~W ®² Ã&>î š‚ Öº b‚ FêB ; ÷ Ξ ÑÞ~ Ë öBê š Ã&>î º  5 ; ÷ Ξ öB ªÒ‚ ^

(63) öB š Ã&® º  fê ¢~~&  þöB 

(64) êö ~‚ ªj Ã& Î&

(65) êj * šç ¾Ò  V>º © b‚ j ^

(66) & 

(67) êö žÂ f  * Úö ~ ªj ·Ïj Ã&B ÷W à ~ B÷ö † > ®rj Қ " ® š‚ Öº ÷W Ë j&º Ë~ ~ ¢'ž. mesangial IGFI . streptozotocin 1 IGF-I [29] 2 Non-Obese Diabetic(NOD) mouse mesangial IGF-I [12] . IGF-I 8 , mesangial IGF-I . IGF-I. 501. Fig. 5. Effect of PKC inhibitors on high glucose-induced stimulation of IGF-I (A) and IGF-II (B) secretion. Mesangial cells were incubated with staurosporine (10−8 M), H-7 (10−4 M), or bisindolylmaleimide I (10−6 M) for 30 min prior to the treatment of 25 mM glucose or were incubated with 25 mM glucose alone or together with TPA (100 ng/ ml) for 72 hr. Values are means ±S.E. of 9 separate experiments performed on 3 different cultures. *p<0.05 vs. control, **p<0.05 vs. 25 mM glucose.. Ã&ö ~šB FBB º f ¢~~& [16]. $ ‚ Ë~ mesangial ^

(68) ö IGF-Ij ¾Ò~&j r š. ^

(69) ~ j&& Fê>î º fê ¢~> ®. [15]. II ; ÷ Goto-Kakizaki(GK) ÑÞ j ΞöB òË~ IGF-II ³ê& ;ç~ö jš *&® Ã&>îb – [19],  ÑÞ~ 1; ÷ ö ËöB IGF-II ³ê& Ã&>î º & ® [10]. Spranger  [37] f Wžö ®ÚB IGF-II& ÷W ïÃö NB.  ~&b–, Heo  [18]f IGF-II& ÷W  Ã~ B÷ö 7º‚ †j † ©b‚ ~& . ‚ Þ, ÷W ãà  IGF-II¢ ¾Ò~&j r  Ã çš ^*>º ©b‚ j ÷W ãÃöBº IGFII >&š 6²~º © ?  ~& [32]. ¾ . þöBº 

(70) ê ¾Ò  IGF-I 5 IGF-II Îv à &~º ©b‚ ¾æÒ . š‚ Öº 4" ÿn 

(71) êj ¾Ò‚ ÑÞöB IGF-I 5 -II ªjf š F*.

(72) 502. ;>*Áî;FÁ;?öÁ‚^Ò. Fig. 6. Effects of antioxidants (A) and PKC inhibitors (B) on high glucose-induced increase of lipid peroxide formation. Mesangial cells were incubated with NAC (10−5 M), GSH (10−5 M), taurine (2 mM), staurosporine (10−8 M), H-7 (10−4 M), or bisindolylmaleimide I (10−6 M) for 30 min prior to the treatment of 25 mM glucose or were incubated with 25 mM glucose alone or together with hydrogen peroxide (10−5 M) or TPA (100 ng/ml ) for 72 hr. Values are means ±S.E. of 9 separate experiments performed on 3 different cultures. *p<0.05 vs. control, **p <0.05 vs. 25 mM glucose.. ¶ š ÿö Ã&‚ º Öf ¢~~& [18]. ~ æò š‚ ·Ï š ÚƂ ^*ア Û~ šÚæºæö &šBº C&ææ p~ . ÖzW ÊÞ.ʺ ÷W Ã~ B÷ &7‚ çê¢ < ®b– [27], STZö ~š FêB  ÷ ÑÞ 5 ÷ ~¶~ ãÖö ‚WÖ²ö Vž‚ – ç ¶çš ¢Ú¾º ©b‚  > ® [44]. . þöBê 

