• 검색 결과가 없습니다.

-  Yttria-Stabilized Zirconia(YSZ)  ZrO2

N/A
N/A
Protected

Academic year: 2022

Share "-  Yttria-Stabilized Zirconia(YSZ)  ZrO2"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

-  Yttria-Stabilized Zirconia(YSZ)  ZrO

2

-      

   ******

 

*  

**   

*** 

(2000 1 11 , 2000 9 22 )

Synthesis of Yttria-Stabilized Zirconia and ZrO

2

-gel by Sol-Gel Method and the Crystallization Mechanism of Gel Powders

Un-Yeon Hwang, Seung-Gu Lee, Jung-Woon Lee, Hyung-Sang Park, Seung-Joon Yoo*, Ho-sung Yoon** and Yong-Ryul Kim***

Department of Chemical Engineering, Sogang University

*Faculty of Environmental and Chemical Engineering, Seonam University

**Division of Mineral Utilization and Materials, Korea Institute of Geology, Mining & Materials

***Department of Chemical Engineering, Daejin University (Received 11 January 2000; accepted 22 September 2000)

 

          ! "# YSZ $ ZrO2-%

 &' (). 0.4*[Acac]/[Zr-n-p]=R*0.6 '+ 1, - 3, ./01  ! "# ZrO2-%

 &' (23, R4 567 89 % ,: 56 (). ; R4: % <= '> ?1 01 @A B C). [Acac]/[Zr-n-p]=0.5 '+ D )E 46 '/ YSZ-% &' (23, Y2O3 '/: YSZ-% ?1

FG @A BC). XRD HI  J 60oC 24, +' %: '/ KLM NO P1Q RS23, 450oC

 T  ! UV1L ?1'6 W/XS). 2.5YSZ> 4.5YSZ Y Z[ \\ 600oC $ 1,000oC 1V 1L ?1'D R]6 ^_`2a 6.5YSZ $ 8.5YSZ Y T bcd 1,000oCe 56 !c ?1' ]

afa ghi ?1/j ARXS). T 01 450oC =k afa lm: P1QR UV1LD ?1

> ZrOCO3(lattice), H2O noi CO2 W/  p3, 850oC=k afa lm: ?1' < qr  CO32−so tu pv w xS).

Abstract−In this study, transparent yttria stabilized zirconia(YSZ)-gel and ZrO2-gel were prepared by the alkoxide-acetyl- acetone chelation method of Zirconium-n-propoxide. Transparent ZrO2-gel could be prepared through 1 hour reaction and three hours aging in the condition of 0.4*[Acac]/[Zr-n-p]=R*0.6. The gelation time was increased with increasing the molar ratio R. The molar ratio R had an important effect upon the inner structures of gel and the crystallization process. YSZ-gel of the four kinds of composition was prepared in the condition of [Acac]/[Zr-n-p] = 0.5. Crystallization behavior of these gels depended upon the concentration of Y2O3. All samples dried at 60oC for 24 hr were amorphous by XRD analysis, and the first crystalline phase obtained beyond 450oC from the dried samples was the cubic one. The 2.5YSZ and 4.5YSZ samples passed through the cubic phase were transformed into the tetragonal phase was at arround 600oC and 1,000oC, respectively. For 6.5YSZ and 8.5YSZ, cubic structure was developed continuously without transformation of crystal structure by 1,000oC. An exothermic peak around 450oC on DTA analysis associated with the crystallization to cubic phase and the formation of ZrOCO3(lat- tice), H2O, and CO2. The third exotherm (about 850oC) during the calcination was attributed to the liberation of CO32−. Key words: ZrO2-Y2O3 Gel, Sol-Gel Process, Metal Alkoxide, Chemical Modification

E-mail: hspark@ccs.sogang.ac.kr

(2)

 38 6 2000 12

1.  

      1899 Nernst [1]     .1937 Baur! Preis[2] 1,000oC

 "# $%& ' (  ) *+, . - .  /0 1234 56 789, :;< =>?

 @ ;A ZrO2, HfO2, CeO2, ThO2! Bi2O3B 4 C, 3aC, - 5bC D" EF GHI6 J KLMN EM

O(Cubic Crystal Structure, D C-EMOA P) QR 

D .

