• 검색 결과가 없습니다.

Short-Term Prediction of Travel Time Using DSRC on Highway

N/A
N/A
Protected

Academic year: 2021

Share "Short-Term Prediction of Travel Time Using DSRC on Highway"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Received May 16, 2013/ revised July 8, 2013/ accepted August 22, 2013

Copyright ⵑ 2013 by the Korean Society of Civil Engineers

 ǣŠ––’ǣȀȀ†šǤ†‘‹Ǥ‘”‰ȀͳͲǤͳʹ͸ͷʹȀ•…‡ǤʹͲͳ͵Ǥ͵͵Ǥ͸ǤʹͶ͸ͷ ™™™Ǥ•…‡Œ‘—”ƒŽǤ‘”Ǥ”

DSRC ⵎẊἺ#ⴲⱧ㬚#ኞ❋ᦂḚ#ᢦᏮ#㝳㭇⢚ᇂ#⯆㏟

׌෴ச ȵୋ׆೾

Kim, Hyungjoo*, Jang, Kitae**

Short-Term Prediction of Travel Time Using DSRC on Highway

ABSTRACT

This paper develops a travel time prediction algorithm that can be used for real-time application. The algorithm searches for the most similar pattern in historical travel time database as soon as a series of real-time data become available. Artificial neural network approach is then taken to forecast travel time in the near future. To examine the performance of this algorithm, travel time data from Gyungbu Highway were obtained and the algorithm is applied. The evaluation shows that the algorithm could predict travel time within 4% error range if comparable patterns are available in the historical travel time database. This paper documents the detailed algorithm and validation procedure, thereby furnishing a key to generating future travel time information.

Key words : Real-time traffic information, Travel time prediction, DSRC, Artificial neural network, Random number

Ⅹಾ

⩥ᰍʭḡ☖⧪᜽eᩩ⊂ŝšಉࡽ݅᧲⦽ᩑǍॅᯕᙹ⧪ࡹᨩḡอ, ⦽ǎŁᗮࠥಽ✚ᖒᨱ฿۵ᩩ⊂ႊჶುᨱݡ⦽ᝅ᷾ᩑǍ۵ᇡ᳒⦽ᝅᱶᯕ݅.

ᯕᨱᅙᩑǍᨱᕽ۵ᝅᱽ☖⧪᜽eᮥʑၹᮝಽ⦽DSRC ᯱഭෝၵ┶ᮝಽ⦽ǎŁᗮࠥಽᨱᱢᱩ⦽ᩩ⊂ႊჶುᮥࠥ⇽⦽݅. ĞᇡŁᗮࠥಽᦩᖒ JC~᪅ᔑIC Ǎe᮹24᜽eDSRC ᯱഭෝᯕᬊ⦹໑݉ᵝʑ☖⧪᜽eᩩ⊂ၰእᖁ⩶šĥᨱᕽ׳ᮡᱶ⪶ࠥෝᅕᯕ۵ᯙŖᝁĞ฾ʑჶᮥᱢᬊ

⦽݅. ᯕᨕᕽ௽߅ӽᙹෝᯕᬊ⦽☖⧪᜽eᩩ⊂đŝ᮹ᱶ⪶ࠥá᷾ᮥᝅ᜽⦽݅. ☖⧪᜽eᩩ⊂đŝ᪅₉ᮉᯕ᧞4%ಽᬑᙹ⦽ᩩ⊂ಆᮥᅕᩡᮝ ໑, ᯕ۵➉▕ʑၹᯙŖᝁĞ฾ᩩ⊂᜽ᯕಆᯱഭ᮹ᱥ⃹ญŝᱶŝ↽ᱢ᮹᯦ಆ⊖ၰᮡܪ⊖᮹ᖁᱶᮝಽᯙ⦽đŝಽ❱݉ࡽ݅. ☖⧪᜽eᩩ⊂đ ŝ᮹á᷾ᮥ᭥⧕ᕽ௽߅ӽᙹෝᯕᬊ⦹ᩡᮝ໑, ௽߅ӽᙹaᯕಆᯱഭ➉▕ᨱ⡍⧉ࡹḡᦫᮡĞᬑᝅ⊂⊹᪡᮹᪅₉ᮉᯕ18.98%ಽ׳íࠥ⇽ࡹᨩ

݅. ᯕ۵ᯙŖᝁĞ฾ᮥᯕᬊ⦽☖⧪᜽eᩩ⊂᜽➉▕DBaᩩ⊂᮹ᱶ⪶ࠥᨱᵝ᫵⦹í᯲ᬊ⦽đŝಽ❱݉ࡽ݅. ᅙᩑǍ᮹đŝෝ☖⧕ᕽ⦽ǎŁ ᗮࠥಽ✚ᖒᨱ฿۵☖⧪᜽eᩩ⊂ၰᱶᅕᱽŖᯕa܆⧁äᮝಽ❱݉ࡽ݅.

áᔪᨕ ᝅ᜽eƱ☖ᱶᅕ, ☖⧪᜽eᩩ⊂, ݉Ñญᱥᬊ☖ᝁ, ᯙŖᝁĞ฾, ௽߅ӽᙹ

1. ᕽು

ḡ܆⩶ Ʊ☖ℕĥ(Intelligent Transportation System, ᯕ⦹ ITS)᮹ ᵲ᫵⦽ ⦹᭥᜽ᜅ▽ᯙ ℉݉ᩍ⧪ᯱƱ☖ᱶᅕ᜽ᜅ▽(Advanced Traveller Information Systems, ᯕ⦹ ATIS)ᮡ ᬑญӹ௝ᨱ ITS ʑᅙĥ⫮ᯕ ᙹพࡽ ᯕ⬥ ḡɩʭḡ ⪽ၽ⦽ ᩑǍa ḥ⧪ࡹŁ ᯩ݅.

ATIS ᇥ᧝ᨱᯩᨕ☖⧪᜽eᱶᅕ۵ᙹḲࡽƱ☖ᯱഭෝᯕᬊ⦹ᩍ☖⧪(travel)ŝšಉࡽƱ☖᳑Õᮥᩩ⊂⦹ᩍᩍ⧪ᯱᨱíᱶᅕᱽŖᮥ

༊ᱢᮝಽ ⦽݅. ᝅ᜽e Ʊ☖ᱶᅕ ᱽŖᮡ ᬕᱥᯱॅᨱí ↽ᱢ᮹ Ğಽᖁ┾ᮥ ᮁࠥ⦹ᩍ ᯕᬊᯱ ⠙᮹᪡ Ʊ☖ᦩᱥᮥ ᱽŖ⦹ʑ ᭥⧉ᯕ݅.

