• 검색 결과가 없습니다.

- 입자상분포함수의 이해

N/A
N/A
Protected

Academic year: 2022

Share "- 입자상분포함수의 이해"

Copied!
29
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 4

- 입자상분포함수의 이해

* 누적율

F a ( ) = ò

0a

q d (

p

) dd

p

dp (mm)

0 10 20 30 40 50

Cumulative Fraction (%)

0 10 20 30 40 50 60 70 80 90 100

적색점의 의미는 무엇인가 ?

* 입자분포함수의 형태

dp (mm)

0 10 20 30 40 50

q(dp) Probability Density Function 0.00 0.02 0.04 0.06 0.08 0.10

수농도 분포 (Number Distribution)

dp (mm)

0 10 20 30 40 50

Mass fraction/mm

0.00 0.01 0.02 0.03 0.04

질량농도분포 (Mass Distribution)

(2)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 5

- 입자상분포함수의 Fitting

이산분포를 연속분포로 표현하였을 때 연속분포를 수식적으로 가장 잘 표현할 수 있는 함수는 ? 주어진 입자분포를 어떻게 표현할 것인가 ? 대상 입자상물질이 어떤분포함수를 따르는가 ?

.단순정규분포(= Gauss 분포) .대수정규분포

.Rosin-Rammler 분포

* 단순정규분포함수

       



 









 



* 대수정규분포함수

       



   







   

 

* Fitting 함수의 선정

대수-확률지 혹은 정규-확률지 사용에 의한 분포도 평가 .Fitting 되는 종류에 따라 분포결정

.분포용지의 판독으로부터



 



log

 log



 log



  





(3)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 6

- 분포함수의 매개변수

* 통계변수

.최빈값 (Mode) / 중앙값 (Median) .평균값(Mean)

산술평균:   

  ,

기하평균:  





* 입경의 정의 및 상관식

.개수 중앙입경(Number Median Diameter)

주어진 입자분포에서 입자의 갯수누적율이 50%가 되는 점의 입자직경 .질량 중앙입경(Mass Median Diameter)

주어진 입자분포에서 입자의 질량누적율이 50%가 되는 점의 입자직경 .표면적 중앙입경(Surface Median Diameter)

주어진 입자분포에서 입자의 표면적누적율이 50% 가 되는 점의 입자직경

.평균체적 입경(Diameter of the particle with average volume)

 

  

,  

       m ax   m ax

ni : 분포 구간 i를 차지하는 입자의 갯수 vi : 분포구간 i의 입자의 평균부피 N : 분포전체의 입자갯수

.평균질량 입경(Diameter of the particle with average mass)

 

  

,  

      

  m ax

mi : 분포 구간 i를 차지하는 입자의 질량 N : 분포전체의 입자갯수

ρp : 모든 입자의 평균밀도

모든 입자의 밀도가 동일할 경우: d v = d m .개수 평균입경(Number Mean Diameter) : dp,n

  

       m ax   m ax

: 분포 구간 i를 차지하는 입자의 갯수

: 분포구간 i의 입자의 중간입경

: 분포전체의 입자갯수

.질량 평균입경(Mass Mean Diameter) : dp,m

  

 

 

  

  m ax

  m ax

: 분포 구간 i를 차지하는 입자의 질량

: 분포구간 i의 입자의 중간입경

: 분포전체의 입자질량

.표면적 평균입경(Surface Mean Diameter) : dp,s

  

 

 

  

  m ax

  m ax

: 분포 구간 i를 차지하는 입자의 표면적

: 분포구간 i의 입자의 중간입경

: 분포전체의 입자표면적

(4)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 7

* Hatch-Choate 변환 방정식(복합 분포 함수) .Median Diameter (중앙입경)

  exp   ln

 : dimensional weighting factor with respect to  : 변환대상 입자분포누적중간입경

 : number median diameter ( = 대수정규분포에서  )  : 분포의 표준 편차

.Mean Diameter (평균입경)

  exp

  

 ln

 : dimensional weighting factor with respect to 

 : 변환대상 입자분포평균입경  : number median diameter  : 분포의 표준 편차

.Hatch-Choate 변환 방정식 적용 예

: Mass Mean Diameter의 경우 입자질량이 d 3에 비례하므로 q=3. 따라서     exp

  

 ln

: Mass Median Diameter의 경우 입자질량이 d 3에 비례하므로 q=3. 따라서    exp   ln

: Surface Mean Diameter의 경우 입자표면적이 d 2에 비례하므로 q=3. 따라서     exp

  

 ln

: Surface Median Diameter의 경우 입자표면적이 d 2에 비례하므로 q=2. 따라서     exp  ln

: Diameter of particle with average mass와 NMD의 관계  exp  ln

: Mode(ˆ )와 NMD의 관계 d

   exp    ln

(5)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 8

● 단원에서의 검토사항

(6)