ST@ ; , UV OW# XY ZMS[ , O\ "# D" $ ]^[ ,  $ _^[ ` . - N3 3 aD " b cd6 e f^[ 

, $ gh& ' i6 M jk` O) $l[ ` . -mn o'` ZrO2 p q"# rsMN EMO(Monoclinic Crystal Structure, D M-EMOA P)) J (9, 1,170oC Dq

"# MLMN EMO(Tetragonal Crystal Structure, D T-E MOA P)A, 2,370oC Dq "# C-EMOA tu, v w b S N3 a b$ nxy [3]. D! z0 3

a b ZrO2 {@ X|$ } . ~ # € CaO, MgO, Y2O3, Sc2O3B 2$  3$ QRDn ‚ƒ„ +6 ZrO2!

…† ŠO ‹ $ ?Œ ( [4]. Ž ZrO2-Y2O3 (Yttria Stabilized Zirconia,D YSZ)N MgO-ZrO2, CaO-ZrO2 B

N 1 C-EMO qcD , ‘"# ZM` EMO)

‰ & ' ( ’“ ”0 $ ?Œ ( .  STA#

YSZ a•0 T-EMO – C-EMO) J $ ', Y2O3 mol%$ —$˜ ~ D" $ —$ * Y2O3mol%

 —$ D"  {a ™ ) —$š[5], Y2O3 OaD 20 mol%DqD ›, œA Zrh Y †4 Y4Zr3O12! Y6ZrO11B D ža ’“  STA# a•D Ÿ ` [6]. ~ # ¡¢

39A Y2O3mol%

$X '` a6 nx£ ¤9A =>l ( .

YSZ B Da¥N  ŠO (¦# $X §¨` I0 © a¥

D ª¡ˆ …†} «¥ ŠOD . ZrO2-Y2O3N p a¬

£ Y2O3$ ª¡ˆ ¥­›   D" EF GHI ®v O aD ¯ˆ , D" $ ST # ª¡ f9°A

 ST ±²D ³¦ ˆ , O\"# EMqh N3

aD Y2O3 Oa ”0 cd6 e ’“D .

´ # YSZ ZrO2! Y2O3 µ5TA ¶¶ Zirconium- n-propoxide(D Zr-n-pA P)! Yttrium chloride hexahydrate(D

Y-c-hA P)) s@, a¥N  ŠO (¦# ¢·R

O¸ ¹ VH'º ª¡` …†D $•` »-¼½[7]6 D@ 4$

Oa ¾¿` YSZ-¼6 ŠO9, OaD EMO b ¹ EM 7% «j cd À Á . ª¡` Oa ¥­)

¢·R O¸D Ĩ, ¡¢39A µ5@Ã pH) O¸7n [8, 9], v¥$'¥S ¹ …†@Å) s@7n[10, 11], ZMŠ) Æ

$ L½D D@ ( . -mn Ti-=ÇÈ, Al-=ÇÈ ¹ Zr-

=ÇÈ! zD QRD" v¥ É ÊD Ë =ÇÈ p

pH O¸  ¢·R) Š¦ ¦Ì[12], v¥ $'¥S

¹ …†@Ž0 µ5TD Í© =ÇÈ4 p 3@} . ~ #

´ # ¢·R$ ÎÏ ZrO2 µ5T4 Zr-n-p) Acetyl-

acetone(D AcacA P)9A ZMš L½6 D@ YSZ-¼

6 ŠO . ´ # ¾¿` YSZ-¼ ŠO Ð# [Acac]/[Zr-

n-p](D RA P) Ê6 0# 1< 0.05Ñ —$š›# o'`

ZrO26 ŠO, R b$ ŠO}  ¬Ò! EMO b

 «j cd À Á9, D! z0 ÓÔ Eh)  ÕA  ¾¿` YSZ-¼ ŠO) Â` R Ê6 EM .

2. 

´ # ZrO2 µ5TA Zr-n-p(Zr(O(CH2)2CH3)4, 70 wt%

solution in propanol, Alfa)) s@9, Y2O3 µ5TA Y-c-h (YCl3Ö6H2O, Strem Chemicals, 99.9%)) s@ . Iso-propanol (C3H7OH, Carlo Erba Reagent, 99.0%)6 Zr-n-p ZM ¹ Y-c-h

@S ¢· @ÅA s@9, Zr-n-p ZMŠA Acac(CH3- COCH2COCH3, Daejung, 99.7%)6 s@ . 0 2× —„ D

" ØU` ¤6 s@ .