⩥ᰍŁᗮࠥಽᔢ᮹Ʊ☖ᱶᅕ۵ݡᇡᇥ൉⥥áḡʑၰ݉Ñญᱥᬊ☖ᝁ(Dedicated Short Range Communications, ᯕ⦹DSRC)ᮥ

”ƒ•’‘”–ƒ–‹‘‰‹‡‡”‹‰ İࣀėॡ

(2)

ᯕᬊ⦹ᩍᙹḲࡹŁᯩ݅. ൉⥥áḡʑ᮹Ğᬑ₉పáḡᨱᯩᨕ׳ᮡ

ᱶ⪶ࠥෝaḡ۵ᰆᱱᯕᯩḡอ, áḡʑ᪅᯲࠺ᮝಽᯙ⦽ᅖǍ᜽

᪅௽᜽eᯕᗭ᫵ࡹ۵݉ᱱᯕᯩ݅. ੱ⦽☖⧪᜽eᔑᱶ᜽⦹ඹᇡ᮹

ᱶℕ ၰ ᔍŁಽ ᯙ⦽ ᩢ⨆ᯕ ᪽łࢁ ᙹ ᯩᨕ ☖⧪᜽e ᱶᅕ᮹

ᝁ഑ᖒᮥᅕᰆ⧁ᙹᨧ݅. ၹ໕, DSRC ᯱഭෝᯕᬊ⦽Ǎeáḡ᮹

Ğᬑᝅᱽ☖⧪᜽eᮥᔑᱶ⦹ᩍᝁ഑ᖒ׳ᮡƱ☖ᱶᅕෝᱽŖ⦽݅.

⩥ᰍʭḡ☖⧪᜽eᩩ⊂ŝšಉࡽ݅᧲⦽ᩑǍॅᯕᙹ⧪ࡹᨩḡ อ, ⦽ǎŁᗮࠥಽ✚ᖒᨱ฿۵ᩩ⊂ႊჶುᨱݡ⦽ᝅ᷾ᩑǍ۵ᇡ᳒

⦽ᝅᱶᯕ݅. ੱ⦽ᩩ⊂☖⧪᜽eᨱݡ⦽ᱶ⪶ࠥá᷾ᯕᙹ⧪ࡹḡ

༜⧕ ᇥᕾđŝ᮹ ᝁ഑ᖒᮥ ᅕᰆ⦹ḡ ༜⦹۵ ⦽ĥa ᳕ᰍ⦽݅.

ᯕᨱᅙᩑǍᨱᕽ۵ᝅᱽ☖⧪᜽eᮥʑၹᮝಽ⦽DSRC ᯱഭෝ

ၵ┶ᮝಽ ⦽ǎŁᗮࠥಽᨱ ᱢᱩ⦽ ᩩ⊂ႊჶುᮥ ࠥ⇽⦽݅. ᯕෝ

᭥⦹ᩍ ⦽ǎࠥಽŖᔍᨱᕽᙹḲࡽ ĞᇡŁᗮࠥಽᦩᖒJC~᪅ᔑIC Ǎe᮹ 24᜽e DSRC ᯱഭෝ ᯕᬊ⦹໑, ݉ᵝʑ☖⧪᜽e ᩩ⊂

ၰእᖁ⩶(non-linear) šĥᨱᕽ׳ᮡᱶ⪶ࠥෝᅕᯕ۵ᯙŖᝁĞ฾

(Artificial Neural Network)ᮥᱢᬊ⦽݅. ᯕᨕᕽᩩ⊂☖⧪᜽e᮹

ᱶ⪶ࠥá᷾ᮥ᭥⦹ᩍ௽߅ӽᙹ(random number)ෝᯕᬊ⦹ᩍእ Ʊᇥᕾᮥᝅ᜽⦽݅. ษḡสᮝಽđುᨱᕽ۵ᅙᩑǍ᮹ᖒŝၰ

⦽ĥ, əญŁ ⨆⬥ ᩑǍႊ⨆ᮥ ࠥ⇽⦽݅.

2. šಉᯕುၰᖁ⧪ᩑǍŁₑ

2.1 ଴վ਑լ࠷

↽Ⅹ᮹ᝁĞ⫭ಽ฾}ֱᮡ1943֥ၙǎ᮹Warren McCulloch

᪡ᙹ⦺ᯱWalter Pittsᨱ᮹⧕Łᦩࡹᨩ݅. ᝁĞ฾ᮡ⍕⥉░a

ᔍ௭᮹⦺᜖܆ಆᮥᙹ⧪⦹Łᯱ}ၽࡹᨩᮝ໑, ᙹ⦺ᱢ᦭Łญ᷹ᮝ ಽǍᖒࡹᨕᯩ݅. ᝁĞ฾ᮡە౑ᨱᗮ⦹۵ᮁܼ(unit)ॅŝᮁܼ

ᔍᯕ᮹ᩑđvࠥ(weight)ಽǍᖒࡹᨕᯩᮝ໑, ĥ⊖᮹ᙹᨱ঑௝

݉⊂ᝁĞ฾ŝ݅⊖ᝁĞ฾ᮝಽǍᇥࡽ݅. ᝁĞ฾༉⩶ᨱᕽە౑᮹

ᵝ᫵ʑ܆ᮡ᯦ಆŝᩑđvࠥ᮹aᵲ⧊(NET)ᮥǍ⦽⬥⪽ᖒ⪵

⧉ᙹᨱ ᮹⧕ ⇽ಆᮥ ԕᅕԕ۵ äᯕ݅. ⪽ᖒ⪵ ⧉ᙹ(Activation function)ᮡ݉᳑᷾a⦹۵⧉ᙹᯕᨕ᧝⦹໑, ᯝၹᱢᮝಽ݉ɚᖒ/᧲

ɚᖒ ⧉ᙹ, ᖁ⩶/እᖁ⩶ ⧉ᙹ, ᩑᗮ/ᯕḥ ⧉ᙹ ॒ᮝಽ ᇥඹ⦽݅.

ᝁĞ฾༉⩶ᨱᕽᩎᱥ❭⦺᜖ᯕ௡, ✚ᱶ⦽᮲ᬊ༊ᱢᨱᱢ⧊⦹ࠥ

ಾە౑e᮹ᩑđvࠥෝᱢ᮲᜽┅۵ŝᱶᮝಽ⩥ᰍᝁĞ฾༉⩶ᨱ ᕽaᰆձญᯕᬊࡹ۵ߙ┡⦺᜖(Delta learning)ᮡ݅⊖ᝁĞ฾᮹

⦺᜖Ƚ⊺ᮝಽᵝಽᔍᬊࡽ݅. ᯕ౨í݅⊖ᝁĞ฾ŝߙ┡Ƚ⊺ᮥ

đ⧊⦽⩶┽ෝᩎᱥ❭᦭Łญ᷹(Backpropagation algorithm)ᯕ௝

ᇡ෕໑, ᩑᗮ⪽ᖒ⪵⧉ᙹอᮥᔍᬊ⦽݅. ߙ┡⦺᜖ᮡ⦺᜖ᝁ⪙ಽᕽ

༊⢽⊹᪡ᝅᱽ⇽ಆ⊹᮹₉ᯕsŝ⪽ᖒ⪵⧉ᙹ᮹ၙᇥsᯕᔍᬊࡹ

۵ ᱱᯕ ✚Ḷᯕ݅.

