• 검색 결과가 없습니다.

 1.  Bubble Characteristics in Three-Phase Circulating Fluidized Beds  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Bubble Characteristics in Three-Phase Circulating Fluidized Beds   "

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

 

  *

 

*  

(2000 5 12 , 2000 8 31 )

Bubble Characteristics in Three-Phase Circulating Fluidized Beds

Seok-Hee Nam, Yong-Jun Cho, Yong Kang and Sang-Done Kim*

Department of Chemical Engineering, Chungnam National University, Teajon 305-764, Korea

*Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, Teajon 305-701, Korea (Received 12 May 2000; accepted 31 August 2000)

 

(0.01-0.07 m/s),  (0-0.31 m/s) !"  #(2-8 kg/m2s) $ %&' ()*+, , %&,   - ./  - . #0 &1 !" 2#& 345 67 89 : ;<=>   ?

- @A BCD*'E B 6FG  6F    BC. H IJ- ;<KG   - ./  - . #0 2#&5 0   LMD N LM5 7 OPQR.  

#M LMD N5 . #5 ST UV 2#&5 ST LM5 7 OPQR. - &15 

5 XY- B 6F BZ  6F  [\#M ]^ LM*+, - _[?# ?` UV.

H IJ- ;<ab  - . #0 &1 !" 2#&A ;<%&- /c*' OPd & eR.

Abstract−Bubble characteristics have been investigated in a three-phase circulating fluidized bed of 0.102 m I.D. and 3.5 m height. Effects of gas(0.01-0.07 m/s) and liquid velocities(0-0.31 m/s) and solid circulating rates(2-8 kg/m2s) on the bubble characteristics such as rising velocity, chord length and frequency have been determined. Probability density of bubble chord length has been examined with the variations of experimental conditions to analyze the bubble characteristics in the solid cir- culating regime. As a result of this study, The bubble rising velocity and frequency have increased with increasing gas and liq- uid velocities, but the former has decreased while the latter has increased slightly, with increasing solid circulating rates. The bubble chord length has increased with increasing gas velocity but it has decreased with liquid velocity and solid circulating rate in the riser of three-phase circulating fluidized beds. The probability density of bubble chord length becomes more narrow representing more uniform bubble size distribution with increasing liquid velocity as well as solid circulating rate in the beds.

The rising velocity, chord length and frequency of bubbles have been well correlated in terms of operating variables.

Key words: Three-Phase Circulating Fluidized Bed, Bubble Characteristics, Bubble Size Distribution

E-mail: kangyong@hanbat.chungnam.ac.kr

1.  

  -   

 , ,  !" # $%!" &' ( )*+, - .  /0 1,- 234 /5 678+,-   9:+ ;<, =>? ;< # @>? & >?A' B CDE F GHI    JK # <LM' B CDN O PQ RST5 UV[1-5]. WX 'Y0 dead zone Z

,- [\] >^_ `Ta  bcd & 53e f gh ij /V.

 k^ ' l\] X fgh mno  / pq' --jr s)_h tu vwx >^_h y +,- vwz  /j, Z=  w j k^ ='{i  7'Y |}w~0 oh \]  7 €"<h  i o  /V. ;Q,  j -  T0 K'Y0 j

 l‚<A Z\ƒ Ta, l‚<„ j…† 8‡'Y Vw

‚<wˆ ‰ \Š‹h Œ CŽc,- Vw ‹ ,  7-

…w~0 cd ‘’ “ ”• ( c} …† –  (

(2)

k^I o  /V[6-10].

 k^' B CD0 œK+,-• i wcfK' /, a, 67'Y0 ( ž™ Ÿ"V[9].  k^h !d+, -  \  Y0 ¡[ ¢£ C[ r s &

'  ¤0 9:+ ;<h ¥¦\0 › ( ’ ›I o  /V[9, 10].