(73) êj ¾Ò~&j r ‚WÖ²—š Ã& >º ©b‚ ¾æÒ . š‚ Ö f mesangial ^

(74) ö 

(75) ê ¾Ò  malondialdehyde(MDA)~ Ã&f glutathione(GSH) Žï~ 6²¢ ¾æÞ f ¢~~ & [7]. Abou-Seif & Youssef [1]º ÷ ~¶öB '.\~ LPO ;Wš Ã&>î .Ó Ú IGF-I~ > &š Ã&~º ©b‚ j *7'b‚ š ·Ïö ‚ WÖ²& NF > ®rj ~& .  þöBê.  ÷W Ã~ B÷ &7‚ Nš ®º IGFI 5 IGF-II~ ªj Ã& ·Ïö ÖzW ÊÞ.Ê&  N> ®rj " ® . š‚ Öº 

(76) ê ¾Ò  IGF-I 5 IGF-II~ ªj Ã& ·Ïö ÖzW Ê Þ.Ê& N> ®rj Қ "º Ñ š . PKCº 

(77) êö ~‚ ÷W Ã~ B÷ö 7 º‚ †j ~º ©b‚ > ® [11]. . þöB PKCº 

(78) êö ~‚ IGF-I 5 IGF-II ªj ·Ïj Ã&ʺ ©b‚ ¾æÒ . š‚ 

(79) ê ö ~‚ PKC~ ‚WÃ&º 

(80) ê~ &ÒÖbž DAG Wö Vž‚ ©b‚ ž [3]. Craven  [8]ê  ÚöB ªÒ‚ Ò\Úö 

(81) êj ¾Ò~&j r DAG~ Wš Ã&B  ~& . jƒ  þöBº PKC~ isoforms ö &šBº ÚÚæ p~b¾  ÷ ÑÞ~ Ò\Ú ^

(82) öB PKC β~ ‚Wš Fê> [23] 5 PKC-β¢ ÛBŽb‚Ž ÷W Ã~ ~ò& &Ë~ º  [41]‚ Ú " r PKC-β& 7º‚ †j † ©b‚ ºGB .  þöB ÖzW ÊÞ.Ê~ Ã&º PKC ‚Wö ~š –.>º ©b‚ š– šº mesangial 5 .^

(83) öB 

(84) êö ~‚ ‚WÖ²~ Wf PKC ~š 'š¢º f ¢~~& [17, 20]. ß® mesangial ^

(85) öB 

(86) êö ~‚ PKC ‚Wz& ÖzW ÊÞ .Êö ~š ‚Wz>º Nuclear Factor subunit~ šÿ j /ê~ ® º fê ¢~~ ® [24]. ~æ ò, š‚ ‚WÖ²& b‚ PKC¢ ‚Wz Ò > ® º ‚"~  º çÏB  † > ® [30, 39].  þöBº šö &‚ ¦ªf ç7 ÚÚæ p ~V r^ö ;{® J«† >º ìæò jîê š ç ^*~ cross-talk ê& WãF ©b‚ º;~ ® .  þöBº PKCö ~š –.>º ÖzW ÊÞ.Ê ~ Ã&& IGF-I 5 IGF-II~ ªj¢ Ã&Î º ©j ¾rb‚ ~& . ‚"ö Kurzawa  [25]f mouse ~ VjöB ÖzW ÊÞ.Ê Ã&  IGF-I 5 IGF-II~ Ã&& V>î  ~  þÖf F҂ š j "îæò ÷~ NWj "æº á®. .  þöBº 

(87) êö Vž‚ ÖzW ÊÞ.Ê 5 PKC~ ‚W Ã&& ÷W à B÷ö 7º‚ ž ¶ 7~ ~¾ž IGF-I 5 IGF-II ªj Ã&ö NB. º ©j  \Ú'b‚ B~& . ֆ'b‚, 

(88) êf PKC ‚WÃ&¢ ۚ ÖzW ÊÞ.Ê¢ Ã& BB IGF-I 5 IGF-II ªj¢ Ã&ʺ ©b‚ ž .. Ö †. º ÷W Ã~ B. Insulin-like growth factor(IGF).

(89) Mesangial. ^

(90) öB 

(91) êö ~‚ IGFs ªjf PKC 5 ÖzW ÊÞ.Êf~ NWö ‚ \. ÷ .Vö 7º‚ †j ~º ©b‚ rJ^ ® . š ö  \öBº mesangial ^

(92) ö 

(93) ê ¾Ò  IGF ªjö ~º 'Ë  ·Ïö ®ÚB ÖzW Ê Þ.Ê 5 PKCf~ NWj rj~ . Öº r  ? . 