2.2 ധෘਏԩુ౸ࡦ෴ճఝ

☖⧪᜽eᩩ⊂༉⩶ᮡⓍí☖ĥᱢႊჶŝ᜽ဍ౩ᯕᖹႊჶᮝಽ

ӹ٭ᙹᯩ݅. ☖ĥᱢႊჶᮡᯕಆᯱഭၰᝅ᜽eᯱഭෝᯕᬊ⦹ᩍ

ᩩ⊂☖⧪᜽eᮥࠥ⇽⦽݅. ၹ໕ᨱ᜽ဍ౩ᯕᖹ༉⩶ᮡƱ☖ᔢ⫊

ၰᱶℕಽᯙ⦽∊Ċ❭ᗮࠥᨱʑၹ⦹ᩍ☖⧪᜽eᩩ⊂ᮥᙹ⧪⦽݅.

☖ĥᱢႊჶ᮹Ğᬑ⫭ȡᇥᕾ༉⩶, ᜽ĥᩕ༉⩶, ᯙŖᝁĞ฾, ⋝อ

⦥░॒ᯕᔍᬊࡽ݅. ⫭ȡᇥᕾ༉⩶ᮡᯝၹᱢ(Stationary) ᔢ⫊᮹

݉ʑᩩ⊂ᨱ۵ ᬑᙹ⦽ ᩩ⊂ಆᮥ ᅕᯕḡอ, ᮁŁ ၰ ᱶℕಽ ᯙ⦽

Ʊ☖⩥ᔢᨱᕽ۵ԏᮡᱶ⪶ࠥෝaḥ݅. ᜽ĥᩕ༉⩶ᮡᗮࠥ, Ʊ☖ప, ᱱᮁᮉ॒᮹᜽ĥᩕᱶᅕෝᔍᬊ⦹۵äᮝಽARIMA ༉⩶ᯕݡ⢽

ᱢᮝಽᔍᬊࡹŁᯩᮝ໑, ĥᱩᱢᄡ࠺ᨱᬑᙹ⦽ᩩ⊂ಆᮥaḥ݅.

⦹ḡอᔍŁၰᱶℕಽᯙ⦽Ʊ☖⩥ᔢᨱᕽ۵ԏᮡᝁ഑ᖒᮥaḡ۵

݉ᱱᯕᯩ݅. ᯙŖᝁĞ฾༉⩶ᮡእᖁ⩶☖ĥᱢʑჶᮝಽ⨆ᔢࡽ

ḡࠥ⦺᜖ ႊჶᮥ ☖⧕ ↽ᱢ᮹ đŝෝ ࠥ⇽⦽݅. ੱ⦽ ☖⧪᜽e

ᩩ⊂᜽ᔍŁၰᱶℕ⩥ᔢᨱᕽࠥᬑᙹ⦽ᩩ⊂ಆᮥaḥ݅. ⋝อ⦥░

۵݉ᯝ᜽eݡᬑᙹ⦽ᩩ⊂ಆᮥᅕᯕŁᯩᮝ໑, ᙹ⧪ᗮࠥa዁ෙ

ᰆᱱᯕᯩ݅. ⦹ḡอᯙŖᝁĞ฾ᨱእ⧕ᩩ⊂ಆᯕԏᮝ໑, እᖁ⩶

᜽ᜅ▽ᯙ Ğᬑ ᩩ⊂ᨱ ᨕಅᬡᯕ ᳕ᰍ⦽݅.

᜽ဍ౩ᯕᖹ༉⩶ᮡÑ᜽ᱢ༉⩶(macroscopic models), ᵲeᱢ

༉⩶(mesoscopic models), ၙ᜽ᱢ(microscopic models) ॒ᮝಽ

ӹ٭ᙹᯩ݅. Ñ᜽ᱢ༉⩶ᮡƱ☖ప, ၡࠥ, əญŁ⠪Ɂᗮ॒ࠥ᮹

Ʊ☖ඹ✚ᖒᨱʑၹ⦹ᩍᇥᕾᮥᝅ᜽⦹۵äᮝಽLWR ༉⩶ၰ

METANET ༉⩶ᯕ ݡ⢽ᱢᮝಽ ᔍᬊࡹŁ ᯩ݅. ᵲeᱢ ༉⩶ᮡ

Ʊ☖༉ᙹ᮹⠪Ɂsŝ}ᄥ₉ప⧪┽ෝ⧉̹Łಅ⦹۵äᮝಽÑ᜽

ᱢ༉⩶ŝၙ᜽ᱢ༉⩶᮹ᵲeᱢᖒĊᮥaḥ݅. ᵲeᱢ༉⩶ᮡ

}ᄥ₉పᮥ᜽ဍ౩ᯕᖹ⧁ᙹᯩḡอ, ₉ప᮹ᬡḢᯥၰၹ᮲ᮡ

ยⓍ݉᭥᮹ Ḳĥsᯕ ᱢᬊࡽ݅. ݡ⢽ᱢᮝಽ MITᨱᕽ }ၽࡽ

DYNAMIT ༉⩶ᯕձญᔍᬊࡹŁᯩ݅. ၙ᜽ᱢ༉⩶ᮡ}ᄥ₉ప᮹

࠺ᱢᯙᬡḢᯥᮥ༉ࢱ⡍⧉⦹۵ᰆᱱᮥaḥ݅. ₉ప✚ᖒ(₉పʙᯕ,

↽ݡaᗮ܆ಆ॒), ₉పᬡḢᯥ✚ᖒ(ᗮࠥ, ᜽e, Ñญ॒), ᬕᱥᯱ

⧪┽(₉ప ⇵᳦, ₉ᖁᄡĞ ॒)ෝ ༉ࢱ ⡍⧉⦹໑, ݡ⢽ᱢᮝಽ

CA(Cellular Automata)༉⩶ᯕ ᔍᬊࡽ݅.

