• 검색 결과가 없습니다.

Rear-Projection CRT Deflection Circuit System

N/A
N/A
Protected

Academic year: 2022

Share "Rear-Projection CRT Deflection Circuit System"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Rear-Projection CRT Deflection Circuit System

Ming-Tsung Ho, Chi-Neng Mo, Chia-Jin Lin, Chia-Lin Liu Central Research Institute, Chunghwa Picture Tubes, Ltd.

1127, Hopin Rd., Padeh City, Taoyuan, Taiwan, 334

E-mail: hemt@cptt.com.tw Tel. +886-3-3675151 Fax. +886-3-3773159 Chang-Jung Juan

Electronic Engineering, Hwa-Hsia Institute of Technology Ming-Jong Tsai

Institute of Automation and Control, National Taiwan University of Science and Technology

Abstract

Discussion of this study is that a horizontal deflection system satisfactory of operating at horizontal scan rates from 30KHz to 50KHz has been developed. It will be used in the large-area, color, high-resolution and multi-sync rear-projection CRT display device. Its characters, including the description, analysis and deflection circuit loss, are presented.

Keywords

:

Projection, CRT, Deflection, multi-sync, loss

Introduction

The projection CRT (cathode ray tube) technologies are based on relatively mature electron beam scanning techniques. Compared with the micro-display devices, projection CRT technology dominates the electronic projection display’s market at the present [1].

A high performance horizontal deflection system requires satisfying the range of possible HDTV video sources. There are also existing display devices operating at fixed scan rates, e.g. Sony’s DDM 2801 [2]. In 1992, A multi-standard digital convergence and focus system has been developed for both rear and front projection TV, demonstrating high picture quality and different picture zoom modes [3].

As video recorders and video displayers have become popular, the users of video products for entertainment

require more beautiful and powerful large screen pictures for a home theater.

The objective of this work is to present the design solutions in the development of the variable frequency horizontal deflection system and the deflection circuit loss of this deflection system.

Horizontal Deflection Desctiption

A basic deflection circuit is shown in Fig. 1. Its equivalent circuit is shown in Fig. 2.

Q314 D317

Vcc

C PMS 2KV

Ly

Deflection yoke

Fig. 1 Basic Horizontal Deflection Circuit

C PMS 2KV ST

Vcc SD

Ly

Deflection yoke

Fig. 2 Equivalent Horizontal Deflection Circuit The operation waveform of Fig. 2 is shown in Fig. 3.

Fig. 3(a) is the base input voltage waveform of Q314. Fig.

3(b) is the current waveform of ST. Fig. 3(c) is the current waveform of SD. Fig. 3(d) is the current waveform (

I

Ly) of Ly (Ly is deflection yoke). Fig. 3(e) is the voltage waveform of ST. The operation steps are discussed as follows: (1)

(2)

t1~t2: ST close, SD open, and the current of Ly is increasing.

(2) t2~t3: ST open, SD open, and C is charged by the storage current of Ly. The voltage of ST will rise to the peak value (VCP). (3) t3~t4: ST open, SD open, and C will discharge its storage current and charge for Ly. (4) t4~t5: ST open, SD close, and Ly will discharge its storage current to zero.

t1 t2

t3

t4 t5

0

0 0

0

0 V cc

(a) (b) (c) (d) (e)

V

CP

PF

PR

i i

t r t s

t6

Fig. 3 Operation Waveforms of Basic Horizontal Deflection Circuit

The forward peak current of ST (

i

PF) is:

i

PF VL

t

s

y CC

=

2 . The peak voltage of ST (

V

CP ) can be expressed as:

CC PF y r

CP

f L i V

V = 2 π +

, where r LC

f =

12π y . The backward current of ST (

i

PR) is equal to

i

PF. The current of Ly is assigned to be

i

PP, where

i

PP

= i

PF

+ i

PR. The retrace time is

t

r ,

fr

t

r

=

12 . More specifically,

r H

s

t t

t = −

,

t

H is total horizontal deflection period. The equation for peak voltage (

V

CP) can be written as

 

 

   +

 

 −

= 1 1

2

r

H CC

CP

t

V t

V π

. (a1)

The development of the variable frequency horizontal deflection system accommodates diverse video timings by adjusting the width and the retrace time [4].

