• 검색 결과가 없습니다.

Sol-Gel  Yttria-Stabilized Zirconia(YSZ) 

N/A
N/A
Protected

Academic year: 2022

Share "Sol-Gel  Yttria-Stabilized Zirconia(YSZ)  "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Sol-Gel   Yttria-Stabilized Zirconia(YSZ) 

  ********

 

320-711 26

* 

330-714   29

** , ***

570-749   344-2

(2002 11 25  , 2003 1 23 !")

Preparation of Yttria-Stabilized Zirconia(YSZ) Nanopowders by Sol-Gel Method

Chul-Won Cheong, Si-Hyun Park, Ki-Chang Song, Hae-Hyoung Lee*, Sang-Chun Oh**, Jin-Keun Dong** and Yong-Youp Cha***

Department of Chemical Engineering, Konyang University, 26, Nae-dong, Nonsan 320-711, Korea

*School of Dentistry, Dankook University, San 29, Anseo-dong, Cheonan 330-714, Korea

**School of Dentistry, ***Division of Mechanical Engineering, Wonkwang University, 344-2, Sinyong-dong, Iksan 570-749, Korea (Received 25 November 2002; accepted 23 January 2003)

 

Sol-Gel   zirconium-n-butoxide(ZNB) yttrium nitrate  yttria-stabilized zirconia(YSZ) 

 .  ZNB    yttria! "#  YSZ  $%& '( )*+'

 ,-. /0  . 100oC1 2 34 56 7%&89:;, 400oC1 <=%& $%> ?@

A9. Yttria AB CD  34 800oC1 E %&( %=%&8 *F. GH &: &?8 IJK :;, 1,200oC 8&1. L E %& $% > M. NO PQR yttria  1.(2.5 YSZ, 4 YSZ) 1,000oC 8& ST1 %=%&U VW9.  yttria AJ  X 800oC1 YZ[ 3 4 mesopore )*\ M] NO, yttria AB C4 L zirconia ^_. macropore )*\ M.

Abstract−Nanosized YSZ powders were synthesized by sol-gel method using zirconium n-butoxide(ZNB) and yttrium nitrate as precursors. In addition, the effect of yttria content added during hydrolysis reaction of ZNB was investigated on the crystalline phase composition and pore structure of the product powders. All powders dried at 100oC were amorphous and crystallized to cubic phase at 400oC. Crystalline phase of the powders made without yttria changed from the cubic to a phase in which monoclinic and tetragonal crystals coexist at 800oC and then transformed to a pure monoclinic phase above 1,200oC.

In contrast, the powders made with adequate content of yttria (2.5 YSZ, 4 YSZ) showed only the tetragonal phase above 1000oC. The pore size distributions of the powders prepared with yttria and calcined at 800oC showed mesopores, while those prepared without yttria and calcined at the same temperature exhibited macropores.

Key words: Yttria-Stabilized Zirconia, Nanopowders, Sol-Gel Method, Zirconium-n-Butoxide, Phase Composition, Pore Structure

To whom correspondence should be addressed.

E-mail: songkc@konyang.ac.kr

1.  

 zirconia(ZrO2)  950oC  

    ,   !" #

 $ %&'( )*+, -+. /0  12[1]. 34

5" Y2O3, CaO, MgO 67 -89: ;+, < =8 7

>  ? @ -8 zirconia: A B C D E 2[2-3]. FG yttria(Y2O3): ;+, -8 H zirconia(YSZ)

IJ K<, LM N L! "OM L> LP hip joint Q/ "O+

, RS/ T! UV G core UV WXY Z E2[4-6].

7V/ UV /[  E \J ]MY ?^ YSZ: *M+_ `

> 9ab cd7 e_ f, g< ch i, <, Qj D? @ %&ka: C l -89L Y2O3 '+. chD

m 2. n oMY ?^ YSZ 9a: `> 5QB[7], PpB[8], cq(c>B[9]S rJ ,s tOMBu vkD w, B

(2)

Sol-Gel  YSZ  233

uJ xT7 yu E2. 5QBJ 'z {O |} ~

!7 %&ka7 €'z 7 ]M+: ‚ƒ+[7], PpB

 5QBC2 'z aM7 cdOM „+ Qj… …

+, W7 †J ‡ˆ‰ Š‹+[8], cq(c>BJ kŒ 

Ž" 27 cdY OM0  E a N (c> S ‘’7

8 “ ” Œ• D_ –2[9].