ᯕᨱᅙᩑǍᨱᕽ۵☖ĥᱢႊჶ᮹ᯝ⪹ᯙᯙŖᝁĞ฾ᮥᯕᬊ⦽

☖⧪᜽eᩩ⊂ᨱݡ⦽ᩑǍෝᝅ᜽⦽݅. ᯙŖᝁĞ฾᮹Ğᬑ☖⧪᜽

eᩩ⊂᜽ᮁŁၰᱶℕ⩥ᔢᨱᕽࠥᬑᙹ⦽ᩩ⊂ಆᮥaḡ໑, ݉ᵝʑ

☖⧪᜽eᩩ⊂ᨱ׳ᮡᱶ⪶ࠥෝᅕᯕŁᯩᨕ⦽ǎŁᗮࠥಽ✚ᖒᨱ

ᱢ⧊⦹݅Ł ❱݉ࡽ݅.

2.3 ֝ٛ·૤টෘ઴֜ճఝ

ᯙŖᝁĞ฾ᮡእᖁ⩶☖ĥᱢ༉⩶ᮝಽᩑᗮඹၰ݉ᗮඹǍe

☖⧪᜽eᩩ⊂ᨱձญᱢᬊࡽ݅. Kang and NamKoong (2002) ᩑǍᨱᕽ۵Łᗮࠥಽ☖⧪ഭᙹԊ᜽ᜅ▽(Toll Collection System,

(3)

ᯕ⦹ TCS)ᨱᕽᙹḲࡹ۵ᯱഭ᮹ᗮᖒŝ᜽ĥᩕᱢ➉▕ᮥȽ໦

⦹ᩡᮝ໑, ☖⧪᜽eᩩ⊂ᨱ༉ऩ௝ᝁĞ฾༉⩶(Modular Neural Network Model)ᮥ ᱽᦩ⦹ᩡ݅. ༉ऩ௝ᝁĞ฾༉⩶ᮡ݅⊖⟝ᖪ✙

ುᝁĞ฾ᮝಽݡȽ༉᯦ಆᯱഭෝ☖⦽☖⧪᜽eᩩ⊂᜽⦺᜖᜽e ᯕʙᨕḡ۵݉ᱱᮥᅕᦩ⦹ʑ᭥⧕እ᜘⦽᯦ಆᯱഭෝᇥඹ⦹ᩍ

⦺᜖ᮥḥ⧪᜽┅۵Ǎ᳑ᯕ݅. ᇥᕾđŝ݉Ñญ᪡ᰆÑญ༉ࢱᩩ⊂

a܆⦽ ᜽eᱢ ჵ᭥ෝ ࠥ⇽⦹ᩡᮝ໑, 1}᮹ ᝁĞ฾ᮝಽ ⦺᜖⦽

↽ݡ/↽ᗭ᮹ ᩩ⊂ჵ᭥ԕᨱᕽ ࠺ᯝ⦽ ᙹᵡ᮹ ᩩ⊂ಆᮥ ᅕᩡ݅.

Kim and Kim (2001) ᩑǍᨱᕽ۵݉ᗮඹࠥಽᨱᕽ☖⧪᜽e

ᱶᅕᱽŖᮥ᭥⧕⟝ḡᯕುŝᯙŖᝁĞ฾᮹⧊ᖒ༉⩶ᯙFALEM (Fuzzy Adaptive Learning Estimator for travel time from Multi- information sources)ᮥᱢᬊ⦹ᩡ݅. ḡᱱၰǍeáḡℕĥ ᨱᕽ ᙹḲࡽ áḡᯱഭෝ ⪽ᬊ⦹ᩡᮝ໑, ┡ ༉⩶ŝ እƱෝ ☖⦽

ᮁᬊᖒá᷾ᮥᝅ᜽⦹ᩡ݅. ⦹ḡอ}ၽ༉⩶᮹↽ᗭ⢽ᅙᯥ᮹ᖒྙ

ᱽ᪡ᔢᯕ⦽☖⧪➉▕᮹ᱱᮁᮉ⃹ญ॒ᨱݡ⦽⦽ĥᱱᯕ᳕ᰍ⦽݅.

Lee (2009) ᩑǍᨱᕽ۵ⓕ్ᜅ░ยႊჶŝᯙŖᝁĞ฾༉⩶ᮥ

đ⧊⦹ᩍ☖⧪᜽eᩩ⊂༉⩶ᮥ}ၽ⦹ᩡ݅. ᩩ⊂༉⩶᮹᳦ᗮᄡᙹ ۵ ქᜅ᮹ ᝅ᜽e ☖⧪᜽eᯕ໑, VDS, GPS, əญŁ ᔍŁᯱഭ

॒ᯕࠦพᄡᙹಽ⪽ᬊࡹᨩ݅. ᯙŖᝁĞ฾ᮥᯕᬊ⦽bยⓍ᮹ᩩ⊂

☖⧪᜽eŝᝅᱽ☖⧪᜽e᮹MAPE ᇥᕾđŝ᧞5%᮹᪅₉ᮉᮥ

ᅕᩡ݅.

Innamaa (2005) ᩑǍᨱᕽ۵ࠥ᜽ᇡŁᗮࠥಽ᮹☖⧪᜽eᯕಆ

ᯱഭෝၵ┶ᮝಽfeedforward multilayer perceptron (MLP) ᯙŖ ᝁĞ฾ᮥᱢᬊ⦹ᩍ☖⧪᜽eᩩ⊂ᮥᝅ᜽⦹ᩡ݅. bยⓍ᮹ᩩ⊂

☖⧪᜽eŝᝅᱽ☖⧪᜽e᮹MAPE ᇥᕾđŝ᧞6%᮹᪅₉ᮉᮥ

ᅕᩡ݅. ⦹ḡอᱽᦩࡽ༉⩶᮹Ğᬑᝅ᜽eᯱഭ᪡ᩑĥ᜽ᯕಆᯱഭ ᮹᪅ඹ⊹ᱽÑᨱᨕಅᬡᯕ᳕ᰍ⦹໑, ᯙŖᝁĞ฾᮹⦺᜖ŝᱶᨱᕽ

Ʊ☖ ⪝ᰂᔢ⫊ᮥ ၹᩢ⦹ḡ ༜⦹۵ ⦽ĥෝ aḥ݅.

Jeong and Rilett (2004) ᩑǍᨱᕽ۵ Automatic Vehicle Location (AVL) ᯱഭ ၰ ᯙŖᝁĞ฾ ༉⩶ᮥ ᯕᬊ⦹ᩍ ქᜅ᮹

ࠥ₊᜽eᮥᩩ⊂⦹ᩡ݅. ქᜅ☖⧪᜽eᨱ۵᜚⦹₉᜽eၰ႑₉ eĊᯕ Łಅࡹᨩ݅. ᯙŖᝁĞ฾ᮥ ᯕᬊ⦽ MAPE ᇥᕾđŝ ᧞

4~8%᮹᪅₉ᮉᮥᅕᩡᮝ໑, Historical data based models ၰ

⫭ȡ༉⩶ᨱ እ⧕ ׳ᮡ ᱶ⪶ࠥෝ ᅕᩡ݅.