2-1.  ZrO2 

Zr-n-p) @Å4 iso-propanol @Sš ¢·OW ~ Acac6 Æ$ 30oC# 1Y %Z 100 rpm RA Ø¢›# ZM ¢

·6 'Œ, D @à [H2O]/[Zr-n-p]=4 SÙ h isopro- panol …† @Ã6 Æ$ 3Y %Z 200 rpm RA Ø¢›#

$'¥S ¹ چ§† ¢·6 ?Œš 1Y %Z ÛaÜ ¾¿`

ZrO2-¼6 ŠO9, ŠO} ¼0 60oC# 24Y WO .

2-2. YSZ 

Zr-n-p) @Å4 iso-propanol @SÝ . Acac6 Æ$ 30oC

# 1Y %Z 100 rpm RA Ø¢Ü ZM} Zr-=ÇÈ

@Ã6 ŠO9, ¡MÞ YCl3ß6H2O$ @S} iso-propanol h D …†} @Ã6 Æ$ 200 rpm Ø¢RA 30oC# 3

Y%Z Ø¢Ý . 1Y %Z ÛaÜ ¾¿` YSZ-¼6 ŠO

 . @Ã [Y-c-h]/[Zr-n-p] ÊD 0.025, 0.045, 0.065, - 0.085

$ à µ5T6 Æ$9(D 2.5YSZ, 4.5YSZ B9A P

), ¢· Æ$` 20 á1A Zr-n-p : Acac : H2O : iso-propanol=1 : 0.5 : 4 : 40D  É0 YCl3 ⦠( ¤6 ­˜ N

 . ŠO} ¼0 60oC# 24Y WO . Dq ÓÔ ¸ã ) Fig. 1 nx£, .

Fig. 1. Flowchart for synthesis of YSZ-Gel.

(3)

2-3. 

  äM6 g ¬a} EMO) Á Â Oah "

b À` Xå ׸ ¥æ(XRD, Rigaku, Interval 0.02, Scanning speed 0.5o/min, Target=Cukα, Power=30 kV, 20 mA, 20oç2θç80o)6 'Œ

9, YSZ ¥ E† qÒ!   " b ~Ï ¥ £

E† qÒ b) Á Â 3oC/min è" RA é

` ¥) KBr pellet ½9A Vê¬ ë6 *+¦ FT-IR(MIDAC GRAMS/386) ¥ì) s@ 400-2,500 cm−1 íî' ïÂ#

¥æ9, «¥! KBr ðˆ1 1 : 2009A M . YSZ

¥ é¥S ¹ qb a6 Á  TG-DTA(DuPont 2000 Differential Thermal Analysis,è" R 3oC/min, ¥Â Air) Ó Ô6  . ŠO} YSZ ¥ Oa0 1,000oC# 1Y%Z 

}  ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrophotometer, PERKIN ELMER/Plasma40, JOBIN YVON/JY 138 Ultrace)¥æ6 g ñò–ó .

3. 

3-1.  ZrO2     

R ÊDŠO} ZrO2 ¬Ò «j cd À` ÓÔEh ›

Rô0.7 ïÂ# 24Y ¢·h 10¡ %Z ÛahM6 gS#

 žaD ŠO fó . 0.4çRç0.6 ïÂ# 3Y ¢·

h 1Y M ÛahM6 g ¾¿` ¼D ŠO,, R ÊD

—$˜ ~ ¼ YD —$ . R<0.4 ïÂ# R ÊD

Ÿ &'à 10¥ D£ õ öD ža, .

Fig. 2 R Ê6 bÜ ŠO} ZrO2-¼ ¹ ö6 3oC/min è" RA 500oC<  `  À` XRD¥æ EhD . Fig. 2

 › Zr-n-p6 ZMš f0 R=04 OW# ŠO} ö

0 Àv¥ M-EMO) J (6 = ' (, R ÊD —$˜

# ŠO} ¼0 Àv¥ T-EMO) J (6 = ' ( . ZrO2-¼ ¹ ö £v O! EM «j ¢·R cd

 À` Ï H+ Eh[13-17] › ¢·R) øµ'à

ŠO} ¼0 0 ´ KH$ ùú39A ¥­¦ (9 C-  T-EMO! ‰s` £v O) J (, ~ # D! z0 £v

O 4 500oC M#    T-EMO$ ža }  5P .

