• 검색 결과가 없습니다.

저작자표시

N/A
N/A
Protected

Academic year: 2022

Share "저작자표시"

Copied!
69
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

년 월 2017 2

석사학위 논문

Microcystis aeruginosa 제어를 위한

5-Benzylidenerhodanine 유도체 합성 및 살조 활성 평가

조선대학교 대학원

신재생에너지융합학과

조 두 리

(3)

Microcystis aeruginosa 제어를 위한

5-Benzylidenerhodanine 유도체 합성 및 살조 활성 평가

Synthesis and algicidal activity evaluation of 5-Benzylidenerhodanine derivatives against

Microcystis aeruginosa

년 월 일

2017 2 24

조선대학교 대학원

신재생에너지융합학과

조 두 리

(4)

Microcystis aeruginosa 제어를 위한

5-Benzylidenerhodanine 유도체 합성 및 살조 활성 평가

지도교수 조 훈

이 논문을 공학 석사학위신청 논문으로 제출함

년 월

2016 10

조선대학교 대학원

신재생에너지융합학과

조 두 리

(5)

조두리의 석사학위논문을 인준함

위원장 조선대학교 교수 유 지 강 ( ) 인 위 원 조선대학교 교수 이 창 훈 ( ) 인 위 원 조선대학교 교수 조 훈 ( ) 인

년 월

2016 11

조선대학교 대학원

(6)

List of Tables ··· ⅲ

List of Schemes ··· ⅳ

List of Figures ··· ⅴ

ABSTRACT ··· ⅵ

··· 1

··· 6

A. ··· 6

··· 6

··· 6

Danio reio (Zebra fish) ··· 7

··· 8

B. ··· 10

Microplate assay / Measurement of LC

50

value ··· 10

(Daphnia magna) ··· 10

Danio rerio (zebra fish) ··· 11

C. ··· 12

··· 12

D. Rhodanine ··· 13

··· 14

(7)

··· 27

A. Rhodanine Microplate assay ··· 27

Microcystis aeruginosa ··· 27

2. Selenastrum capricornutum ··· 31

3. Rhodanine Thiazolidinedione ··· 32

B. ( Daphnia magna) ··· 34

C. Danio rerio (Zebra fish) ··· 35

D. ··· 36

··· 38

··· 39

1

H NMR Spectra ··· 42

(8)

List of Tables

Table 1. ··· 2

Table 2. BG-11 (Blue-Green Medium) ··· 7

Table 3. M4 Medium ··· 8

Table 4. M4 Medium Stock (1), (2) Solution ··· 9

Table 5. Compound 1-7 ··· 28

Table 6. Compound 8-15 ··· 28

Table 7. Compound 16-23 ··· 29

Table 8. Compound 24-29 ··· 31

Table 9. ··· 31

Table 10. Rhodanine (RH) Thiazolidinedione (TD) ··· 33

(9)

List of Schemes

Scheme 1. Plausible mechanism for the synthesis of 5-arylidenerhodanines catalyzed by diammonium hydrogen phosphate. ··· 13 Scheme 2. Reagents and conditions;    90 , 20 min ··· 14

(10)

List of Figures

Figure 1. Harmful algae bloom in Nakdong river, South Korea.

··· 1

Figure 2. Microcystis aeruginosa. (Kristian Peters, 2009, wikipedia) ··· 3

Figure 3. 5-Benzylidenerhodanine ··· 27

Figure 4. ··· 30

Figure 5. Rhodanine 2,4-Thiazolidinedione ··· 32

Figure 6. ···34

Figure 7. Danio rerio ···35

Figure 8. Microcystis aeruginosa ··· 36

Figure 9. Microcystis aeruginosa ··· 37

(11)

ABSTRACT

Synthesis and algicidal activity evaluation of 5-Benzylidenerhodanine derivatives against Microcystis aeruginosa

Du Ri Jo

Academic Advisor : Prof. Cho Hoon, Ph. D.

Department of Energy Convergence

Graduate School of Chosun University, South Korea

Harmful algae blooms (HABs) occur at rivers and lakes around the world. Due to the excessive propagation of harmful algae, scum is formed on the surface of the lake, resulted in blocking oxygen, damage of aquatic organisms and threats human health etc. Among the harmful algae blooms, Microcystis aeruginosa is the representative species.