§IY ¨ CD'Y0 ‹ 7‡ 9:+ ;<h \j† C

[ £ ¡[ j…† ©ª«' §¬  ¢

©ª;<h j­\®,a, 0  k^   e>* JK,

|5 &' ‘+[ !:+ †¯ |!o 1,- ¯„V.

2.  

¨ CD Ÿ°'  k^(Fig. 1) ‹ ±—

0.102 mj ² 3.5 m[ G–³ ‹h \®V[9]. C 

¡´ V!´ µ¶ \®0“, ±— 3 mm D·h ¸¹º-

»›\ƒ ¼º\®,a ¡ ½…h  Y0 C ¼ r ' ±— 6.35 mm ‹h ¾…\] s ‰  ‹' ±— 1 mm ¿À

¹Á FN5 ¡* C ›Â'Y  7' ½…T•Ã

\®V. C[ -0 Ä h, ¡[ -0 ]*„ Å Æ! \®j, j …†-0 dp 2.1 mmj ρp 2,500 kg/m3

ÈQ "À\®V. Table' ¤É Ê£ Ë Ÿ° Ì 0 

0.01-0.07 m/sj   0.00-0.31 m/sÍV. Ÿ°Îº0 j

…† \] Ïw~0 ‹* ‹ ‡ -j À

‡, j…† 4Î\0 hoper, WÀj j…† ›" k^•- Vw ‹' ½…w~0 7‡ loop-seal- D<T5 /V. Loop-seal

\‡£ ÐÂ'Y0 ›"   ½…\] ‹,- Vw  …T0 j Ñh ŽÒ\®j, k^T0 j Ñ butterfly valve

 \] Ÿ°+,- Ð"\®0“[9-11], ¨ Ÿ°'Y j k^ •

 Ì 0 2-8 kg/m2Ós ÍV.

¢;< > 4Ô ÕÖ(electric resistivity probe)h  \] ¡

´,-‡× 0.5, 0.9, 1.3, 1.7 m ² ÆØM 4ig'Y Ð"\]  ÙN Ú»Ù,- Û"\®V. > 4ÔÕÖ r }À0 2.0 mmÍ ,a, ÕÖ Ü tip r ÝÞwrß  \] Và $N-‡×

¢•, ¢±á, ¢â• &h D\®V[4, 12]. , Ü tip r wrß t1, ¢ ÕÖ' ãä0 wrh t2I \] $ (1)*

(2)'  ¢• D\®V.

f› ¢ •, (l) Ú» ¢ •, (2)

å, ¢ ±á(LV)0 ¢ Ü tip ' ãäæ0 wr t2

-‡× $ (3)* (4)'  D\®V.

f› ¢ ±á, LVi=UbiÓt2i= [ÕÖ tip }À(l)] (3)

Ú» ¢ ±á,

(4)

˜ , ÕÖh Œ*\0 ¢ Ú» â•0 $ (5)£ Ë Do  /,a, ¢ – ¢0 $ (6)* Ë Do  /V.

¢ Ú»â•, FB= (5)

Ubi ÕÖ tip}À l( ) t1i ---

=

Ub 1 n--- Ubi

i=1

n

=

t2i t1i ---

LV 1 n--- LVi

i=1

n

=

= 1

n--- Ubi⋅t2i

i=1

n

= 1 n--- t2i

t1i ---

i=1

n

¢ ç n( )

>Ð"wr T( ) --- Fig. 1. Schematic diagram of a three-phase circulating fluidized bed.