-m°A R<4 OW# Zr-n-p$ ZM fó ’“ ¢

·R$ ί, ~ # Ë ´ KH$ ùúˆ ·û} öD

ža} ¤D, D! z0 ùú` £v O 4 500oC#

    M-EMO$ ža,  s} . - 0.4ç

Rç0.6 ïÂ# ŠO} ¾¿` ZrO2-¼0 « KH$ ùú39A â

é¦ (9 T-  C-EMO! ‰s` £vO) J ( ’

“ 500oC#    T-EMO$ ža,  s} . Fig. 30 R=0.54 OW# ŠO} ¼6 360oC# 1,000oC< 3oC/

min è" RA  ` ¥ À` XRD¥æ EhD . ¡¢39A o'` ZrO2 p   äM  1MTq9Avü M-EMO

$ ža *[3], Fig. 3 › 400oC#  `  p M-E MO$ ^ý T-EMO$ ža,9, 500oC <  " —

$! þ¦ T-EMO$ 5ÿ˜6 = ' ( . -mn 600oC#  

$ nx .  ") 1,000oC< —$š› T-EMO a0 Ÿ

3-2. YSZ

R ÊD ŠO} o'` ZrO2ža ¬Ò À` ÓÔEh) Õ Fig. 2. X-ray diffraction patterns of various ZrO2 samples calcined at

500oC(heating rate=3oC/min).

Fig. 3. X-ray diffraction patterns of ZrO2 calcined at various tempera- ture(heating rate=3oC/min).

(4)

 38 6 2000 12

A  R=0.5, [H2O]/[Zr-n-p]=4A M [Y-c-h]/[Zr-n-p] 1) O¸ 4$ Oa YSZ-¼6 ŠO9, Table 1 µ5T

Oa1! ICP-AES ¥æ Eh S ŠO} £ Oa1) nx

£, . Table 1 › ¢· Æ$} Y-c-h! Zr-n-p 1 1

 ŠO}  £ Y-c-h OaD 2Y ]ˆ nx .

Fig. 4 2.5YSZ-¼ ) 3oC/min è"RA 1,000oC<

  ŠO} «¥ À` XRD¥æ EhD . 2.5YSZ-¼ p

 400oC#    C-EMO$ nx9,  "

—$ ~ EMaD —$ (9 600oC#   

T-EMO$ nxn 9(“ › 2θ=35o! 2θ=60o v€ peakD ¶¶ (002), (200)› ¹ (113), (131)›9A ¥¦ n xn› T-EMO) J (9 (200) ¹ (311)› n* nxn›

C-EMO) nx [18, 19]), 1,000oC<   " —$! þ

¦ T-EMO$ 5ÿ˜6 = ' ( . -, Fig. 3 R=0.5#

ŠO} o'` ZrO2 «¥! Fig. 4 2.5YSZ «¥) 500oC#

 `  XRD ¥æ Eh) 1ØS–› o'` ZrO2«¥

T-EMO$ « Þ Y-c-h Æ$  C-EMOA U6

= ' ( .

Fig. 5 4.5, 6.5 ¹ 8.5YSZ  À` XRD ¥æ EhA Fig. 4

 2.5YSZ  600oC#    T-EMO$ ža

, * 4.5YSZ  800oC< C-EMO$ ‰  (9

1,000oC#    (002)›h (200)› ¹ (113)›h (311)›

 À` peak$ ¥ ¤9A –^ T-EMO$ ža,6 = ' ( . 6.5YSZ! 8.5YSZ  1,000oC<  "$ —$

 EMO biD C-EMO$ NR ‰ 6 = ' (9, D! z0 Eh! ICP ¥æ Eh › 6.7çYttrium mol%ç8.55 ï £v Oa6 J $  STA# '` a6 nx

 ¤9A s} .

Fig. 60 #A Ï Y2O3 Oa ) 450oC#   ža } «¥ À` XRD ¥æ EhA Í  C-EMO) nx Fig. 4. X-ray diffraction patterns of 2.5YSZ calcined at various temper-

ature(heating rate=3oC/min).