Deflection Circuit Power Lose

There several kinds of deflection circuit power losses are discussed as below. In scan stage, the deflection circuit power lose includes the deflection yoke impendence lose and the transistor internal impendence lose. The deflection yoke impendence lose:

( )

H PP s y H

s PP

y

y

t

i t R t i t

R

P = ⋅ ⋅ = ⋅

3 12 2 /

2 2

(

2

)

12 1

PP y H

s y

y

L i

t t L R ⋅

=

. (a2)

The transistor internal impendence lose is:

( )

H s PP

s

s

t

i t r

P = ⋅ / 2 3

2

(

2

)

12 1

PP y H

s y

s

L i

t t L r ⋅

=

. (a3)

In blanking stage, the deflection circuit power lose includes the resonance lose and the falling time lose. The falling time is called cut-off time (

t

C0) of the transistor. The falling time power lose of the transistor is

0

P

C ,

2 0 2 2

0

96  

 

⋅ 

r C H

PP y

C

t

t t

i P π L

. (a4)

The resonance loss in blanking stage is

P

r,

(

Q

)

d

r

P e

P = 1 −

π/ , (a5)

Where

Q = 2 π f

r

L

y

/ R

y,

(

yPP Q

)

H

H PF y

d

f

e i f L

i L

P

= +

=

/2 2

2 2

2 1 1 2

1

π , and

f

H is horizontal deflection frequency [4].

Multi-Sync Deflection System Architecture

Fig. 4 shows the block diagram of the multi-sync horizontal deflection system. It is a resonant fly-back system producing a linear scan. The pattern generator provides variable RGB video signals and variable horizontal/ vertical syncs. The necessary analog control signals are obtained from microcontroller via an IIC digital interface. A dynamic B+ voltage (B+ voltage is the generally appellation as

(3)

mentioned

V

CC in Fig. 2.) is provided by modulator of the DC-to-DC circuit controlling the width of the scan. The deflection signal control circuit provides synchronization processing, horizontal and vertical synchronization with full auto-sync capability and very short settling times after mode changes [5]. The vertical output circuit is a vertical deflection booster. The horizontal output circuit is a standard horizontal deflection booster circuit. Different horizontal scan frequency generated by pattern generator will produce varied retrace time, and so the DC-to-DC circuit must be designed to maintaining the constant anode high voltage. The high voltage generator can produce and stabilize the anode high voltage. The video pre-amp is used to amplify the RGB video source, and the PCRT (Projection CRT) Driver is used to driving the projection picture tube.

Projection Picture Tube DY DY PCRT Driver

Microcontroller

Vertical output Horizontal

output

Anode High Voltage Generator Deflection

signal control Video pre-Amp ( RGB Interface )

DC-to-DC Pattern

Generator

R G B

H-sync V-sync

Fig. 4 Multi-sync deflection system block diagram

Multi-Sync Deflection Circuit Design and Experimental Result

Fig. 5 shows details of multi-sync deflection circuit design. The horizontal output circuit employs a dedicated power switch 1700V MOSFET driver IC, which part number is 2SC5588. This IC is still showing in Fig. 1 and Fig. 5, which reference number is Q314. The pincushion and keystone compensation is implemented by modulating the B+ voltage. The S-correction is provided by appropriate capacitors for controlling the yoke current. The three yokes (for red, green and blue sources) are paralleled and driven together by a power switch 1700V MOSFET driver IC. The

regulator of the DC-to-DC circuit is a boost converter operating from 30kHz to 50kHz. A photo of the horizontal deflection board, three projection picture tubes and their driver board are shown in Fig. 6. The experiment result of multi-sync deflection circuit is shown in Fig. 7. The designed multi-sync deflection circuit is tested from horizontal scan frequency 31kHz to 48kHz. Fig. 7 shows the current waveforms (

I

Ly) of deflection yoke current and the voltage waveforms (

V

CP) of power switch MOSFET driver IC.