Sol-GelBJ —“ alkoxide: ˜)]z +,  /t ™7 8

š 5Q 7> —“ ›8] cdY OM+  OMB2[10, 11].

 B ˜)]zL —“ alkoxideœ 5Q+ J ]ž_

Ÿ 2  —“  €] ¡¢[ „M " <7 c d A?, £J ~M << —“ ›8] cdY 9a0  E 2. o¤ 2Mc¥ ¦V ]zu7 c§ ¨7 {O „+$

' aM7 cdY AY  E2 ©y E2[12].

ª  _Pe_ a«D, IJ ‘’"Y ¬ 2PM cdJ Š

­, ®¯9, °± ² /D E2. Sol-GelBJ —“ ›8] cd 7 _Pe_: 9+³ ±´ µS"L B2[13]. 7 vk

 ¶ vk§uJ Sol-GelB 7> YSZ cdY OM+·, ˜)]

zL zirconium-n-butoxide7 c> ¸- ;b ]7 =8 A

¬ cd7 _PoM %R ¹ºY »¼C½2[14]. l ²J vk

§u Sol-GelB 7> YSZ cdY OM+·2 C+·?¾, O MS G ;b yttria ¿7 =8 9ab cd7 _PoM %R

¹ºY »¼C? ÀÁ2. 34 ¶ vk Sol-GelB 7> yttria

 '+. ;b YSZ: 9a+·  S G ˜)]zL zirconium-n-butoxide7 c> ¸- ;b yttria¿7 =8 A¬

cd7  kaœ _PoM %R ¹ºY a+·2.

2.  

2-1.  

¶ ÂÃ ˜)]z zirconium-n-butoxide(ZNB, Aldrich, 80%)

œ yttrium nitrate hexahydrate(Aldrich, 99.9%): /+·, Y2O37

2.5 YSZ, 4 YSZ 6 ‘_)  Æ7 1-butanol([1-butanol]/[ZNB]

ƍ 10) ;+·2. `7 ˜)/tY 30oC 30c ¸- Ž5 H ‡, ;D #Ç7 ¿Y ([H2O]/[ZNB]7 ƍ 20) +, 30oC

 2 È ¸- c> É2[14]. ` S AJ p]Y filtering 7> ,StY 9Ê ‡, 100oC7 aËÌ 24h ¸-

a Í, Χ) cÏ+, %cdY 9a+·2[14]. ab cd J 5oC/min7 “< Ð É,  < 1 ÈÑ ¢? Ò

7> +~DÓ, 7 Âà S: ÈÔ+. Fig. 1 ՙÓ2.

2-2.  

*Mb cd7 +~< =8 3   =8: C_ `> X-Ö

׫cØ_(D/Max-IIIC, Rigaku): /+, CuKα: ÕÙ ׫

20-70oÚ` 3o/min7 “< X-Ö ×«cØY  +·2. l * Mb k! cdS (ˆ‰ ‡7 g§7 ŒS e_, e_ch: ÛÜC_

`+, ÝS§…%Þ(CM20, Philips)S W§…%Þ (XL30SPEG, Philips)Y /+, cØ+·2. 9ab cd7 ‘’"S _PoMJ BET z~®¯BY /> Micromeritics7 ASAP 2,400Y /> ß

+·2.

3. 

3-1. 

Fig. 2(a)-(d) cdOM ˜)]zL zirconium n-butoxide(ZNB)

;D yttrium nitrate hexahydrate7 Æ7 : =8 à 9a c du7 +~< 3   =8: Õá XRDcØ S2. +

~< 3   =8 ;b yttria7 ¿ 34 â =8: C

·2. ã, 100oC ab cduJ äå zY ՙÓ, 400oC (ˆ‰  8  g(cubic) æD Ó2. Fs  zirconia[Fig. 2(a)] cd (ˆ‰ <7 #

 34 gJ 800oC (tetragonal) æDÓ

¸  ç (monoclinic)7 èe Õé, (ˆ‰ <7

# 34  èe7 K< e. ê~+, 1,200oC ë¤

4¬ 5’  èe7 K< #+,, 1,200oC ­ 1,400o

? ¾ íU+  ka: ՙÓ2.  Fî

gS J rJ `R(2θ) Õ 2θ=35oœ 60o

 E,  ï7 ’¾ Õ’ g ka: ՙ$ 400oC

 Õñ g 800oC  æDÓòY Û  E2[15]. Fig. 2(b) 1.5 YSZ cd T XRDcØ S g

J 1,000oC  æDÓ, ¸   Õé 2. F ‡ +~<7 # 34  èe7 K< ê~ 5

’  èe7 K< #+, 1,000oC 1,400oCì? 