Table 1. Composition of YSZ determined by ICP-AES

Sample Yttrium added in

reactor(mol%)

Yttrium in the sample(mol%) 2.5YSZ

4.5YSZ 6.5YSZ 8.5YSZ

2.5 4.5 6.5 8.5

2.65 4.55 6.70 8.55

Fig. 5. X-ray diffraction patterns of various samples calcined at indi- cated temperature(heating rate=3oC/min).

Fig. 6. X-ray diffraction patterns of YSZ calcined at 450oC(heating rate=3oC/min).

(5)

£ (9 Y2O3 OaD Ÿ &'à EMaD —$ (6 = ' ( .

3-3. DTGA 

Fig. 70 2.5YSZ  À` 1,000oC<  TGA ¥æ EhD (è

" R=3oC/min). 100oC v€# H2O —5 ` ðˆ Ÿ $ nx9, 300-450oC ïÂ# ‰T ‰ ` ðˆ Ÿ  :qD nx, 500oCvü 1,000oC< 0 " ïÂ# 2

4.3% M ðˆ Ÿ  :qD nx .

Fig. 80 4$ Oa YSZ-¼ À` DTA ¥æ EhD . Í 

# 100oC v€ "# '¥ —5 ` é peak$ nx

, 370oCv€#  5é peak$ nx . XRD ¥æ E h › 400oC D "#  `  p Í© 1MT qD, ’“ 370oC v€# nxy 5é peak EM `

¤D ^ý ‰ ¥S ` Eh  s} . - 400-500oC

 ïÂ# YSZ-¼0 © 5é peak$ nx, 850-870oC v

€# 5é peak$ nx . D! z0 © $  5颷

0 ¡¢34 :qD * ^  ¿ Ž Sæ¦ ( f . o'`

ZrO2! MgO-ZrO2…† ŠO! EMa ‹` “6 gS Kundu [20] 400-500oC

 EFI+D s  ’“ nxn :qD  Sæ, Gu- inebretiere[13]0 ¼ ŠO ¢·OW ~ © 5颷 Âj!

÷$ b, D ¼ £v aD ¯ ’“D  Sæ . Zeng[21]0 AcacA Zr-n-p) ZMš äM S ŠO} o'`

ZrO2-¼ ‹` ) g qb$ ¡¦n " v€# ZrO2

GH£ ¥H{%0 {5, ~ #  h z0 ¢·6 g

HCO3D" CO3$ GHO R9A +¦$ H2O! CO2¹ O2

$ ža}  5P .

(1)

` GH £v ; CO3

2 900oCv€# ‰}  5 P . - Fig. 6 450oC#  `  À` XRD ¥ æ › Y2O3 OaD Ÿ &'à EMaD —$ (9n Fig. 8 DTA ¥æ Eh › Y2O3 OaD —$&'à © 5颷 ÷$ —$ (6 = ' ( . -m°A Fig. 8

 400-500oC ïÂ# nxy © 5颷0 1MTq C- EMOA Uh ˜  (1) ¢·D % ¡¦ ’“D  s} . Fig. 4! 5 XRD ¥æ Eh › 2.5YSZ!

4.5YSZ 800oCDq "# EMO$ b9n, 6.5YSZ!

8.5YSZ 1,000oC<  þ  EMO b nxn f ó . -mn Fig. 8 › Í # 860oCv€#

¤D  – q b hM# GH £vA +¦$ ( CO32−

 ‰ 4` ¤9A s} . - Fig. 7 TGA ¥æ 

 500oC D. ºŽ ¡¦y 2 4.3% M ðˆŸ  Â

 ¢·  ža} H2O, CO2, O2 ¹ 860oC v€#

CO2−3 ‰ 4`  s} .