1. Riser 17. Compressor 13. A/D convertor 2. Down commer 18. Control valve 14. Computer 3. Hoppor 19. Flowmeter 15. G/L distributor 4. L/S separator 10. Resistivity probe 16. Liquid reservoir 5. Pressure tap 11. Amplifier 17. Pump 6. Butterfly valve 12. Low-pass filter

Operating condition

Bed height [m] 3.5

Column diameter [m] 0.102

Solid Glass bead

dp [mm] 2.l

ρp [kg/m3] 2500

Liquid Tap water(room temperature)

Gas Compressed air(room temperature)

Gas velocity(UG) [cm/s] 0.01-0.07 Liquid velocity(UL) [cm/s] 0.00-0.31 Solid circulating rate(GS) [kg/m2s] 2-8

Data sampling size [-] 500 Hz6 s=3000

(3)

¢ – ¢,

”•èé(probability number density) = (6)

ÕÖ >Å 1.75 volt®,a ÕÖ,-‡× ¿0 > + ÝÞ0 vê }ë A/D «^ \] ìií ÝÞ- «^\®V. A/

D«^ }î †¯(500 Hz)N “× yïκ(DT 2805 Lap

Card)h \] sample – ¸ Ÿ°ŽÇ'Y 3,000ð T•Ã

\] PC' …9wˆ ‰ off-line process- ŒK+,- ñÀ\] 

\®V. N †¯– £ ò• Žó ¸ ŽÇ'Y ‹ 7‡

 ¢ ;<h ¤70 > Áôõöh \0“ ÷\®V.

3. 

 k^ ‹ 7'Y 2ð 4ÔÕÖ'  Ð"„ Ý Þ >µ+[ µ¶ Fig. 2' ¤7Í0“,  ÝÞN filtering *

"h }ë ¢ •, ±á WÀj â• &* Ë ¢

 ;<h \0“ \®V.

Fig. 3a0 j …† 2.1 mm[ …†'Y  «' §¬

¢ • « ¤É 1V. Wø'Y ùú 

vû' §I ¢ •0 üÜ ýµ+,- v\0 —Mh

¤7ÍV. 0 þ  Û*£• lÿ Ñh ù0 1,-[4]  v0 ‹ 7‡' ½…T0  v'

§I Fig. 3c'Y   /ú ¢â• v ¿a 0

¢ó v'  Fig. 3b'Y ù0 Ê£ Ë ¢–  v

£ Û6 ‡9 v'  • i0 1,- o  /V. ˜ ,  v- [ ‹ 7' ¢ ”•0 v

\ƒ Tj ¢ •0  •ùV æ pq' 

>' ë ý ¢'   )*- ' §æ0 ¢' žº0 Ô9 5Nƒ T5 ¢ •0 iƒ „Vj o  /V.

 k^'Y  v' §¬ ¢ •«

Fig. 4a' ¤7ÍV. Wø'Y ù0 Ê£ Ë  vû'

§I ¢ •0 r vûh ¤7ÍV.  v0

'  ‹7 e v £ ‹' …T0 ›

" jk^• ŽÇ'Y j `\ƒ „V. §IY 

j…† ¢' c \0 hinderance )* B+,- `\

pq' ¢ •0 v„V. \iF  v- [

¢– 0 Fig. 4b'Y ù0 Ê£ Ë `\0 —M[13]h ¤7 pq' 0 e v- [ ¢ • v w~

0 Û* ¤75   v0 ¢ • –ƒ v

w~i  Vj o  /V. å,  v' §I ¢ 

• v\j, ˜ A v' §I ¢ )* v

# óA `- [ ¢ –  `\- Ë 

 ŽÇ'Y ¢ â•0 v\0 —Mh ¤7Í0“(Fig. 4c),

£ Ë A  voà tu ÜXiƒ ¤V.

 k^ ‹' …T0 j…† k^• ¢

•£ ±á WÀj â•' žº0 Mh Fig. 5' ¤7 ÍV.  Wø'Y   /ú j…† k^• vû' § I ¢•0 r `\0 —Mh ¤7j /0“, 0 GS v' §I j v\] j…† '  A

 v  wx ¢ó |\0 )* £ ¢ –

 `\j(Fig. 5b) ¢ •• r `\0 1h 2  / V(Fig. 5a). å, ‹' ›"  …. p GS v0 ¢ –  `\0 Û* ¿ pq' ¢ â•(FB)0 nL

Vi

nL

Vi

---

Fig. 2. Typical output signals from the electrical resistivity probe(UG= 0.01[m/s], UL=0.27[m/s], GS=4[kg/m2s]).