Cherrett et al. (1996) ᩑǍᨱᕽ۵feed-forward ANN ༉⩶ᮥ

ᯕᬊ⦹ᩍยⓍ᮹☖⧪᜽eᩩ⊂ᮥᝅ᜽⦹ᩡ݅. ʑĥುᱢ(mechanistic)

ႊჶು᮹Ğᬑᱶℕᔢ⫊ᨱᕽ☖⧪᜽eᩩ⊂ᨱᨕಅᬡᯕᯩᨩᮝ໑, ၹݡಽᯙŖᝁĞ฾᮹ĞᬑᮁŁၰᱶℕᔢ⫊ᨱᕽࠥ׳ᮡᩩ⊂ಆᮥ

ᅕᩡ݅.

Ohba et al. (1997) ᩑǍᨱᕽ۵ ☖⧪᜽e ᩩ⊂ᨱ ᯩᨕ ⪝⧊

ᯙŖᝁĞ฾༉⩶ᮥᱽᦩ⦹ᩡ݅. ⪝⧊ᯙŖᝁĞ฾༉⩶ᮡᰆʑe

ၽᔾࡹ۵ᮁŁၰᱶℕᔢ⫊ᨱᱢ⧊⦽ᩩ⊂༉⩶ᮝಽᝅᱽŁᗮࠥಽ

ᯱഭෝ ☖⦽ ᇥᕾđŝ ׳ᮡ ᩩ⊂ಆᮥ ᅕᩡ݅.

2.4 টෘ઴֜૕ଭఙ࣢ন

ᖁ⧪ᩑǍá☁ᨱᕽ⪶ᯙ⧁ᙹᯩॐᯕ⦽ǎŁᗮࠥಽ✚ᖒᨱ฿۵

ᩩ⊂ႊჶᨱݡ⦽ᝅ᷾ᩑǍ۵ᇡ᳒⦽ᝅᱶᯕ݅. ᫙ǎ᮹Ğᬑprove vehicles ᯱഭෝ≉ा⧁ᙹᯩ۵Ǎeᯕᱽ⦽ᱢᯕ໑, sample ᙹa

ᱢᨕᝅᱽᇥᕾᨱ⪽ᬊ⦹ʑᨱ۵⦽ĥaᯩ݅. ✚⯩ၙǎ᮹Mobile Millenium Project (2008)ᨱᕽ᦭ᙹᯩॐᯕᝅᱽ☖⧪᜽eᔑᱶ᮹

ᨕಅᬡᮥɚᅖ⦹ʑ᭥⧕GPSෝᰆ₊⦽ᜅษ✙⡑ᮥᯕᬊ⦹ᩍᇥᕾ Ǎeᨱ ݡ⦽ ᯱഭෝ ᙹḲ⦹ᩡ݅. ၹݡಽ ⦽ǎŁᗮࠥಽ᮹ Ğᬑ

Hi-pass ᯦ࠥ ⬥ probe vehiclesᯕ᷾aࡹᨕ ᝁ഑ᖒ ᯩ۵ᝅᱽ

☖⧪᜽e đŝࠥ⇽ᯕ a܆⦹ᩍ Ʊ☖ඹ ᇥᕾ ၰ ᬕᩢᨱ ⪽ᬊᯕ

a܆⦹݅. ᯕᨱᅙᩑǍᨱᕽ۵ᝅᱽ☖⧪᜽eᮥʑၹᮝಽ⦽DSRC

ᯱഭෝ ၵ┶ᮝಽ ᯙŖᝁĞ฾ᮥ ᯕᬊ⦽ ᩩ⊂ႊჶುᮥ ࠥ⇽⦽݅.

ᯕᨕᕽ ௽߅ӽᙹෝ ᯕᬊ⦽ ☖⧪᜽e ᩩ⊂ಆ á᷾ᮥ ☖⧕ ʑ᳕

ᩑǍ᮹ ⦽ĥෝ ᪥⪵}ᖁ⦹Łᯱ ⦽݅.

3. ᩑǍႊჶು

3.1 ਓਏԩധෘਏԩુ౸

ᅙᩑǍᨱᱢᬊࡽႊჶುᮡDSRC ➉▕DBෝᯕᬊ⦽ᯙŖᝁĞ

฾ʑჶᮝಽFig. 1ŝz݅. ☖⧪᜽e➉▕DB ၰᯙŖᝁĞ฾ᩩ⊂ŝ ᱶ ॒ᮝಽ Ⓧí ӹ٭ ᙹ ᯩᮝ໑, ᖙᇡ ŝᱶᮡ ݅ᮭŝ z݅.

Fig. 1. Structure of Methodology

[݉ĥ1] DSRC ᯱഭ᮹5ᇥḲĥ➉▕ᱶᅕෝǍ⇶⦹໑, đ⊂s

ၰ ᪅ඹ⊹ ᱽÑ

[݉ĥ2] ᯕಆᯱഭ᮹ Ğᬑ, 5 step ᜽eeĊ᮹ DSRC ᜽ĥᩕ

ᯱഭ ⠪⪽⪵ ᯲ᨦ(smoothing process)ᮥ ᝅ᜽

(4)

ćÒ Î Ƈ áàÏ ā Ï ­ Ƈ Ɔ ì –™ ſƊƊ ƑſƋƎƊƃ

(1)

­ Ɔ é ¡ƇƑƒƍƐƇƁſƊ Ƃſƒſޝ¬«œ ­ƐſƔƃƊ ­ƇƋƃß

[݉ĥ3] ᝅ᜽e ᯱഭ᪡ ᯕಆᯱഭ᮹ ๅ⋎ᨱ۵ ᮁⓕญऽ Ñญ (Euclidean distance)ෝ ᔍᬊ

¦Ƈƌ ö ć ā Ƈ á Î ƌ Þ­ Ƈ Ɓ à ­ Ƈ Ɔ ß Ï ì –™ ſƊƊ ƑſƋƎƊƃ

(2)

­ Ɓ é œƓƐƐƃƌƒ Ƃſƒſޝ¬«œ ­ƐſƔƃƊ ­ƇƋƃß

(a) Historical data (b) Actual data Fig. 2. Pattern Matching by Euclidean Distance