학과목 집진공학(集塵工學) 담당교수 장혁상 (810-2547)

단원의 주제 입자상물질의 분포함수(Particle Size Distribution) Page 9

● 참고문헌

Hinds, W.C. Aerosol Technology: Properties, Bahavior, and Measurement of Air borne Particles, Chap. 4, Wiley(1982)

(7)

입자상 물질의 특성화

Hyuksang Chang, 영남대학교 1

Linear-Probability Graph

Cumulative Percent (%)

0.1 1 10 30 50 70 90 99

Particle Size in Diamater (um or cm)

10 20 30 40 50 60 70 80 90 100

  











 

 

(8)

입자상 물질의 특성화

Hyuksang Chang, 영남대학교 2

Log-Probability Graph

Cumulative Percent (%)

0.1 1 10 30 50 70 90 99

Particle Size in Diamater (um or cm)

0.1 1 10 100

 

  

 



 





 

  

  





 



(9)

입자상 물질의 특성화

Hyuksang Chang, 영남대학교 1

Linear-Probality Graph

Cumulative Percent (%)

0.1 1 10 30 50 70 90 99

Particle Size in Diameter (

m m

or cm)

20 40 60 80 100

  

 













 





(10)

입자상 물질의 특성화

Hyuksang Chang, 영남대학교 2

Log-Probality Graph

Cumulative Percent (%)

0.1 1 10 30 50 70 90 99

Particle Size in Diameter (

m m

or cm)

0.1 1 10 100

  

  















   

 



(11)

2016-07-13 Environmental Aerosol Engineering Laboratory 1

Particle Size Distribution

• Monodisperse - All the particles are of the same size

• Polydisperse - Particles are of more than one size (more realistic)

Typical data from measurement

Size Range (m)

Count (#)

Fraction Percent (%) Cumulative Percent (%)

Fraction/size (m

-1

)

0-4 104 0.104 10.4 10.4 0.026

4-6 160 0.16 16.0 26.4 0.08

6-8 161 0.161 16.1 42.5 0.0805

8-9 75 0.075 7.5 50.0 0.075

9-10 67 0.067 6.7 56.7 0.067

10-14 186 0.186 18.6 75.3 0.465

14-16 61 0.61 6.1 81.4 0.0305

16-20 79 0.79 7.9 89.3 0.0197

20-35 103 0.103 10.3 99.6 0.0034

35-50 4 0.004 0.4 100.0 0.0001

> 50 0 0 0 100.0 0

Total 1000 100.0

Reading: Hinds, Chap 4

(12)

2016-07-13 Environmental Aerosol Engineering Laboratory 2

Histogram of frequency(count) versus particle size

d

pi

(  m )

0 10 20 30 40 50

Frequency/Count

0

50

100

150

200

Q: Which size range has the most particles?

Size Range

(m) Count (#)

0-4 104

4-6 160

6-8 161

8-9 75

9-10 67

10-14 186

14-16 61

16-20 79

20-35 103

35-50 4

> 50 0

Total 1000

(13)

2016-07-13 Environmental Aerosol Engineering Laboratory 3

Frequency/d

p

(distribution function) vs particle size

d

pi

(  m )

0 10 20 30 40 50

n i (d pi ) Size Distribution Funct ion (frequency/  d p 

0 20 40 60 80

Q:Total # of particles ?

Size Range

(m) Count/d

pi

(#/m)

0-4 26

4-6 80

6-8 80.5

8-9 75

9-10 67

10-14 46.5

14-16 30.5

16-20 19.25

20-35 6.87

35-50 0.27

> 50 0

pi i

i

d

Count

n  

(14)

2016-07-13 Environmental Aerosol Engineering Laboratory 4

Standardized frequency/d

p

vs particle size

d

pi

(  m )

0 10 20 30 40 50

f i (d pi ) Probability Density F unction (fraction/  d pi )

0.00 0.02 0.04 0.06 0.08

Q: What is the value of the total area?