Fig. 3. Effects of UG on the bubble rising velocity(UB), chord length(LV) and frequency(FB) in three-phase circulating fluidized beds.

(4)

r v\0 1,- ¤V(Fig. 5c).

¢ – ¢0   s 'Y >^_* s) _ &' Û"+[ Mh žº- N JK£ e>' ( ’

’ T5UV[12, 14]. §IY, ¸¸ Ÿ°ŽÇ'Y ¢– ' B

-”•¢(number density distribution) $ (3)* (5)'  D\]

Fig. 6' ¤7ÍV. Fig. 6'Y,    j…† lk

^(0.10-0.18 m/s)'Y0 ¢– ¢ ê j bi-modal µ¶

ùV  v\] k^(0.27-0.31 m/s),- >

TÂY ¢ – 0 cGij -”•¢ ê• tu Gh 

¤7j /V. å, ‹'Y j…†k^•(GS) « ¢ – ¢' žº0 Mh Fig. 7' ¤7ÍV.  Wø'Y   /ú

GS vû' §I ‹7' þb\0 ¢ – ¢0 gg G

»› –  h 2  /V. 0 GS v' §I A v

 )*+,- ¢ ½ pq,- o  /V[9]. £

Ë,  k^'Y0 'YùV ¢ – ›  /,a W ¢•   /5 ùV )*+[ e>h o  /h EF GHI, 'Y …† •(ut) 7- | T5 /0 e> h W ,- vwz  /5 …† – £ ”•

c …† p' ( )*+,- + o  /V \ V.

¢ ;<  k^ ŽdŽÇ Û"' ’ ’- c Ta, N κ JK\  Y0 ¢;<' B "ù è ùT5 V. §IY, ¢;<* cd«£ ‹K •\  

\], ¨ CD Ÿ°Ì 'Y ¢ •£ ±á WÀj â

• £   WÀj jk^• ‹‹K$,- $ (6)-(8)* Ë ¸¸ ¤!  /ÍV. $ (6)-(8) ‹K0 ¸¸

0.942, 0.932 WÀj 0.931ÍV.

UB= 3.716UG0.260UL0.465GS−0.095 (7)

LV= 5.552"10−3UG0.379U−1.710L GS−0.211 (8)

FB= 963.151UG0.517UL2.614GS0.016 (9)

Fig. 4. Effects of UL on the bubble rising velocity(UB), chord length(LV) and frequency(FB) in three-phase circulating fluidized beds.

Fig. 5. Effects of GS on the bubble rising velocity(UB), chord length(LV) and frequency(FB) in three-phase circulating fluidized beds.

Fig. 6. Probability density of bubble chord length in circulating fluid- ized beds.

(5)

4.  

 k^'Y ¡[  * j k^• WÀ j C[  «' §¬ ‹ 7‡'Y ¢;

<' B\] j­\®V. > 4ÔÕÖ#h  \]  Û*, Và

* Ë ’ Û$h %h  /ÍV.

(1)  k^'Y  v0 ‹'Y ¢ 

•£ ±á WÀj â• üÜ v UV.

(2) ‹'Y  vû' §I ¢ •£ â•

0 v\®j ¢ – 0 `\0 —Mh ¤7ÍV.

(3) ‹' …T0 j k^• vû' §I ‹'Y ¢ •£ –  `\j ¢ â•0 v\0 —Mh

¤7 ÍV.

(4)  k^ ‹' þb\0 ¢ – ¢0 ¢–

  ”•û-&  ¤!  /Í,a, lk^* l'\]

k^› —( ( »› ¢ – ¢ ¤7ÍV.

(5) ¢ •, ±á WÀj â•0 ¸¸ Ÿ°«' B

 Và* Ë ‹$,- ¤!  /ÍV.