[݉ĥ4] ᯕಆᯱഭ᮹༊⢽s(target)ᨱ঑ෙᯙŖᝁĞ฾⦺᜖ၰ

aᵲ⊹ ᔑᱶ

Fig. 3. Process of ANN Learning and Weight

ⴗ aᵲ⊹

Ɣì ƕ

Ⅹʑ⪵ ၰ ⦺᜖⬀ᙹ

Ɖ

ᖅᱶ ⴘ ⦺᜖ᮉ(

Ľ

) ၰ ↽ݡ᪅₉(

Ƨ ”ˆŸ

) ᖅᱶ ⴙ ᮡܪ⊖ ĥᔑ

§ž­ Ƙ á ±¯ ­

³ á ƄÞ§ž­ Ƙ ß á ć Î âƃ ৞­

Ƙ

Î

ⴚ ⇽ಆ⊖ ĥᔑ

ž F ćÏ Î ÞƂàƗß Ï âž

ⴛ ⇽ಆ⊖᮹ ᪅₉ᝁ⪙ ĥᔑ

ĺ Ɨ á ÞƂàƗßƗÞÎ à Ɨß

ⴜ ᮡܪ⊖᮹ ᪅₉ᝁ⪙ ĥᔑ

ĺ Ƙ á ƘÞÎ à Ƙß ā Ƈ á Î Ƌ ĺ Ɨ ƕ

ⴝ aᵲ⊹ ᨦߑᯕ✙

ƕ á ƕ âķĺ Ɨ ³ Ɣ á Ɣ âķĺ Ƙ ±

ⴞ⨩ᬊ᪅₉ჵ᭥ᯝĞᬑ᳦ഭ, ⨩ᬊ᪅₉ჸᨕԁĞᬑⴙᮝಽ

ᯕ࠺

[݉ĥ5] ↽᳦ᩩ⊂⊹᮹᪅₉ᨱᩢ⨆ᮥᵝ۵᯦ಆ⊖ŝᮡܪ⊖᮹

ᙹ۵ ᜽⧪₊᪅(trial and error) ႊჶᮥ ☖⧕ ᖁᱶ

[݉ĥ6] ᝅ᜽eᯱഭᨱʑၹ⦹ᩍࠥ⇽ࡽaᵲ⊹ᨱ᮹⧕☖⧪᜽e

ᩩ⊂ đŝa ࠥ⇽

Fig. 4. Process of Travel Time Prediction

3.2 ധෘਏԩુ౸էրՑஹ

ᯙŖᝁĞ฾ᮥᯕᬊ⦽☖⧪᜽eᩩ⊂đŝ᮹á᷾ᮥ᭥⧕ᕽ௽߅ ӽᙹෝᯕᬊ⧕☖⧪᜽eᩩ⊂đŝ᮹ᱶ⪶ࠥෝá᷾⦽݅. ᯕෝ᭥⧕

ᕽᯕಆᯱഭ᮹⠪Ɂ, ⢽ᵡ⠙₉, ↽ᗭs, ↽ݡs॒᮹☖ĥ⊹ෝŁಅ

⦹ᩍ௽߅ӽᙹෝၽᔾ᜽┉݅. ੱ⦽☖⧪᜽eᩩ⊂đŝ᮹➉▕DB ᮹᳕ࠥෝእƱ⦹ʑ᭥⧕ᕽᝅ᜽eᯱഭᨱ ௽߅➉▕ᮥ⡍⧉⦹ᩍ

እƱᇥᕾᮥ ᝅ᜽⦽݅.

4. ႊჶುᱢᬊၰᇥᕾ

4.1 ंজ֜ԩࢫୀ߹

ᅙᩑǍᨱᕽ۵⦽ǎŁᗮࠥಽᨱᕽᱽŖ⦹۵ĞᇡŁᗮࠥಽDSRC

ᯱഭෝᯕᬊ⦽݅. ᝅ᜽eᯱഭ۵5ᬵ6ᯝ(ɩ)ᯕ໑, ᯕಆᯱഭ۵ᝅ᜽

(5)

Fig. 5. Study Site

Fig. 6. Optimum Input and Hidden Layer

Fig. 7. Prediction of Actual Travel Time

Fig. 8. Actual Predicted Result

Fig. 9. Actual Predicted Scatter Diagram

eᯱഭෝᱽ᫙⦽2011֥3ᬵ1ᯝ~5ᬵ31ᯝᯱഭᯕ݅. ᇥᕾǍeᮡ

Fig. 5᪡zᯕᦩᖒJC~᪅ᔑIC Ǎe᮹᳦ᱱႊ⨆(ᇡᔑ᜽ᱱ)ᮥᖁᱶ

⦹ᩡ݅.

4.2 ਓਏԩധෘਏԩુ౸էր

ᅙᩑǍᨱᕽ۵ᯙŖᝁĞ฾ʑჶ᮹ᩩ⊂᪅₉ᨱᩢ⨆ᮥᵝ۵᯦ಆ

⊖ŝᮡܪ⊖᮹ᙹ۵᜽⧪₊᪅(trial and error) ႊჶᮥᯕᬊ⦹ᩡ݅.

ᇥᕾđŝ Fig. 6ŝ zᯕ ᯦ಆ⊖ 3}, ᮡܪ⊖ 5}ᨱᕽ ᪅₉ᮉᯕ

aᰆ ԏᦹᮝ໑, ᯦ಆ⊖ ၰ ᮡܪ⊖᮹ ᙹa ۹ᨕԁᙹಾ ᪅₉ᮉᯕ

᷾a⦹۵ Ğ⨆ᮥ ᅕᩡ݅.

ᯕᨕᕽᯙŖᝁĞ฾ᮥᯕᬊ⦽☖⧪᜽eᩩ⊂ᮥ᭥⧕ᩩ⊂ᵝʑෝ

঑ෙᇥᕾᮥᝅ᜽⦹ᩡ݅. ຝᱡFig. 7ŝzᯕᝅ᜽eDSRC ʑၹ

☖⧪᜽eᩩ⊂ᮥᝅ᜽⦹ᩡ݅. ᇥᕾđŝᝅ⊂☖⧪᜽eŝ᮹᪅₉ᮉ ᯕ3.95%ಽᬑᙹ⦽ᩩ⊂ಆᮥᅕᩡ݅. ੱ⦽ᔑᱱࠥᇥᕾđŝR

2

ᯕ

0.96ᮝಽ ׳ᮡ ᔢššĥෝ ᅕᩡ݅.