In this study, 5-benzylidenerhodanine derivatives were synthesized using Rhodanine in order to control Microcystis aeruginosa. Algicidal activity was measured against harmful algae (Microcystis aeruginosa, Anabaena flos-aquae) and non-harmful algae (Selenstrum capricornutum).

When structure-activity relationship (SAR) is analyzed for 29 compounds, the phenyl substituents with halogen group show good inhibitory potency against Microcystis aeruginosa. Furthermore, the phenyl substituents with chlorine at C2 of phenyl ring show higher algicidal effects than that with chlorine at C3 of phenyl ring. Among the various synthetic 5-benzylidenerhodanine derivatives tested, 5-(2,4-Dichlorobenzylidene)-rhodanine was found to be the most potent inhibitor aginst Microcystis aeruginosa with 0.75 M ofμ LC50 value. Overall, the results show that 5-benzylidenerhodanine derivatives in one of the

(12)

possible methods for controlling and inhibiting Microcystis aeruginosa.

(13)

(Figure 1)

Figure 1. Harmful algae bloom in Nakdong river, South Korea.

algae

Table 1

(14)

Table 1.

(Harmful Algae Blooms, HABs)

Chlorophyta (Cyanobacteria)

Nitrogen Phosphorus

algae (Cyanobacteria)

(15)

μ

Microcystis, Anabaena, Oscillatoria, Aphanizomenon

Microcystis aeruginosa (Figure 2)

Figure 2. Microcystis aeruginosa. (Kristian Peters, 2009, wikipedia)

Microcystins

(16)

μ

Microcystis aeruginosa Microcystin-LR (MC-LR)

WHO microcysti μ

Rhodanine (2-Sulfanylidene-1,3-thiazolidin-4-one)

Rhodanine aldose

(17)

Rhodanine Microcystis aeruginosa SAR :

Structure-Activity Relationship Microcystis aeruginosa

2,4-Thiazolidinedione

. Daphnia magna Danio rerio

Microcystis aeruginosa

(18)

TCI (Tokyo Chemical Industry), Sigma-Aldrich, Junsei, Alfa aesar, Acros

TLC UV Thin Layer

Chromatography, TLC)

Column Chromatography

FT-NMR (1H Nuclear magnetic resonance spectrocopy

,JEOL JNM-LA , 300 MHz, Japan) 1H NMR

δ part per million (ppm) J-coupling Hz

1H NMR CDCl3 (Chloroform-d) DMSO (Dimethyl Sulfoxide)

Cyanobacteria Microcystis aeruginosa (HYK 0906 A2/ WREO 5, HYK 0906/ WREO 11), Anabaena flos-apuae (AG10026, KCTC

Selenastrum capricornutum (AG10009, KCTC

algae pH BG-11 Medium (Uniqath Ltd. wade

Road, Basingstocke, Hants RG24 0PW, UK) Table 2

subculture 12:12 cycle (light : dark), 2500-2700 Lux, 23-25

(19)

BG-11 (Blue-Green Medium) Stocks

Compound 1 L

1  15.0 g/L 100.0 mL

2  2.0 g/0.5L 10.0 mL

3   3.75 g/0.5L 10.0 mL

4   1.80 g/0.5L 10.0 mL

5 Citric acid 0.30 g/0.5L 10.0 mL

6 Ammonium ferric citrate green 0.30 g/0.5L 10.0 mL

7  0.05 g/0.5L 10.0 mL

8  1.00 g/0.5L 10.0 mL

9 Trace metal solution 1.0 mL

 2.86 g/L

  1.81 g/L

  0.22 g/L

  0.39 g/L

  0.08 g/L

   0.05 g/L Table 2. BG-11 (Blue-Green Medium)

Daphnia magna

OECD (Organization for Economic Cooperation and Development) Daphnia magna

M4 medium Table 3 Table

4 Chlorella Selenastrum

(20)

gracile Chlorella Selenastrum gracile BG-11

12:12 cycle (light : dark)

Danio rerio (Zebra fish)

Danio rerio (zebra fish)

Color charasin) Danio rerio

M4 Medium

(g/200 mL) M4 (mL/L)