3-4. FT-IR 

Fig. 9 60oC# 24Y WO` ! m "#  ` 2.5YSZ

 À` FT-IR ¥æ EhD . 2,300-2,400 cm1íî' ïÂ#

 'À CO2 ` ¤D, 1,528, 1,620, 1,630, 1,645, -

1,655 cm1# 'À H2O ` ¤D . ` C=O E† 

` 'À 1,710, 1,528, 1,425 ¹ 1,025 cm−1 íî'# nxn

( . 1,550h 1,453 cm−1# 'À Zr-O-C E† ` ¤ D . CH2 E† ` 'À 1,440, 1,360 ¹ 1,377 cm1 íî '# nxn ( . 1,278 ¹ 933 cm−1 íî'# 'À ¶

¶ C-O! C-C E† ` ¤D . 60oC# WO`  p

Àv¥ H2O! ZMŠA Æ$} Acac ` 'À$ nxn ( ¤9A –^ WO äM . ZMŠ$ Ž ¼ £v ;

˜6 = ' ( . - 450oC#  `  p Acac B

‰Th H2O - CO2 ` 'À$ Ÿ 6 = ' ( . -mn 500oC#  `  450oC#  `  1

 CO2 ` 2,300-2,400 cm−1 v€ 'À! 1,400-1,700 cm−1 v€ íî'# 'À$ —$ 600oCDq9A   "

) —$š›  Ÿ ˜6 = ' ( . - 1,000oC#  `

 p 470 cm−1v€# ìïÂ` r¡ 'À$ nxy ¤9 A –^ T-EMO$ ža,6 = ' ( [22]. D! zD 2,300- 2HCO3+OZrO lattice( )→ZrOCO3(lattice)+H2O ad( )

+CO2+O2

Fig. 7. TGA curve of 2.5YSZ sample.

Fig. 8. DTA curves of various YSZ samples.

(6)

 38 6 2000 12

2,400 cm−1 ¹ 1,400-1,700 cm−1 v€ íî'# 'À$  

" —$! þ¦ Ÿ   —$  Ÿ  äM6 7jˆ } ¤0 Fig. 7h 8 TGA ¹ DTA ¥æ# Á` t! zD C-EMOA

 EM hMh  (1) ¢· 4`  s} . , 450oCv

€ EM hM# ža} CO2  2,300-2,400 cm1v€

'À$ —$` ¤D H2O ¹ ZrCO3  1,400-1,700 cm−1 v€ íî'# 'À$ —$` ¤D . - 600oC Dq9A

  ") —$š› H2O, CO2 ¹ GH£v ; CO3$

‰ ’“  Ÿ ` ¤D  s} .

4. 

´ # ¢·R$ Å ÎÏ Zr-n-p) Acac9A ZMÝ , Y2O3 µ5T4 qÒ YCl3ß6H2O) propanol @S

Ü ŠO` @Ã6 Æ$ ¢·9A YSZ) ŠO9

h z0 E6 , .

(1) ¾¿` ZrO2-¼6 ŠO) Â` [Acac]/[Zr-n-P] Ê6 M

Â` ÓÔEh › Rô0.7 ÓÔ OW# ¢·D ?Œ

fó9 R<0.44 OW# Å ÎÏ ¢·6 gS öD ža

, Æ$} Acac ÉD —$&'à ¢·YD —$ . -

 0.4çRç0.64 OW# 3Y M ¢·h 1Y M Ûaä M6 g ¾¿` ZrO2-¼6 ŠO& ' (, .

(2) [Acac]/[Zr-n-P] Ê6 bÜ ŠO`  XRD ¥æ6 g S, 500oC#  ` p Acac9A ZMš f0  M- EMO) nx£,9 Acac Æ$ÞD —$&'à T-EMO

a6 nx£ peak ÷$ —$9, ZMŠA Æ$}

Acac É0 Zr-n-p ¢·R* ^ý ža ¬Ò! £vO

 cd6 «j, £v O  ¥ EMO Ë cd6

«ö6 = ' (, .

(3) ŠO} 4$ Oa YSZ  À` 1,000oC<   

~Ï EMa b À` Á6 g 2.5YSZ! 3.5YSZ p

1MTKLMMLM rN) 7j›# EM,, 6.5YSZ!

8.5YSZ p 450oC v€#vü C-EMO$ ža 

9 1,000oC<  ") —$šþ  EM¬Ò D iD NR EMa*D —$ .

(4) TGA ¥æ Eh › 500oC Dq# 2 4.5% ðˆ

Ÿ $ ¡¦6 = ' (,, DTA ¹ XRD ¥æ Eh 

D! z0 :q0 500oC v€# EM äM# ža} H2O, CO2 ¹ EM £v ( CO32−¥S ` Eh6 4 . - DTA ¥æ © 5颷0 1MT q EM!  (1)

 ¢·D ˜ ¡¦6 = ' (,, 850oCv€# nxy 5颷0 EMO £ CO32−‰ ` ¤6 = ' (, . - Â! z0 EM äM# nxn :q0 FT-IR ¥æ6 gS# 4& ' (, .