4.3 ധෘਏԩુ౸էրՑஹէր

ᯙŖᝁĞ฾ᮥᯕᬊ⦽☖⧪᜽eᩩ⊂đŝ᮹á᷾ᮥ᭥⧕ᕽ௽߅ ӽᙹෝᯕᬊ⦽☖⧪᜽eᩩ⊂đŝ᪡ᱶ⪶ࠥෝእƱ⦹ᩡ݅. ᯕෝ

᭥⧕ᕽ௽߅ӽᙹၽᔾ᜽ᯕಆᯱഭ᮹⠪Ɂ, ⢽ᵡ⠙₉, ↽ᗭs, ↽ݡ s॒᮹☖ĥ⊹ෝŁಅ⦹ᩡᮝ໑, Table 1ŝz݅. ੱ⦽☖⧪᜽e

ᩩ⊂đŝ᮹ ➉▕DB ᮹᳕ࠥෝ እƱ⦹ʑ ᭥⧕ᕽ ᝅ᜽e ᯱഭᨱ

(6)

Table 1. Statistics of DSRC

Classification Historical data Actual data

Average 7.97 8.07

Standard deviation 3.46 3.31

Min. 5.62 5.29

Max. 35.89 20.76

Fig. 10. Optimum Input and Hidden Layer (Random Number)

Fig. 12. Actual Predicted Scatter Diagram (Perfect Matching)

Fig. 13. Actual Predicted Result (Random Number)

௽߅➉▕ᮥ ⡍⧉⦹ᩍ እƱᇥᕾᮥ ᝅ᜽⦹ᩡ݅.

ᯙŖᝁĞ฾᮹ᩩ⊂᪅₉ᨱᩢ⨆ᮥᵝ۵᯦ಆ⊖ŝᮡܪ⊖᮹ᙹ۵

᜽⧪₊᪅ŝᱶᮥ☖⧕Fig. 10ŝ zᯕ᯦ಆ⊖9}, ᮡܪ⊖9}ಽ

ࠥ⇽ࡹᨩ݅. ᯙŖᝁĞ฾᮹☖⧪᜽eᩩ⊂đŝᨱݡ⦽➉▕᮹᳕ࠥ

۵Figs. 11~14᮹đŝ᪡z݅. ☖⧪᜽eᯕಆᯱഭ᮹➉▕ᨱ௽߅ӽ ᙹෝ⡍⧉⦽Ğᬑᝅ⊂☖⧪᜽eŝ᮹᪅₉ᮉᯕ0.0046%ಽ׳ᮡ

ᱶ⪶ࠥෝᅕᩡ݅. ੱ⦽ᔑᱱࠥᇥᕾđŝR

2

ᯕ1ಽ׳ᮡᔢššĥෝ

ᅕᩡ݅.

ၹݡಽ௽߅ӽᙹaᯕಆᯱഭ᮹➉▕ᨱ⡍⧉ࡹḡᦫᮡĞᬑෝ

ᔕ⠕ᅕ໕, ☖⧪᜽eᩩ⊂đŝ᪅₉ᮉᯕ18.98%ಽ׳íࠥ⇽ࡹᨩ

݅. ᯕ۵ᯙŖᝁĞ฾ᮥᯕᬊ⦽☖⧪᜽eᩩ⊂᜽➉▕DBaᩩ⊂᮹

ᱶ⪶ࠥᨱᵝ᫵⦹í᯲ᬊ⦽đŝಽ❱݉ࡽ݅. ݅᜽ั⧕, ☖⧪᜽e

ᯕಆᯱഭ᮹➉▕ᨱ௽߅ӽᙹa⡍⧉ࡹḡ༜⧕ ᇡᱶ⪶⦽đŝෝ

ࠥ⇽⦹ᩡ݅. ੱ⦽ᔑᱱࠥᇥᕾđŝR

2

ᯕ0.51ಽԏᮡᔢššĥෝ

ᅕᩡ݅.

(7)

5. đು

5.1 էߨ

ᅙᩑǍᨱᕽ۵ᝅᱽ☖⧪᜽eᮥʑၹᮝಽ⦽DSRC ᯱഭෝၵ┶

ᮝಽ⦽ǎŁᗮࠥಽᨱᱢᱩ⦽ᩩ⊂ႊჶುᮥࠥ⇽⦹ᩡ݅. ĞᇡŁᗮ

ࠥಽᦩᖒJC~᪅ᔑIC Ǎe᮹24᜽eDSRC ᯱഭෝᯕᬊ⦹໑݉ᵝ ʑ☖⧪᜽eᩩ⊂ၰእᖁ⩶šĥᨱᕽ׳ᮡᱶ⪶ࠥෝᅕᯕ۵ᯙŖᝁ Ğ฾ʑჶᮥᱢᬊ⦹ᩡ݅. ੱ⦽௽߅ӽᙹෝᯕᬊ⦽☖⧪᜽eᩩ⊂đ ŝ᮹ᱶ⪶ࠥá᷾ᮥ☖⧕ᮁᬊᖒá᷾ᮥᝅ᜽⦹ᩡ݅. ᝅ᜽eDSRC ʑၹ☖⧪᜽eᩩ⊂đŝ᪅₉ᮉᯕ3.95%ಽᬑᙹ⦽ᩩ⊂ಆᮥᅕᩡ

݅. ᯕ۵➉▕ʑၹ᮹ᯙŖᝁĞ฾ᩩ⊂᜽ᯕಆᯱഭ᮹ᱥ⃹ญŝᱶŝ

↽ᱢ᮹᯦ಆ⊖ၰᮡܪ⊖᮹ᖁᱶᮝಽᯙ⦽đŝಽ❱݉ࡽ݅. ☖⧪᜽

eᩩ⊂đŝ᮹á᷾ᮥ᭥⧕ᕽ௽߅ӽᙹෝၽᔾ⦹ᩍእƱᇥᕾᮥ

ᝅ᜽⦹ᩡ݅. ᇥᕾđŝᝅ⊂⊹᪡᮹᪅₉ᮉᯕ18.98%ಽ׳íࠥ⇽ࡹ

ᨩᮝ໑, ᯕ۵ ᯙŖᝁĞ฾ᮥ ᯕᬊ⦽ ☖⧪᜽e ᩩ⊂᜽ ➉▕DBa

ᩩ⊂᮹ ᱶ⪶ࠥᨱ ᵝ᫵⦹í ᯲ᬊ⦽ đŝಽ ❱݉ࡽ݅.

ᖁ⧪ᩑǍá☁ᨱᕽ⪶ᯙ⧁ᙹᯩॐᯕ⦽ǎŁᗮࠥಽ✚ᖒᨱ฿۵

ᩩ⊂ႊჶၰ᜽eeĊᨱݡ⦽ᝅ᷾ᩑǍ۵ᇡ᳒⦽ᝅᱶᯕ݅. ⦹ḡอ

ᅙᩑǍ᮹ᝅ᷾ᇥᕾđŝෝᯕᬊ⦹ᩍ⦽ǎŁᗮࠥಽ✚ᖒᨱ฿۵

ᩩ⊂݉᭥ၰᱶᅕᱽŖᵝʑᨱݡ⦽ᖁᱶᯕa܆⧁äᮝಽ❱݉ࡽ݅.