Stock (1) 50 mL

Stock (2) 0.1 mL

  58.76 g 1.0 mL

  49.32 g 0.5 mL

 11.60 g 0.1 mL

 12.96 g 1.0 mL

  10.00 g 0.2 mL

 0.548 g 0.1 mL

 0.286 g 0.1 mL

 0.368 g 0.1 mL

Table 3. M4 Medium

(21)

Stock (1) - Combined traced element

(g/200 mL) Stock (1) (mL/L)

 11.438 g 1 mL

  1.442 g 1 mL

 1.224 g 1 mL

 0.284 g 1 mL

  0.608 g 1 mL

 0.064 g 1 mL

  0.252 g 1 mL

  0.067 g 1 mL

 0.052 g 1 mL

  0.040 g 1 mL

 0.013 g 1 mL

 0.00876 g 1 mL

 0.0023 g 1 mL

(g/200mL) 20 mL

  2.5 g

  0.995 g

Stock (2) - Vitamin mix

Stock (2) (g/L)

Cyanocobalamine (vitamin B12) 0.75 g

Thiamine HCl (vitamin B1) 0.01 g

Biotin 0.075 g

Table 4. M4 Medium Stock (1), (2) Solution

(22)

1. Microplate assay / Measurement of LC

50

value

Microcystis aeruginosa(1 × 106 cells ml-1)

96-well plate μ

μ μ working volume μ

μ μ BG-11

96-well plate

Microcystis aeruginosa

plate 10 μL neubauer hemocytometer (SUPERIOR) (Nikon, ECLIPSE E100, 0.3A, 50~60 Hz)

(Algicidal activity)

Algicidal activity

Microcal Origin software LC50

Daphnia magna

M4 Medium

conical tube ,15 mL M4 medium 2 mL

(23)

50%

Effective Concentration,

Danio rerio (zebra fish)

static nonrenewal test

tween 20 micro micelle

Danio rerio

(24)

Scanning Electron Microscope, SEM

Microcystis aeruginosa

X-Ray

Microcystis aeruginosa

Ethanol Ethanol

Ethanol freezing driyer

(25)

Rhodanine

Scheme 1. Plausible mechanism for the synthesis of 5-arylidenerhodanines catalyzed by diammonium hydrogen phosphate.

(26)

CHO R1

R2

R3

R4

R5

R1 R2

R3

R4

R5 S

NH O

S NH S O

S

Scheme 2. Reagents and conditions;  90 , 20 min℃

Scheme 2

(1) 5-Benzylidenerhodanine

O

H

S

NH O

S

Rhodanine

(NH4)2HPO4, H2O, 90℃

Benzaldehyde (0.382 mL, 3.75 mmol), Rhodanine (0.5 g, 3.75 mmol) Diammonium hydrogen phosphate (0.0496 g, 0.375 mmol) H2O (5 mL)

oil bath condensor

TLC 

TLC Ethanol

Methanol Methanol

(27)

Yield : 85%

1H NMR (300MHz, DMSO-d6), δ 13.88 (s, 1H), δ 7.66 (s, 1H), δ 7.62 (m, 5H)

5-(2-Chlorobenzylidene)-rhodanine

O

H

S

NH O

S

Cl Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 70 %

1H NMR (300MHz, DMSO-d6), δ 13.93 (s, 1H), δ 7.71 (s, 1H). δ 7.65 (m, 4H)

(3) 5-(3-Chlorobenzylidene)-rhodanine

O

H

S

NH O

S

Cl Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 83 %

1H NMR (300MHz, DMSO-d6), δ 13.96 (s, 1H), δ 7.70 (s, 1H), δ 7.65 (s, 1H), δ 7.61 (m, 3H)

(4) 5-(2-Bromobenzylidene)-rhodanine

(28)

O

H

S

NH O

S

Br Br

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 85 %

1H NMR (300MHz, DMSO-d6), δ 13.93 (s, 1H), δ 7.83 (d, J=8.04 Hz, 1H), δ 7.72 (s, 1H), δ 7.60 (m, 2H), δ 7.45 (t, J=7.50 Hz, 1H)