(94) êf(>15 mM) IGF-I 5 IGF-II ªj¢ F~W ®² Ã&Vb– š‚ ·Ïf “ÖzB. (taurine, NAC, GSH)j *¾Ò~&j r N>îb –, ç7'b‚ 

(95) êj ¾Ò~ ÖzW ÊÞ. Ê Ræž LPO ;Wj G;‚ Ö &–`ö jš F~W ®º Ã&¢ " > ®î . ‚Þ, PKCf~ ç ê¢ rj Ö 

(96) êö ~‚ IGF-I 5 IGFII ªj Ã& ·Ïf PKC ÛBB (staurosporine, H7, bisindolylmaleimide I)j *¾Ò~&j r N>º ©b‚ ¾æÒ . š‚ PKC ÛBB f 

(97) êö ~‚ ÖzW ÊÞ.Ê Ã& ·Ïj F~W ®² ÛB~ º ©b‚ j ÖzW ÊÞ.Ê~ –.·Ïöê  >º ©b‚ ¾æÒ . šç~ Ö¢ " r mesangial ^

(98) öB 

(99) êf PKC-ÖzW ÊÞ.Ê ^* 㠂¢ Û~ IGF-I 5 IGF-II ªj·Ïj Ã&ʺ © b‚ ž .. 7.. 8.. 9.. 10.. 11.. ^^ò 1. Abou-Seif, M. A. and Youssef, A. A. Oxidative stress and male IGF-1, gonadotropin and related hormones in diabetic patients. Clin. Chem. Lab. Med. 2001, 39, 618623. 2. Agardh, C. D., Stenram, U., Torffvit, O. and Agardh, E. R. Effects of inhibition of glycation and oxidative stress on the development of diabetic nephropathy in rats. J. Diabetes Complications. 2002, 16, 395-400. 3. Babazono, T., Kapor-Drezgic, J., Dlugosz, J. A. and Whiteside, C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes. 1998, 47, 668-676. 4. Berfield, A. K., Spicer, D. and Abrass, C. K. Insulinlike growth factor I (IGF-I) induces unique effects in the cytoskeleton of cultured rat glomerular mesangial cells. J. Histochem. Cytochem. 1997, 45, 583-593. 5. Binoux, M. The IGF system in metabolism regulation. Diabetes Metab. 1995, 21, 330-337. 6. Bowsher, R. R., Lee, W. H., Apathy, J. M., O'Brien, P. J., Ferguson, A. L. and Henry, D. P. Measurement of insulin-like growth factor-II in physiological fluids. 12.. 13.. 14.. 15.. 16.. 17.. 503. and tissues. I. An improved extraction procedure and radioimmunoassay for human and rat fluids. Endocrinology. 1991, 128, 805-814. Catherwood, M. A., Powell, L. A., Anderson, P., McMaster, D., Sharpe, P. C. and Trimble, E. R. Glucose-induced oxidative stress in mesangial cells. Kidney Int. 2002, 61, 599-608. Craven, P. A., Davidson, C. M. and DeRubertis, F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990, 39, 667-674. Daughaday, W. H. and Rotwein, P. Insulin-like growth factors I and II. Peptide messenger ribonucleic acid and gene structure serum, and tissue concentrations. Endocr. Rev. 1989, 10, 68-91. De La Puente, A., Goya, L., Ramos, S., Martin, M. A., Alvarez, C., Escriva, F. and Pascual-Leone, A. M. Effects of experimental diabetes on renal IGF/ IGFBP system during neonatal period in the rat. Am. J. Physiol. Renal. Physiol. 2000, 279, F1067-F1076. Derubertis, F. R. and Craven, P. A. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994, 43, 1-8. Elliot, S. J., Striker, L. J., Hattori, M., Yang, C. W., He, C. J., Peten, E. P. and Striker, G. E. Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology. 1993, 133, 1783-1788. Feld, S. and Hirschberg, R. Growth hormone, the insulin-like growth factor system, and the kidney. Endocr Rev. 1996, 17, 423-480. Flyvbjerg, A., Landau, D., Domene, H., Hernandez, L., Gronbaek, H. and LeRoith, D. The role of growth hormone, insulin-like growth factors (IGFs), and IGFbinding proteins in experimental diabetic kidney disease. Metabolism. 1995, 44, 67-71. Gooch, J. L., Tang, Y., Ricono, J. M. and Abboud, H. E. Insulin-like growth factor-I induces renal cell hypertrophy via a calcineurin-dependent mechanism. J. Biol. Chem. 2001, 276, 42492-42500. Gronbaek, H., Nielsen, B., Frystyk, J., Flyvbjerg, A. and Orskov, H. Effect of lanreotide on local kidney IGF-I and renal growth in experimental diabetes in the rat. Exp. Nephrol. 1996, 4, 295-303. Ha, H., Yu, M. R., Choi, Y. J, Kitamura, M. and Lee, H. B. Role of high glucose-induced nuclear factor-.