S  Pí+ ka: C,WÓ2. Fig. 2(c)-(d)

2.5 YSZ N 4 YSZ cd T XRD cØ S  ŒMD Óó g 1,000oC    1,400oC (ˆ‰ ì? 7  ¾ íU¡Y Û  E2.

7 S ­ äô cd7 Þ´ zõgõ

7 ¥: Êö 8DÓ, yttria ;b Þ´ ;D? @J Þ´ C2 ÷J < Ú` g Õé l  ¹ø L 1,200oC, 1,400oC yttria ;D? @½Ê(0 YSZ) ". ;

b Þ´ (1.5 YSZ)  Õ, yttria "ù ;

b Þ´ (2.5 YSZ, 4 YSZ)  ÕúY Û  E2. ` 7 S yttria7 -8 µS: ՙ [16], Sol-GelB 7

> 9ab cdJ yttria7 ; ,  û¥1 zõgõ

7 ¥: Êö 8üY Û  E, yttria ý ;D

? @Ê, ". ;b Þ´ 7 (ˆ‰ *MDÓó 

  D’    D’ 1,000oC

7   Õé2 >Øb2. 5’ yttria7 ;

 "ù Þ´ yttria7 -8 µS 7>  Õé ó   D<   ?

@òY Û  E2[16].

3-2.   

Table 1J OM  yttria¿Y =8 à 9a ‡ 800oC (ˆ‰

H cdu7 ‘’" =8: Õá2. 5" yttria ;b Fig. 1. Flow chart for preparation of YSZ powders by sol-gel method.

(3)

 41 2 2003 4

Þ´(1.5 YSZ, 2.5 YSZ, 4 YSZ) yttria ;D? @J Þ´(0 YSZ) C2< cd7 ‘’" þ ⠝Y Û  E2. o¤ 2.5 YSZ a

 9ab cd7 BET ‘’"J © IJ þ(50 m2/g)Y C·, 5’ 0YSZ a 9ab cdJ © £J þ(13.5 m2/g)Y Õ ÿ2.  7 Fig. 47 pore size distribution S Û  E

yttria ;b Þ´ â _P è: ð mesopore7 _P )

5’, yttria ;D? @J Þ´ _P )R À+_ Ÿ2.

Fig. 3J 800oC (ˆ‰b cdu7 z~ ®¯/¯ ÖY Õ

™ E2. Yttria ;b cduJ (1.5 YSZ, 2.5 YSZ, 4 YSZ) _!

Y I,’ AJ ®¯6ÖS _! Y £’ AJ

¯6Ö RD? @ ¤ …Y C 9 Œ ®¯

6Ö[17]Y C, _Pu mesopore(20-500 ) kMD EòY

0  E2. 5’ yttria: ;+? @J (0 YSZ) cdJ 9IIIŒ

®¯6Ö[17]Y C, _! £J Þ´ ®¯ ±´ f

 h8 ì}?’ ®¯ ? Y Û  E2.

Fig. 4 oC (ˆ‰b c

du7 pore size distributionY Õá2. Yttria ;D? @J Þ´

 cd7 _PJ macropore(_Pe_ 500 ) Wb kMY

 5’, yttria ;b Þ´ mesopore(_Pe_ 20-500 

) cd7 _P7 W: Y Û  E, Fig. 37 S  R + E2. l yttria7 ; ²ÜzÄ _P7 ' e_ fÜ

?³,  yttria7 ; ²ÜzÄ cd G7  M© 9

Fig. 2. XRD patterns of YSZ powders calcined at different temperatures. The powders were made with different amounts of yttria (a) 0YSZ, (b) 1.5 YSZ, (c) 2.5 YSZ and (d) 4 YSZ. The peaks marked as C, T and M represent the cubic, tetragonal and monoclinic phases, respectively.