(5) 5-(3-Bromobenzylidene)-rhodanine

O

H

S

NH O

S

Br Br

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 90 %

1H NMR (300MHz, DMSO-d6), δ 13.92 (s, 1H), δ 7.83 (s, 1H), δ 7.70 (d, J=7.68 Hz, 1H), δ 7.63 (s, 1H), δ 7.58 (d, J=7.68 Hz, 1H), δ 7.52 (t, J=7.71 Hz, 1H)

(6) 5-(4-Bromobenzylidene)-rhodanine

O

H

S

NH O

S

Br Br

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 90 %

(29)

1H NMR (300MHz, DMSO-d6), δ 13.95 (s, 1H), δ 7.76 (d, J=8.43 Hz, 2H), δ 7.63 (s, 1H), δ 7.57 (d, J=8.43 Hz, 2H)

(7) 5-(2-Fluorobenzylidene)-rhodanine

O

H

S

NH O

S

F F

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 68 %

1H NMR (300MHz, DMSO-d6), δ 13.85 (s, 1H), δ 7.60 (s, 1H), δ 7.46 (m, 3H), δ 7.34 (d, J=6.57 Hz, 1H)

(8) 5-(4-Nitrobenzylidene)-rhodanine

O

H

S

NH O

S

N N

O

O O

O

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 75 %

1H NMR (300MHz, DMSO-d6), δ 13.97 (s, 1H), δ 8.36 (d, J=8.79 Hz, 2H), δ 7.88 (d, J=8.79 Hz, 2H), δ 7.74 (s, 1H)

(9) 5-(2-Methylbenzylidene)-rhodanine

(30)

O

H

S

NH O

S

CH3 CH3

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 85 %

1H NMR (300MHz, DMSO-d6), δ 13.87 (s, 1H), δ 7.74 (s, 1H), δ 7.38 (m, 4H), δ 2.42 (s, 3H)

(10) 5-(2-Hydroxybenzylidene)-rhodanine

O

H

S

NH O

S

OH OH

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 90 %

1H NMR (300MHz, DMSO-d6), δ 13.74 (s, 1H), δ 10.68 (s, 1H), δ 7.85 (s, 1H), δ 7.36 (m, 2H), δ 6.98 (m, 2H)

(11) 5-(3-Hydroxybenzylidene)-rhodanine

O

H

S

NH O

S

HO HO

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 92 %

(31)

1H NMR (300MHz, DMSO-d6), δ 13.83 (s,1H), δ 9.88 (s, 1H), δ 7.55 (s, 1H), δ 7.36 (t, J=7.71 Hz, 1H), δ 7.06 (d, J=7.32 Hz, 1H), δ 6.97 (s, 1H), δ 6.91 (d, J=8.43 Hz, 1H)

(12) 5-(4-Hydroxybenzylidene)-rhodanine

O

H

S

NH O

S

HO HO

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 90 %

1H NMR (300MHz, DMSO-d6), δ 13.71 (s, 1H), δ 10.44 (s, 1H), δ 7.56 (s, 1H), δ 7.48 (d, J=8.43 Hz, 2H), δ 6.94 (d, J=8.43 Hz, 2H)

(13) 5-(2-Methoxybenzylidene)-rhodanine

O

H

S

NH O

S

OCH3 OCH3

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 86 %

1H NMR (300MHz, DMSO-d6), δ 13.80 (s, 1H), δ 7.80 (s, 1H), δ 7.54 (t, J=6.6 Hz, 1H), δ 7.42 (d, J=7.71 Hz, 1H), δ 7.18 (m, 2H), δ 3.90 (s, 3H)

(14) 5-(3-Methoxybenzylidene)-rhodanine

(32)

O

H

S

NH O

S

H3CO H3CO

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 76 %

1H NMR (300MHz, DMSO-d6), δ 13.86 (s, 1H), δ 7.62 (s, 1H), δ 7.48 (t, J=8.04 Hz, 1H), δ 7.16 (m, 3H), δ 3.81 (s, 3H)

(15) 5-(4-Methoxybenzylidene)-rhodanine

O

H

S

NH O

S

H3CO H3CO

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 85 %

1H NMR (300MHz, DMSO-d6), δ 13. 77 (s, 1H), δ 7.62 (s, 1H), δ 7.59 (d, J=8.79 Hz, 2H), δ 7.13 (d, J=8.43 Hz, 2H), δ 3.83 (s, 3H)