UB= 3.716U0.260G UL0.465GS−0.095 LV= 5.552"103UG0.379UL1.710GS0.211 FB= 963.151UG0.517UL2.614GS0.016



dp : particle diameter [mm]

FB : bubble generating frequency [s−1] GS : solid circulating rate [kgm−2s−1] LV : bubble chord length [m]

LVi : individual bubble chord length [m]

t : time [s]

Ub : bubble rising velocity [ms−1]

Ubi : individual bubble rising velocity [ms−1] UG : superficial gas velocity [ms−1] UL : superficial liquid velocity [ms−1]

 

ρp : particle density [kg/m3]



1. Kang, Y., Woo, K. J., Ko, M. H. and Kim, S. D.: Chem. Eng. Sci., 52, 3723(1997).

2. Kang, Y., Woo, K. J., Ko, M. H. and Kim, S. D.: HWAHAK KONG- HAK, 34, 429(1995).

3. Kim, S. D. and Kang, Y.: Chem. Eng. Sci., 52, 3639(1997).

4. Matsuura, A. and Fan, L. S.: AIChE J., 30, 894(1984).

5. Kang, Y., Woo, K. J., Ko, M. H., Cho, Y. J. and Kim, S. D.: Korean J. Chem. Eng., 16, 784(1999).

6. Shejieo, H., Jian, Z., Yong, J., Kai, C. L., Zhanwen, W.: Chem. Eng.

J., 70, 9(1998).

7. Liang, W., Wu, Q., Yu, Z., Jin, Y. and Wang, Z.: Can. J. Chem. Eng.

73, 656(1995).

8. Liang, W. G., Wu, Q. W., Yu, Z. Q., Jin, Y. and Bi, H. T.: AIChE J., 41, 267(1995).

9. Kim, S. H., Cho, Y. J., Song, P. S., Kang, Y. and Kim, S. D.: HWA- HAK KONGHAK, 37, 916(1999).

10. Cho, Y. J., Song, P. S., Kim, S. H., Kang, Y. and Kim, S. D.: J. Chem.

Eng. Japan, in press(2000).

11. Wang, T., Lin, Z. T., Zhu, C. M., Liu, D. C. and Saxena, S. C.: AIChE J., 39, 1406(1993).

12. Kang, Y., Cho, Y. J., Woo, K. J., Kim, K. I. and Kim, S. D.: Chem.

Eng. Sci., 55, 411(2000).

13. Kwon, H. Y., Kang, Y., Kim, S. D., Yashima, M. and Fan, L. T.: Ind.

Eng. Chem. Res., 33, 1852(1994).

14. Yu, H. Y. and Kim, S. D.: Chem. Eng. Sci., 46, 313(1991).

Fig. 7. Probability density of bubble chord length in circulating fluid- ized beds.

참조

관련 문서

본 실험에 앞서 bubble drift velocity에 대한 이론식은 dispersed bubble flow 영역에서 모 델화 하였기 때문에 먼저 육안관찰을 통하여 액체, 기체의 유속에 따라 분산된

또한 회수된 동분말은 FT-IR과 XRD(X-ray deflection)에 의해 분 석하였으며 그 형상은 Scanning electron micrograph로 분석하였다... Theories

The gas holdup has been obtained from the pressure drop profiles by means of static pressure drop method, and the axial dispersion coefficient of liquid phase and

Pressure drop, standard deviation of pressure drop fluctuations and solid conveying rate were measured to determine the critical velocity.. Critical velocity increased

The transition velocity from bub- bling to fast fluidization was determined by means of emptying time method in the high temperature circulating fluidized bed (0.02 m i.d..

In this study, both the numerical and experimental analyses on the absorption process of bubble mode absorber were performed.. Gas was injected into the bottom of absorber

BGL : British Gas Lurgi, CFB : Circulating Fluidized Bed, LR : Lurgi Residue MSW : Municipal Solid

phenotype relationship of this gene as well as efficient molecular testing strategy in the clinic in many populations and to make things more complicated in Koreans, the