(100) 504. 18.. 19.. 20.. 21.. 22.. 23.. 24.. 25.. ;>*Áî;FÁ;?öÁ‚^Ò kappaB activation in monocyte chemoattractant protein1 expression by mesangial cells. J. Am. Soc. Nephrol. 2002, 13, 894-902. Heo, Y. R., Kang, C. W. and Cha, Y. S. L-Carnitine changes the levels of insulin-like growth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. 2001, 47, 329-334. Hoog, A., Sandberg-Nordqvist, A. C., Abdel-Halim, S. M,, Carlsson-Skwirut, C., Guenifi, A., Tally, M., Ostenson, C. G., Falkmer, S., Sara, V. R., Efendic, S., Schalling, M. and Grimelius, L. Increased amounts of a high molecular weight insulin-like growth factor II (IGF-II) peptide and IGF-II messenger ribonucleic acid in pancreatic islets of diabetic GotoKakizaki rats. Endocrinology. 1996, 137, 2415-2423. Inoguchi, T., Li, P., Umeda, F., Yu, H. Y., Kakimoto, M., Imamura, M., Aoki, T., Etoh, T., Hashimoto, T., Naruse, M., Sano, H., Utsumi, H. and Nawata, H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase Cdependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000, 49, 1939-1945. Iori, E., Marescotti, M. C., Vedovato, M., Ceolotto, G., Avogaro, A., Tiengo, A., Del Prato, S. and Trevisan, R. In situ protein Kinase C activity is increased in cultured fibroblasts from Type 1 diabetic patients with nephropathy. Diabetologia. 2003, 46, 524530. Kimura, M., Ishizawa, M., Miura, A., Itaya, S., Kanoh, Y., Yasuda, K., Uno, Y., Morita, H. and Ishizuka, T. Platelet protein kinase C isoform content in type 2 diabetes complicated with retinopathy and nephropathy. Platelets. 2001, 12, 138-143. Koya, D., Jirousek, M. R., Lin, Y. W., Ishii, H., Kuboki, K. and King, G. L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest. 1997, 100, 115-126. Kumar, A., Hawkins, K. S., Hannan, M. A. and Ganz, M. B. Activation of PKC-beta(I) in glomerular mesangial cells is associated with specific NF-kappaB subunit translocation. Am. J. Physiol. Renal. Physiol. 2001, 281, F613-F619. Kurzawa, R., Glabowski, W., Baczkowski, T. and Brelik, P. Evaluation of mouse preimplantation embryos. 26.. 27.. 28.. 29.. 30.. 31.. 32.. 33.. 34.. 35.. 36.. exposed to oxidative stress cultured with insulin-like growth factor I and II, epidermal growth factor, insulin, transferrin, and selenium. Reprod. Biol. 2002, 2, 143162. Lee, C. Y. and Henricks, D. M. Comparisions of various acidic treatments of bovine serum on insulinlike growth factor-I immunoreactive and binding activity. J. Endocrinol, 1990, 127, 139-148. Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z. and Ha, H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 2003, 14, S241-S245. Mathews, L. S., Norstedt, G. and Palmiter, R. D. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc. Natl. Acad. Sci. USA. 1986, 83, 9343-9347. Miyatake, N., Shikata, K., Wada, J., Sugimoto, H., Takahashi, S. and Makino, H. Differential distribution of insulin-like growth factor-1 and insulin-like growth factor binding proteins in experimental diabetic rat kidney. Nephron. 1999, 81, 317-323. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A. Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404, 787-790. Obrosova, I. G., Fathallah, L., Liu, E. and NouroozZadeh, J. Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid. Free. Radic. Biol. Med. 2003, 34, 186-195. Ohkawa, H., Ohishi, N. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351-358. Rossert, J., Terraz-Durasnel, C. and Brideau, G. Growth factors, cytokines, and renal fibrosis during the course of diabetic nephropathy. Diabetes. Metab. 2000, 26, S16-S24. Schleicher, E. D. and Olgemoller, B. Glomerular changes in diabetes mellitus. Eur. J. Clin. Chem. Clin. Biochem. 1992, 30, 635-640. Schwander, J. C., Hauri, C., Zapf, J. and Froesch, E. R. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology. 1983, 113, 297-305. Sheetz, M. J. and King, G. L. Molecular understanding.