(16) 5-(2,5-Dichlorobenzylidene)-rhodanine

O

H

S

NH O

S Cl

Cl Cl

Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 95 %

(33)

1H NMR (300MHz, DMSO-d6), δ 14.03 (s, 1H), δ 7.71 (m, 3H), δ 7.50 (s, 1H)

(17) 5-(2,6-Dichlorobenzylidene)-rhodanine

O

H

S

NH O

S

Cl Cl

Cl Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 95 %

1H NMR (300MHz, DMSO-d6), δ 13.95 (s, 1H), 7.62 (m, 3H),δ δ 7.53 (t, J=7.35 Hz, 1H)

(18) 5-(3,4-Dichlorobenzylidene)-rhodanine

O

H

S

NH O

S Cl

Cl

Cl

Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 92 %

1H NMR (300MHz, DMSO-d6), δ 13.91 (s, 1H), δ 7.92 (s, 1H), δ 7.82 (d, J=8.43 Hz, 1H), δ 7.64 (s, 1H), δ 7.55 (d, J=8.43 Hz, 1H)

(19) 5-(3,5-Dichlorobenzylidene)-rhodanine

(34)

O

H

S

NH O

S

Cl Cl

Cl Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 85 %

1H NMR (300MHz, DMSO-d6), δ 13.97 (s, 1H), δ 7.77 (s, 1H), δ 7.62 (m, 3H)

(20) 5-(2,4-Dichlorobenzylidene)-rhodanine

O

H

S

NH O

S Cl

Cl

Cl

Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 85 %

1H NMR (300MHz, DMSO-d6) , δ 14.03 (s, 1H), δ 7.87 (s, 1H), δ 7.68 (s, 1H), δ 7.64 (d, J=8.40 Hz, 1H), δ 7.56 (d, J=8.43 Hz, 1H)

(21) 5-(2,6-Difluorobenzylidene)-rhodanine

O

H

S

NH O

S

F F

F F

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 62 %

(35)

1H NMR (300MHz, DMSO-d6), δ 13.88 (s, 1H), δ 7.69 (m, 1H), δ 7.50 (s, 1H), δ 7.32 (m, 2H)

(22) 5-(3,4-Difluorobenzylidene)-rhodanine

O

H

S

NH O

S F

F

F

F

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 65 %

1H NMR (300MHz, DMSO-d6), δ 13.90 (s, 1H), δ 7.73 (d, J=9.51 Hz, 1H), δ 7.64 (s, 1H), δ 7.61 (d, J=9.51 Hz, 1H), δ 7.47 (s, 1H)

(23) 5-(3,4-Dimethylbenzylidene)-rhodanine

O

H

S

NH O

S H3C

H3C

H3C

H3C

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 90 %

1H NMR (300MHz, DMSO-d6), δ 13.78 (s, 1H), δ 7.62 (s, 1H), δ 7.22 (m, 3H), δ 3.84 (s, 3H), δ 3.82 (s, 3H)

(24) 5-(2,4,5-Trimethoxybenzylidene)-rhodanine

(36)

O

H

S

NH O

S

H3CO H3CO

OCH3

OCH3

OCH3

OCH3

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 80 %

1H NMR (300MHz, DMSO-d6), δ 13.84 (s, 1H), δ 7.61 (s, 1H), δ 6.91 (s, 2H), δ 3.84 (m, 9H)

(25) 5-(3,4,5-Trimethoxybenzylidene)-rhodanine

O

H

S

NH O

S

H3CO H3CO

OCH3 OCH3

H3CO H3CO

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield :80 %

1H NMR (300MHz, DMSO-d6), δ 13.84 (s, 1H), δ 7.61 (s, 1H), δ 6.92 (s, 2H), δ 3.84 (s, 6H), δ 3.73 (s, 3H)

(26) 5-(2-Hydroxy-3-methoxybenzylidene)-rhodanine

O

H

S

NH O

S

H3CO H3CO

OH OH

Rhodanine

(NH4)2HPO4, H2O, 90℃

(37)