ੱ⦽ ᝅᱽ Ʊ☖ᯱഭෝ ᯕᬊ⦽ ☖⧪᜽e ᩩ⊂ᨱ ᯩᨕ ᯥ᮹ᖒᮥ

႑ᱽ⧁ ᙹ ᯩᨕ ᦩᱶᱢᯙ ᩑǍđŝ௝ ⠪a⧁ ᙹ ᯩᮥ äᯕ݅.

5.2 ේบ઴֜ր୪

ᅙᩑǍ᮹⦽ĥᱱᮝಽ۵݉ᵝʑ☖⧪᜽eᩩ⊂ၰእᖁ⩶šĥᨱ ᕽ׳ᮡᱶ⪶ࠥෝᅕᯕ۵ᯙŖᝁĞ฾ʑჶᮥ⪽ᬊ⦹ᩡ݅. ☖ĥᱢ

༉⩶᮹Ğᬑ☖⧪᜽eᩩ⊂᮹ᱶ⪶ࠥ۵ᬑᙹ⧁ᙹᯩḡอ, ᩩ⊂đŝ ᨱݡ⦽ᯙŝšĥᇥᕾᨱᯩᨕ᜽ဍ౩ᯕᖹ༉⩶ᨱእ⧕ᨕಅᬡᯕ

ᯩ݅. ᯕᨱ⨆⬥ᩑǍŝᱽಽ᜽ဍ౩ᯕᖹ༉⩶ᮥᯕᬊ⦽ᩩ⊂đŝෝ

ၵ┶ᮝಽ☖ĥᱢ༉⩶ŝ᮹ᱶ⪶ࠥၰᯙŝšĥᇥᕾᯕ⦥᫵⦹݅.

qᔍ᮹ɡ

ᅙᩑǍ۵ǎ☁⧕᧲ᇡ℉݉ࠥ᜽}ၽᩑǍ}ၽᔍᨦ᮹ᩑǍእḡ ᬱ(12Ʊ☖ℕĥ-ḡ܆01)ᨱ ᮹⧕ ᙹ⧪ࡹᨩ᜖ܩ݅.

References

Cherrett, T. J., Bell, H. A. and McDonald, M. (1996). “The use of SCOOT type single loop detectors to measure speed, journey time and queue status on non SCOOT controlled links.”

Proceedings of the 8th International Conference on Road Traffic

Monitoring and Control, pp. 23-25.

Dharia, A. and Adeli, H. (2003). “Neural network model for rapid forecasting of freeway link travel time.” Engineering Applications of Artificial Intelligence, Vol. 16, pp. 607-613.

Guin, A., Laval, J. and Chilukuri, B. R. (2013). Freeway travel-time estimation and forecasting, School of Civil and Environmental Engineering Georgia Institute of Technology, GDOT Research Project 10-01; TO 02-60.

Herrera J. C., Work, D. B., Herring, R., Ban, X., Jacobson, Q. and Bayen, A. M. (2010). “Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment.”

Transportation Research Part C: Emerging Technologies, Vol.

18, Issue. 4, pp. 568-583.

Innamaa, S. (2005). “Short-term prediction of travel time using neural networks on an interurban highway.” Transportation 32, pp. 649-669.

Jeong, R. and Rilett, L. R. (2004). “Bus arrival time prediction using artificial neural network model.” IEEE Intelligent Transportation Systems Conference Washington, D.C., USA, October, pp. 988-993.

Jiang, G. and Zhang, R. (2001). “Travel time prediction for urban arterial road: A Case on China.” Proceedings of Intelligent Transport System, IEEE, pp. 255-260.

Kang, J. and Namkoong, S. (2002). “Development of the freeway operating time prediction model using toll collection system data.” Vol. 20, No. 4, Korean Society of Transportation, pp.

151-162 (in Korean).

Kim, Y. and Kim, T. (2001). “On-Line travel time estimation methods using hybrid neuro fuzzy system for arterial road.” Korean Society of Transportation, Vol. 19, No. 6, pp. 171-182. (in Korean).

Lee, Y. (2009). “Freeway travel time forecast using artifical neural networks with cluster method.” 12th International Conference on Information Fusion Seattle, WA, USA, July, pp. 1331-1338.

Ohba, Y., Koyama, T. and Shimada, S. (1997). “Online learning type of traveling time prediction model in Highway.” IEEE Intelligent Transportation Systems Conference, Boston, Massachusetts, pp. 350-355.

Park, D. and Rilett, L. R. (1999). “Forecasting freeway link travel times with a feedforward multilayer neural networks.” Computer- Aided Civil and Infrastructure Engineering, Vol. 14, pp. 357-367.

Park, D., Rilett, L. R. and Han, G. (1999). “Spectral basis neural networks for real-time travel time forecasting.” ASCE Journal of Transportation Engineering, Vol. 125, No. 6, pp. 515-523.

Rilett, L. R. and Park, D. (2001). “Direct forecasting of freeway corridor travel times using spectral basis neural networks.”

Transportation Research Record: Journal of the Transportation Research Board, Vol. 1752, pp. 140-147.

Van Hinsbergen, C. P. I. and Van Lint, J. W. C. (2008). “Bayesian

combination of travel time prediction models.” Transportation

Research Record: Journal of the Transportation Research Board,

Vol. 2064, pp. 73-80.

(8)

수치

Fig. 1. Structure of Methodology
Fig. 4. Process of Travel Time Prediction
Fig. 6. Optimum Input and Hidden Layer
Fig. 12. Actual Predicted Scatter Diagram (Perfect Matching)

참조

관련 문서

24-26 indicate the graphs showing the prediction results of the hydrogen concentration in the containment according to the elapsed time after the reactor

Al-Fahoum, “Quality Assessment of ECG Compression Techniquies Using a Wavelet-Based Diagnostic Measure,” IEEE Biomed.. Furht and A.Perez, “AN adaptive real-time

Single prediction → large error Multi-model mean prediction → smaller error Probability and various scenarios (X). → Preparing for the

Pedrycz, “A design of genetically oriented linguistic model with the aid of fuzzy granulation”, IEEE International Conference on Fuzzy

Na, Prediction of Hydrogen Concentration in Nuclear Power Plant Containment under Severe Accidents using Cascaded Fuzzy Neural Networks, Nuclear Engineering

The used output data are minimum DNBR values in a reactor core in a lot of operating conditions and the input data are reactor power, core inlet

• LCC computes Present Value of alternatives over a period of time using discounting methods.. • Hence, important to consider alternatives using same period of

Copyright 2009 John Wiley & Sons, Inc.. Copyright 2009 John Wiley