1. Nernst, W.: Z. Elektrochem., 6, 41(1899).

2. Baur, E. and Preis, H.: Z. Elektrochem., 43, 727(1937).

3. Nguyen Q. M.: J. Am. Ceram. Soc., 76(3), 563(1993).

4. Etsell, T. H and Flengas, S. N.: Chemical Review, 70(3), 339(1970).

5. Appleby, A. J. and Foulkes, F. R.: “Fuel Cell Handbook,” VNR, New York(1989).

6. Carmen P. and Pedro D.: J. Am. Ceramic. Soc., 66(1), 23(1983).

7. Schmit, H.: J. Non-Crystalline Solids., 100, 51(1988).

8. Navapro, L. M., Recio, P. and Durán, P.: J. of Mater. Sci., 30, 1931 (1995).

9. Chatterjee, M., Ray, J., Chatterjee, A., Garguli, D., Joshi, S. V. and Srivastava, M. P.: J. Mater. Sci., 28, 2803(1993).

10. Ogihara, T., Yanagawa, T., Ogata, N., Yoshida, K., Iguchi, M., Nagata, N. and Ogawa, K.: J. Ceram. Soc. Jpn., 102, 778(1994).

11. Hwang, U. Y., Lee, S. G., Koo, K. K., Park, H. S., Yoo, S. J. and Yoon, H. S.: HWAHAK KONGHAK, 37, 355(1999).

12. Chane, C. J. I. and Klein, L. C.: J. Am. Ceram. Soc., 71(1), 86(1988).

13. Guinebretiere, R., Dauger, A., Lecomte, A. and Vesteghem, H.: J.

Non-Crystalline Solids, 147, 542(1992).

14. Davis, B. H.: J. Am. Ceram. Soc., 67, C-168(1984).

15. Clearfield, A.: J. Mater. Res., 5, 161(1990).

16. Srinivasan R., Ramayi, V. M., Sujit, K. R. and Padmanabha, K. K. N.: J.

Am. ceram. Soc., 78(2), 429(1995).

17. Tau, L. M., Srinivasan, R., DeAngelis, R. J., Prinder, T. and Davis, B. H.: J. Mater. Res. 3, 561(1988).

18. Vladimir, B., Irena B. and Lilian H.: J. Am. Ceram. Soc., 80(4), 982 (1997).

19. Nishizawa, H., Yamasaki, N., Matsuoka, K. and Mitsushio, H.: J. Am.

Ceram. Soc., 65(7), 343(1982).

20. Phillippi, C. M., Mazdiyasni, K. S.: J. Am. Ceram. Soc., 54(5), 254 (1971).

21. Zeng, H. C.: Mat. Res. Soc. Symp. Proc. 346, 715(1994).

22. Kundu, P. and Suchitra, D.P.: J. Mater. Sci., 23, 1539(1988).

Fig. 9. FT-IR spectra of 2.5YSZ calcined at various temperature.

참조

관련 문서

The LiMn 1.5 Ni 0.5 O 4 cathode materials calcined at 850 o C delivered the highest discharge capacities and exhibited good cycling characteristics in terms of the

Salt removal efficiency corresponding to various salt types at adsorption/desorption time of 3 min each, 1.2 V/-0.1 V adsorption/desorption voltage, and 25 mL/min flow rate

X-ray diffraction (XRD), scanning electron micros- copy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible

강도가 감소하기는 하지만 monochromator는 Ka선만 회절 시키므로 Kb필터가 필요하지 않으며, 시료에서 발생하는 background X-선 즉 형광 X-선, 비간섭성 산란 X-선 등을 제

- As it is ‘accident insurance’ and not health insurance, then dental treatment or a health examination are not covered and only the medical expenses

In addition, the effect of yttria content added during hydrolysis reaction of ZNB was investigated on the crystalline phase composition and pore structure of the

Specific surface area and acidity of 10-NiO-TiO 2 /WO 3 samples are much larger than that of pure TiO 2 calcined at the same temperature, showing that surface area

반응실험 전․후의 촉매에 대하여 X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Temperature Programmed Reduction (TPR), Ultraviolet-Visible