Yield : 85 %

1H NMR (300MHz, DMSO-d6), δ 13.74 (s, 1H), δ 9.89 (s, 1H), δ 7.87 (s, 1H), δ 7.12 (dd, J= 2.94 and 6.22 Hz, 1H), δ 6.93 (m, 2H), δ 3.84 (s, 3H)

(27) 5-(4-Chloro-3-fluorobenzylidene)-rhodanine

O

H

S

NH O

S

F F

Cl Cl

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 75 %

1H NMR (300MHz, DMSO-d6), δ 13.94 (s, 1H), δ 7.79 (m, 2H), δ 7.64 (s, 1H), δ 7.45 (d, J=8.40 Hz, 1H)

(28) 5-(3-Fluoro-4-methylbenzylidene)-rhodanine

O

H

S

NH O

S

F F

H3C H3C

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 70 %

1H NMR (300MHz, DMSO-d6), δ 13.88 (s, 1H), δ 7.62 (s, 1H), δ 7.47 (m, 2H), δ 7.34 (d, J=8.04 Hz, 1H), δ 2.29 (s, 3H)

(29) 5-(2-Bromo-4,6-Dimethoxybenzylidene)-rhodanine

(38)

O

H

S

NH O

S

H3CO H3CO

Br

OCH3

Br

OCH3

Rhodanine

(NH4)2HPO4, H2O, 90℃

Yield : 70 %

1H NMR (300MHz, DMSO-d6), δ 13.94 (s, 1H), δ 7.67 (s, 1H), δ 7.38 (s, 1H), δ 6.94 (s, 1H), δ 3.86 (d, J=6.21 Hz, 6H)

(39)

Rhodanine Microplate assay

Harmful algae SAR (Structure-Activity Relationship) Microcystis aeruginosa, Anabaena flos-aquae Selenastrum capricornutum Microplate assay

Anabaena flos-aquae 5 Mμ

Microcystis aeruginosa 2,4-Thiazolidinedione

1. Microcystis aeruginosa

S

NH O

S R1

R2

R3

R4

R5

Figure 3. 5-Benzylidenerhodanine

(40)

Compound

NO. R1 R2 R3 R4 R5 LC50 ( M)μ

1 - H - H - H - H - H 2.74

2 - Cl - H - H - H - H 2.80

3 - H - Cl - H - H - H 1.11

4 - Br - H - H - H - H 1.83

5 - H - Br - H - H - H 1.78

6 - H - H - Br - H - H 1.21

7 - F - H - H - H - H 1.94

Table 5. Compound 1-7

halogen LC50 3 Mμ

bromine (-Br) R1 R3 LC50

chlorine (-Cl) R1 R2 LC50

Compound

NO. R1 R2 R3 R4 R5 LC50 ( M)μ

8 - H - H -NO2 - H - H 3.49

9 - CH3 - H - H - H - H 3.85

10 - OH - H - H - H - H 2.64

11 - H - OH - H - H - H > 10

12 - H - H - OH - H - H > 5

13 - OCH3 - H - H - H - H > 5

14 - H - OCH3 - H - H - H 3.58

15 - H - H - OCH3 - H - H > 10

Table 6. Compound 8-15

(41)

hydroxy (-OH) R1 methoxy

(-OCH3) R2 LC50 5 μM hydroxy

(-OH) methoxy (-OCH3) 5 Mμ

Compound

NO. R1 R2 R3 R4 R5 LC50 ( M)μ

16 - Cl - H - H - Cl - H 0.84

17 - Cl - H - H - H - Cl 0.83

18 - H - Cl - Cl - H - H 0.98

19 - H - Cl - H - Cl - H 1.16

20 - Cl - H - Cl - H - H 0.75

21 - F - H - H - H - F 3.09

22 - H - F - F - H - H 2.00

23 - H - CH3 - CH3 - H - H >10

Table 7. Compound 16-23

halogen chlorine (-Cl)

1 Mμ LC50 chlorine (-Cl) fluorine

(-F) LC50

chlorine (-Cl) chlorine (-Cl) R1 R2

LC50 chlorine (-Cl)

LC50 chlorine (-Cl)

R1 Compound 20

LC50 (Figure 4) fluorine (-F)

LC50 methyl (-CH3) 10 μM

(42)

Concentration(uM)

5μM 2μM 1μM 0.5μM 0.2μM

Microcystis aeruginosa mortality rate (%)

0 20 40 60 80

100 Compound 20

Compound 16 Compound 17

5 μM 2 μM 1 μM 0.5 μM 0.2 μM

Concentration ( M)μ

compound 20 compound 16 compound 17

Figure 4.