Size Range

(m) Fraction/size (1/m)

0-4 0.026

4-6 0.08

6-8 0.0805

8-9 0.075

9-10 0.067

10-14 0.465

14-16 0.0305 16-20 0.0197 20-35 0.0034 35-50 0.0001

> 50 0 0

N

f

i

n

i

(15)

2016-07-13 Environmental Aerosol Engineering Laboratory 5

Continuous Particle Size Distribution

If the size range is very small, the discrete PSD will approach continuous PSD .

d p (  m )

0 10 20 30 40 50

q(d p ) Probability Density Function

0.00 0.02 0.04 0.06 0.08 0.10

q d f d

df

p

dd

i

pi p

( )  

 0

(16)

2016-07-13 Environmental Aerosol Engineering Laboratory 6

Cumulative Distribution

• Definition:

– The fraction that is less than a specific size

• Why cumulative distribution?

– Can be used to determine some statistical values.

Provide another viewpoint to observe the distribution.

F a ( )  

0a

q d (

p

) dd

p

d

p

(  m )

0 10 20 30 40 50

Cumulative Fraction ( %)

0 10 20 30 40 50 60 70 80 90 100

Q: What’s the RED spot?

(17)

2016-07-13 Environmental Aerosol Engineering Laboratory 7

 MEAN (arithmetic average):

The sum of all the particles sizes divided by the number of particles

 MEDIAN :

 The diameter for which 50% of the total are smaller and 50% are larger; the diameter corresponds to a

cumulative fraction of 50%

 MODE:

 Most frequent size; setting the derivative of the frequency function to 0 and solving for d p .

 For a symmetrical distribution, the mean, median and mode have the same value.

d d

N

n d

n d q d dd

p

p i pi

i

p p p

    

  0 ( )

(18)

2016-07-13 Environmental Aerosol Engineering Laboratory 8

• GEOMETRIC MEAN :

the Nth root of the product of N values

Expressed in terms of ln(d p )

• For a monodisperse aerosol, otherwise,

• Very commonly used because the an aerosol system typically covers a wide size range from 0.001 to 1000 m

d

p

d

pg

p g

p

d

d

   

d pgd d d p n 1 1 p n 2 2 p n 3 3 ... 1 / N   d pi n d (

pi

) 1 / N

ln ln

exp ln

exp ( ) ln( )

( )

d n d

N

d n d

N

n d d dd n d dd

pg

i pi

pg

i pi p p p

p p

 

  

  

   

 

 

 

(19)

2016-07-13 Environmental Aerosol Engineering Laboratory 9

Weighted Distributions

• Why do we need other distributions?

– Aerosols may be measured in different ways, and in indirect ways (e.g. impactors, light scattering)

• What are the other distributions?

– Surface area, mass (volume), volume square ...etc

• Definition: frequency of the property (e.g. mass) contributed by particles of the size interval

• What is the effect?

Ex. A system containing spherical particles (mode size?) Number Concentration: Mass Concentration:

100 #/cc 1m & =1.91g/cm 3 10 -11 g/cc 1m 1 #/cc 10m 10 -9 g/cc 10m

Q: How will the PSD on page 5 look like?

(20)

2016-07-13 Environmental Aerosol Engineering Laboratory 10 dp(m)

0 10 20 30 40 50

Mass fraction/  m

0.00 0.01 0.02 0.03 0.04

dp(m)

0 10 20 30 40 50

q(d p ) Probability Density Function

0.00 0.02 0.04 0.06 0.08 0.10

Number Distribution Mass Distribution

Q: What is the mode size of the distribution?

(21)

2016-07-13 Environmental Aerosol Engineering Laboratory 11

• Count Mean Diameter: based on number of particles.

• Mass Mean Diameter: based on mass of particles.

d d

N

n d

n d n d dd

pn

p i pi

i

p p p

    

  0 ( )

d m d

m d m d dd

pm

i pi i

p p p

  

  0 ( )

m   p   np   p   nd p    k n d p 6

3

1

Conversion 3

(22)

2016-07-13 Environmental Aerosol Engineering Laboratory 12

Moments of the PSD

• Definition: The quantity proportional to particle size raised to a power; an integral aerosol property

M

n

  n d

i

(

pi

)d

pin

 

0

n d (

p

)d dd

pn p

Q: What is M o ?

M

o

  n d

i

(

pi

)  

0

n d (

p

) dd

p

Q: What is M 1 ?

Q: What is M 1 /M 0 ?

Q: What is M 2 /M 0 ? M 3 /M 0 ?

Q: Which is larger? M 1 /M 0 ? (M 2 /M 0 ) 1/2 ? (M 3 /M 0 ) 1/3 ?