Table 1. Specific surface areas of YSZ powders prepared with different amounts of yttria and calcined at 800oC

Sample Specific surface area(m2/g)

0 YSZ 13.5

1.5 YSZ 40.5

2.5 YSZ 50.0

4 YSZ 49.5

Fig. 3. N2 adsorption-desorption isotherms of YSZ powders prepared with different amounts of yttria and calcined at 800oC.

(4)

Sol-Gel  YSZ  235

D 7 e_ fÜ?_ Ÿ2[18]. _P7 ' e_ cd G7 7 e_œ " +$[19], yttria ; ²Üz

Ä ' _P e_ fÜ?. b2.

Fig. 5 100oC ab 1.5 YSZ cd7 ÝS§…%Þ ¬Y

ՙ E2. cdu7 ' e_ 2 nm   e_7 g§

ŒMD E Y Û  E, cd 9a S G Qj +. 

éòY Û  E2.

Fig. 6(a)-(d) 1.5 YSZ cdY 2¿ <(800oC, 1,000oC, 1,200oC, 1,400oC) (ˆ‰+, 9ab cdu7 SEM ¬Y C,¨2.

+~< IÜzÄ  M©+,, 800oC 50 nm <7 

 e_ 1,400oC (ˆ‰  500 nm < 7 e_ 

Y Û  E2.

Fig. 7(a)-(d) yttria7 ;Y ‰+, 9ab ‡ 1,400oC (

ˆ‰b cdu7 SEM ¬Y C,¨2. Yttria ;D? @J cd uJ TÔ 500 nm e_7 â (grain) kMD EòY C,W

 5’, yttria¿ ² ;[Ä 9ab cduJ 7 e_ f ÜY Û  E2.  Lange[3]7 W©ˆ ;b yttria 7 M©Y 9+_ Ÿ Vb2.

4.  

Zirconium-n-butoxide(ZNB)œ yttrium nitrate: ˜)¦V +, Sol- GelB 7> YSZ cdY 9a+·2.  OMS G ;b yttria¿

Y ‰+, yttria¿7 =8 *M cd7 oM %R ¹º û>

Fig. 4. Pore size distributions of YSZ powders prepared with different amounts of yttria and calcined at 800oC.

Fig. 5. TEM image of 1.5 YSZ powder dried at 100oC.

Fig. 6. SEM images of 1.5 YSZ powders calcined at different temperatures; (a) 800oC, (b) 1,000oC, (c) 1,200oC and (d) 1,400oC.

(5)

 41 2 2003 4

2òS rJ Y AÓ2.

(1) +~< =8 3  cd7  =8 ;b yttria¿ 3 4 ²J : C·2. ã, äô cd7 Þ´ zõgõ

7 ¥: Êö 8 , yttria ý ;D? @Ê

(0 YSZ), ". ;b Þ´(1.5 YSZ)  ŒMDÓó 

  D’    1,000oC 7

 (ˆ‰b cd Y )0  EÓ2. 5’

yttria "ù ;b cd(2.5 YSZ, 4 YSZ)  ŒMDÓ ó   D<   ? @

$ 1,000oC 7   ¾Y )0  EÓ2.

(2) Yttria ;b cdu7 Þ´ 800oC (ˆ‰ mesopore 7 _Pch ) 5’, yttria ;D? @J cd7 Þ´

macropore Wb _Pch: C·2.

¶ vk SšU X"_‚(S9 ! R01-2000-000-00097-0 (2002))?¦ "DÓ#$2.



1. Lange, F. F., “Transformation Toughening Part 1. Size Effects Asso- ciated with the Thermodynamics of Constrained Transformations, J Mater. Sci., 17, 225-234(1982).

2. Hebert, V., His, C., Guille, J., Vilminot, S. and Wen, T. L., “Prepa- ration and Characterization of Precursors of Y2O3 Stabilized ZrO2 by Metal-Organic Compounds,” ibid., 26, 5184-5188(1991).

3. Lange, F. F., “Transformation Toughening Part 3. Experimental Observa- tions in the ZrO2-Y2O3 System,” Ibid., 17, 240-246(1982).

4. Minh, N. Q., “Ceramic Fuel Cells,” J. Am. Ceram. Soc., 76(3), 563- 568(1993).

5. Gupta, T. K., Lange, F. F. and Bechtold, J. H., “Effect of Stress- Induced Phase Transformation on the Properties of Polycrystalline Zirconia Containing Metastable Tetragonal Phase,” J. Mater. Sci., 13, 1464-1470(1978).