(43)

Compound

NO. R1 R2 R3 R4 R5 LC50 ( M)μ

24 - OCH3 - H - OCH3 - OCH3 - H > 10

25 - H - OCH3 - OCH3 - OCH3 - H > 10

26 - OH - OCH3 - H - H - H > 10

27 - H - F - Cl - H - H 2.53

28 - H - F - CH3 - H - H 2.37

29 - Br - H - OCH3 - H - OCH3 > 5

Table 8. Compound 24-29

methoxy (-OCH3) 10 Mμ

R1 bromine (-Br) compound 4 LC50

1.83 methoxy (-OCH3)

LC50 5 μM

halogen 3 Mμ

Selenastrum capricornutum

Compound NO.

LC50 ( M)μ

4 1.94

6 4.27

17 4.32

18 4.37

20 1.12

Table 9.

(44)

3. Rhodanine Thiazolidinedione

S

NH O

S R

S

NH O

O R

Rhodanine derivative 2,4-Thiazolidinedione derivative

Figure 5. Rhodanine 2,4-Thiazolidinedione

2,4-Thiazolidinedione Rhodanine Microcystis aeruginosa

Thiazolidindione Rhodanine Table 10

Compound NO. Benzaldehyde

halogen

Benzaldehyde ortho hydroxy (-OH), nitrogen dioxide (-NO2), bromine

(-Br) 3,4,5-Trimethoxy

(-OCH3)

(45)

Compound NO. (-R) TD-LC50

( M)μ

RH-LC50

( M)μ

3 3-Cl 0.60 1.11

4 2-Br 1.03 1.83

5 3-Br 0.34 1.78

6 4-Br 0.76 1.21

7 2-F 0.78 1.94

8 2-NO2 1.80 3.49

10 2-OH 2.78 2.64

11 3-OH 4.19 >10

12 4-OH >10 >5

14 3-OCH3 1.69 3.58

15 4-OCH3 1.33 >10

18 3,4-Cl 0.43 0.93

21 2.6-F 2.50 3.09

22 3.4-F 0.89 2.00

25 3,4,5-OCH3 >10 >10

26 2-OH, 3-OCH3 0.40 >10

27 4-Cl, 3-F 0.32 2.53

Table 10. Rhodanine (RH) 2,4-Thiazolidinedione (TD)

(46)

B. Daphnia magna

LC50 3 Mμ compound

(halogen) hydroxy (-OH)

compound 3.2 μM

3.5 μM

EC50 3.4 Mμ

Time

0 5 10 15 20 25 30

mortality rate

0 20 40 60 80 100

compound 10 3.2uM compound 10 3.5uM compound 20 1.5uM compound 3 1.5uM compound 10 3.2 Mμ compound 10 3.5 Mμ compound 20 1.5 Mμ compound 3 1.5 Mμ

Figure 6.

(47)

C. Danio rerio (Zebra fish)

Daphnia magna Microcystis aeruginosa LC50

compound Danio rerio

5 Mμ 3 Mμ

2 Mμ

Time

0 20 40 60 80 100

mortarity rate

0 20 40 60 80 100

control

compound 10 5uM compound 10 3uM compound 10 2uM control

compound 10 5 Mμ compound 10 3 Mμ compound 10 2 Mμ

Figure 7. Danio rerio

(48)

Microcystis aeruginosa

(Figure 8) (Figure 9)

Figure 8. Microcystis aeruginosa

(49)

Figure 9. Microcystis aeruginosa

(50)

Harmful Algae Blooms, HABs

scum

aldose

Rhodanine

5-Benzylidenerhodanine Microcystis aeruginosa, Anabaena

flos-aquae Selenastrum capricornutum

structure-activity relationship (SAR) Microcystis aeruginosa Anabaena flos-aquae LC50 > 5 Mμ