(101) Mesangial. 37.. 38.. 39.. 40.. 41.. ^

(102) öB 

(103) êö ~‚ IGFs ªjf PKC 5 ÖzW ÊÞ.Êf~ NWö ‚ \. of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002, 288, 2579-2588. Spranger, J., Buhnen, J., Jansen, V., Krieg, M., Meyer-Schwickerath, R., Blum, W. F., Schatz, H. and Pfeiffer, A. F. Systemic levels contribute significantly to increased intraocular IGF-I, IGF-II and IGF-BP3 [correction of IFG-BP3] in proliferative diabetic retinopathy. Horm. Metab. Res. 2000, 32, 196200. Steff, M.W., Osterby, W. R., Chavers, B. and Mauer, S. M. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1998, 38, 1077-1081. Studer, R. K, Craven, P. A. and DeRubertis, F. R. Antioxidant inhibition of protein kinase C-signaled increases in transforming growth factor-beta in mesangial cells. Metabolism. 1997, 46, 918-925. Tack, I., Elliot, S. J., Potier, M., Rivera, A., Striker, G. E. and Striker, L. J. Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice. Diabetes. 2002, 51, 182-188. Tuttle, K. R. and Anderson, P. W. A novel potential. 42. 43.. 44. 45.. 46.. 505. therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition. Am. J. Kidney Dis. 2003, 42, 456-465. Wardle, E. N. How does hyperglycaemia predispose to diabetic nephropathy? QJM. 1996, 89, 943-951. Werner, H., Shen-Orr, Z., Stannard, B., Burguera, B., Roberts, C. T. Jr. and LeRoith, D. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney. Diabetes. 1990, 39, 1490-1497. West, I. C. Radicals and oxidative stress in diabetes. Diabet Med. 2000, 17, 171-180. Yakar, S., Wu, Y., Setser, J. and Rosen, C. J. The role of circulating IGF-I: lessons from human and animal models. Endocrine. 2002, 19, 239-248. Zhuang, H. X., Wuarin, L., Fei, Z. J. and Ishii, D. N. Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with noninsulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy. J. Pharmacol. Exp. Ther. 1997, 283, 366-374..

(104)

참조

관련 문서

Activation of Autophagy by Mangiferin Protects Auditory Hair Cells from Oxidative stress Induced Ototoxicity.. Gyeongmin

– Graphical representation of the transformation equation for stress – Extremely useful to visualize the relationship between σ x and τ xy – Also used for

Objectives: This study aimed to investigate the relationship between job stress and turnover intention of employed opticians and to investigate the mediating effect of burnout

Purpose: The aim of this study is to identify the relationship between knowledge and awareness of radiation department students and their intent in

Seung Soo Jang Sung Gyun Shin Min Jae Lee Sang Soo Han Chan Ho Choi Sungkyum Kim Woo Sung Cho and Song Hyun Kim POSTECH Yeong Rok Kang Wol Soon Jo Soo Kyung Jeong and

The Relationship between Physical Activities and Health-related Quality of Life in Korean Adults with Diabetes

Chang Goo Kang, Ah Hyun Park, Jang Ho Ha, Young Soo Kim, Joon-Ho Oh, Jeong Min Park, Soo Mee Kim, Seung-Jae Lee, Seung Hee Lee, and Han Soo Kim(KAERI). Fabrication

An examination of the relationship between emotion dysregulation and intolerance of uncertainty in worry and generalized anxiety disorder (Doctoral