6. Drummond, J. L., “In Vitro Aging of Yttria-Stabilized Zirconia,” J.

Am. Ceram. Soc., 72(4), 675-676(1989).

7. Yamakawa, T Ishizawa, N., Uematsu, K. and Mizutani, N.,

“Growth of Yttria Partially and Fully Stabilized Zirconia Crystals by Xenon Arc Image Floating Zone Method,” J. Cry. Growth, 75, 623- 629(1986).

8. Mazdiyasni, K. S., Lynch, C. T. and Smith, J. S., “Cubic Phase Sta- bilization of Translucent Yttria-Zirconia at Very Low Temperatures,” J.

Am. Ceram. Soc., 50, 532-537(1967).

9. Ishizawa, H., Sakurai, O., Mizutani, N. and Kato, M., “Homoge- neous Y2O3-Stabilized ZrO2 Powder by Spray Pyrolysis Method,”

Am. Ceram. Soc. Bull., 65(10), 1399-1404(1986).

10. Song, K. C. and Pratsinis, S. E., “Control of Phase and Pore Struc- ture of Titania Powders Using HCl and NH4OH Catalysts,” J. Am.

Ceram. Soc., 84(1), 92-98(2001).

11. Idem., “The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania,” J. Colloid Interface. Sci., 231, 289-298(2000).

12. Idem., “Synthesis of Bimodally Porous Titania Powders by Hydrol- ysis of Titanium Tetraisopropoxide,” J. Mater. Res., 15(11), 2322-2329 (2000).

13. Brinker, J. C. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press(1990).

14. Cheong, C. W., Park, S. H., Song, K. C., Lee, H. H., Oh, S. C., Dong, J.

K., Cha, Y. Y. and Byun, T. G., “Phase Composition and Pore Structure Fig. 7. SEM images of YSZ powders prepared with different amounts of yttria and calcined at 1,400oC; (a) 0 YSZ, (b) 1.5 YSZ, (c) 2.5 YSZ, (d) 4 YSZ.

(6)

Sol-Gel  YSZ  237

of Sol-Gel Derived Zirconia Nanopowders,” HWAHAK KONGHAK, 40(6), 741-745(2002).

15. Vladimir, B., Irera, B. and Lilian, H., “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive-Spray Atomization,” J. Am.

Ceram. Soc., 80(4), 982-990(1997).

16. Bansal, G. K. and Heuer, A. H., “Precipitation in Partially Stabilized Zirconia,” ibid., 58(5 6), 235-238(1975).

17. Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity,

Academic Press(1982).

18. Gopalan, R., Chang, C. H. and Lin, Y. S., “Thermal Stability Improve- ment on Pore and Phase Structure of Sol-Gel Derived Zirconia,” J.

Mater. Sci., 30, 3075-3081(1995).

19. Song, K. C. and Kim, J. H., “Synthesis of High Surface Area Tin Oxide Powders via Water-in-Oil Microemulsions,” Powder Tech., 107, 268- 272(2000).

참조

관련 문서

This process on sapphire substrate includes the growth of AIN4 or GaN5 buffer layers at a low temperature followed by the growth of high quality GaN films at a high

In this paper we report the reactivity and mechanism of the reactions involving carbonyl ylide intermediate from the photolytic kinetic results of non-catalytic decompositions

Current Tokyo is rich in green compared to other metro cities. In some parts, the greenery has been contributed by the many inherited gardens from the Edo era to today which

Gel content increased as the chemical reaction time and the irradiation dose increased, and gel content of the hydrogels were higher when the two-steps of chemical and

q March 28, 1906: County Magistrate Shim Heung-taek of Uldo-gun[Uldo County] heard this news from the Japanese survey team, he reported to the Korean central government

In order to speculate the cooperative reaction of laccase and mediators, AS and AV, on lignin degradation, the effect of AS and AV addition on lignosulfonate

In this study, we investigated the effect of sucrose on the taproot thickening of in vitro grown plantlets, in addition to the effects of gibberellic acid (GA 3 ) and

(2000) 32) ADHD, attention deficit hyperactivity disorder; VR, virtual reality; CPT, continuous performance test; VC, virtual classroom; TOVA, Test of Variables of Attention;