(halogen) methoxy (-OCH3)

hydroxy (-OH) phenyl ring C2

Dichloro phenyl ring C2

C3 Dichloro

5-(2,4-Dichlorobenzylidene)-rhodanine LC50 0.75 Mμ

Microcystis aeruginosa

Microcystis aeruginosa

(51)
(52)
(53)
(54)

1 H NMR Spectra

(55)

1. 5-Benzylidenerhodanine

S NH O

S

2. 5-(2-Chlorobenzylidene)-rhodanine

S NH O

S Cl

(56)

3. 5-(3-Chlorobenzylidene)-rhodanine

S NH O

S Cl

4. 5-(2-Bromobenzylidene)-rhodanine

S NH O

S Br

(57)

5. 5-(3-Bromobenzylidene)-rhodanine

S NH O

S Br

6. 5-(4-Bromobenzylidene)-rhodanine

S NH O

S Br

(58)

7. 5-(2-Fluorobenzylidene)-rhodanine

S NH O

S F

8. 5-(4-Nitrobenzylidene)-rhodanine

S NH O

S N

O O

(59)

9. 5-(2-Methylbenzylidene)-rhodanine

S NH O

S

10. 5-(2-Hydroxybenzylidene)-rhodanine

S NH O

S OH

(60)

11. 5-(3-Hydroxybenzylidene)-rhodanine

S NH O

S HO

12. 5-(4-Hydroxybenzylidene)-rhodanine

S NH O

S HO

(61)

13. 5-(2-Methoxybenzylidene)-rhodanine

S NH O

S O

14. 5-(3-Methoxybenzylidene)-rhodanine

S NH O

S O

(62)

15. 5-(4-Methoxybenzylidene)-rhodanine

S NH O

S O

16. 5-(2,5-Dichlorobenzylidene)-rhodanine

S NH O

S Cl

Cl

(63)

17. 5-(2.6-Dichlorobenzylidene)-rhodanine

S NH O

S Cl

Cl

18. 5-(3,4-Dichlorobenzylidene)-rhodanine

S NH O

S Cl

Cl

(64)

19. 5-(3,5-Dichlorobenzylidene)-rhodanine

S NH O

S Cl

Cl

20. 5-(2,4-Dichlorobenzylidene)-rhodanine

S NH O

S Cl

Cl

(65)

21. 5-(2,6-Difluorobenzylidene)-rhodanine

S NH O

S F

F

22. 5-(3,4-Difluorobenzylidene)-rhodanine

S NH O

S F

F

(66)

23. 5-(3,4-Dimethylbenzylidene)-rhodanine

S NH O

S

24. 5-(2,4,5-Trimethoxybenzylidene)-rhodanine

S NH O

S O

O O

(67)

25. 5-(3,4,5-Trimethoxybenzylidene)-rhodanine

S NH O

S O

O O

26. 5-(2-Hydroxy-3-methoxybenzylidene)-rhodanine

S NH O

S OH

O

(68)

27. 5-(4-Chloro-3-Fluorobenzylidene)-rhodanine

S NH O

S F

Cl

28. 5-(3-Fluoro-4-methylbenzylidene)-rhodanine

S NH O

S F

(69)

29. 5-(2-Bromo-4,6-dimethoxybenzylidene)-rhodanine

S NH O

S Br

O O

참조

관련 문서

/ 군사력이 약화되었고 전쟁에 대한 대비가 부족했다... / 문서에 조약의

따라서 버림, 반올림하여 백의 자리까지 나타낸 수가 같은 것은 ㉢입니다... 또한, 각각의 대응점에서 대칭의

사슴의 수는 조금씩 줄어들고 비버의 수는 늘어날 것이라고 쓰거나 오랜 시간에 걸쳐 생태계는 평형을 되찾아 늑대와 사 슴의 수는 적절하게 유지되고 강가의 풀과 나무도 잘

[r]

Relationship between soil pH and phosphatase activity in volcanic ash soil of citrus orchards on the different surface soil management practices at

In addition, a correlation analysis was conducted to examine the relationship between generality 5 factors (neuroticism, extroversion, openness, agreeableness,

This paper aims at analyzing the relationship among social support, intense factor, and exercise maintenance according to the participation activity in sports

Advisory Commission on Intergovernmental Relations, State Laws Governing Local Government Structure and Administration, (M-186), Washingtion,