(23)

2016-07-13 Environmental Aerosol Engineering Laboratory 13

Volume Moments

• Particle volume, instead of particle diameter, is also used as a variable (i.e. the x-axis is particle volume, not size)

• Definition:

• Conversion of n to n dp :

M

k

  n

i

(

pi

)  

pik

 

0

n (

p

)   

pk

d

p

Q: What is M 1 /M 0 ?

p   d p 3 / 6  dp   d p 2 / 2  dd p

dN n d

dN n d dd

p p

d p p

 

 

 (  ) 

( )

(1) (2) (3)

n (   p ) d p 2 / 2  dd pn d ( d p )  dd p

n d ( d p )   d p 2 / 2  n (  p ) (4)

(24)

2016-07-13 Environmental Aerosol Engineering Laboratory 14

Lognormal PSD

• Various distributions: Power law, Exponential, ...etc. Very limited application in aerosol science

• Normal Distribution: widely used elsewhere, but typically not for aerosol science, because

– most aerosols exhibit a skewed distribution function – if a wide size range is covered, a certain fraction of the

particles may have negative values due to symmetry.

 

 

df d d

dd

n d d N

p p

p

i p p

   

 

 

 

 

 

1

2 2

1

2

2

2 1 2

  

exp

/

standard deviation

(25)

2016-07-13 Environmental Aerosol Engineering Laboratory 15

• The application of a lognormal distribution has no theoretical basis, but has been found to be

applicable to most single source aerosols

• Useful for particle of a wide range of values (largest/smaller size > 10)

• Its mathematical form is very convenient when handling weighted distributions and moments.

• How to use it? Simply replace d p by ln(d p ).

ln ln

d n d

pg

N

i pi

 

geometric mean diameter

Why using Lognormal?

(26)

2016-07-13 Environmental Aerosol Engineering Laboratory 16

ln (ln ln )

g

n

i

d

pi

d

pg

N

2

1

 

df

d d

d d

g

p pg

g

   

p

 

  1

2 2

2

  ln exp

2

ln ln

(ln ) ln

(1)

(2)

d ln d

p

dd

p

/ d

p

(3)

 

df d

d d

dd

p g

p pg

g

   

p

 

  1

2 2

2

lnexp

2

ln ln

(ln ) (4)

df d

g

p pg

g

  

p

  

  1

3 2 18

2

 

2

 

 

ln exp ln ( / )

ln (5)

geometric standard deviation

Convert dlnd p to dd p

(27)

2016-07-13 Environmental Aerosol Engineering Laboratory 17

• Features of Lognormal PSD

Q: How much is ln(d

84%

/d

16%

)?

ln ln ln

ln( / )

g

d d

d d

 

84% 50%

84% 50%

) /

ln(

ln

2 

g

d

97.5%

d

50%

 Log-probability graph

For a given distribution,  g remains constant

(nondimensional) for all

weighted distributions.

(28)

2016-07-13 Environmental Aerosol Engineering Laboratory 18

Moments for lognormally distributed aerosols:

M kM g kk g

  

 

0

2 2

9

 exp 2 ln 

ln 2 ln 0 2

1 2

1

g 9 M M

  M

  

 

g M

M M

1

2

0 3 2

2 1 2

/ /

The statistical variables can be easily determined through the moments!

Ref: Lee, K. W. and Chen, H., Aerosol Sci. Technol., 3, 1984, 327-334.

Lee, K. W., Chen, H. and Gieseke, J. A., Aerosol Sci. Technol., 3, 1984, 53-62.

(29)

2016-07-13 Environmental Aerosol Engineering Laboratory 19

Hatch-Choate Conversion Eq.

• q: weighted distribution

– 0: count – 1: length – 2: area

– 3: volume/mass

• p: type of average

– 0: median/geometric – 1: mean

– 2: area

– 3: volume/mass

b = q + p/2

(Table 4.3)

Q: If CMD = 10 m and

g

= 2, how much is

MMD? Diameter of

average mass?

참조

관련 문서

이성분 기-고 유동층(binary particle system in fluidized bed)에서의 takeover velocity는 넓은 입도 분포(wide particle size distribution)를 가지는 시스템보다

Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle

Size distribution of particulate matters from pork and beef cooking measured by portable aerosol monitor... 돼지고기와

Volcanic Ash Detection and Height Aerosol Particle Size Distribution Longwave Radiation Downward (Surface) Longwave Radiation_Upward (Surface) Longwave Radiation_Upward

Time series of (a) log-normalized aerosol number size distribution (dN/dlogDp) measured by SMPS in October 2009 at Gosan, Cheju, and (b) aerosol number concentration in

Mass Size Distribution of Atmospheric Aerosol Particles Collected at 865 m High of Jirisan National Park.. Hye-Ji Ryu,

Smart home services typically provide a wide range of value in terms of security, safety, manageability (electricity and water use), convenience, and

(2005) Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events, Atmospheric Chemistry and