Fig. 7(a) Horizontal scan frequency: 31.5kHz

Fig. 7(b) Horizontal scan frequency: 35kHz

(4)

Fig. 7(b) Horizontal scan frequency: 36kHz

Fig. 7(b) Horizontal scan frequency: 48kHz

Conclusions

In this paper, the multi-sync horizontal deflection system using in rear projection cathode ray tube device is introduced. This device is different from the fixed scan frequency horizontal deflection system. The advantage of the multi-sync horizontal deflection system includes the superior picture quality, low circuit power loses and more video sources compatible. This multi-sync horizontal deflection system incorporates four different retrace times (31kHz, 35kHz, 36kHz, 48kHz), and its resolution can rise to HDTV @1080i spec.

References

[1] F.J. Kahn, “Electronic Projection Displays,” SID Seminar Lecture Notes, VOL. I, pp. M-3/1-43 May 1992, Boston, MA.

[2] Y. Awata et al, “A Large-Screen High-Resolution

Trinitron Color Display Monitor for Computer Graphics Application,” SID Digest, PP.459-462, May 1986, San Diego, California.

[3] Buttar et al, “A High Performance Digital Convergence and Focus System for Projection TV,”

IEEE Transactions on Consumer Electronics, Vol. 38, No. 3, p734-740, Aug. 1992.

[4] Shi-Hui Ho,”128COLOR Theory and Design of Computer Display”, Chwa Ltd., 1996, pp.130-136.

[5] P. Rice et al, “Projection CRT Deflection System Operating at 130kHz,” SID 93 Digest, pp.323-327, 1993

Fig. 6 Photograph of the horizontal deflection

board, three projection picture tubes and their

driver board.

(5)

R741 270K R755

N.C

R408 330 1w

C705 33P SL

CS4

R724 10K 1/4w 1%

R762 2K7

R319 10K

SW703RIGHT

R341 33 1/2w

R705 4K7

R378 1 1/4w

R359 10K

C294 470P SL

BRIGHT Q505

KTC4370

R509 10K R157 10K 1/4w

Q704 C945 Q701

PH2369

R528 560 3w

R505 2K61 1/4w 1%

C205

0u01 OSDB

U501

TDA4856 21 18

16

10 20 19

11

9 22

14 17

15 13

23

2 3 7 6 5 4 8 12

1 24 25 26 27 28 29 30 31 32 VSMOD SCL

CLBL

VCC ASCOA SDA

EWDRV

XSEL VAGC

VSYNC HUNLOCF

HSYNC

VOUT1

VREF

XRAY BOP PGND BDRIV BIN BSENS HDRV VOUT2

HFLB VCAP SGND HPLL1 HBUF HREF HCAP HPLL2 HSMOD FCOUS

C317 3300P Z5V 500V

R733 100

VR301 22K HV. ADJ

#5(PC)

R711 750 1/4w 1%

R332 Jw

D704 1N4148

R507 100 1%

R401 3 2w

R754 4K7

D317 5VUZ52 +C162

100u 16V

R757 4K7

C520 0u01 +C153

470u 25V 105

+C707 2200u 10V

R203 2K2

B308

R275 1K

SW706NEXT

D508 UF4003 + C518 220u 25V

Q305 K2996

TP1

R333 1M R314 10K

D319 UF4006 6.3V(1A)퐑촴 꽈?

Q306 YTAF630

SW OSDB

R3074K7

R361 100 1%

C412 N.C

7V

R340 120 1w R524

10K R530 1 1w

R371 100

C521 100P SL

6.3V

R752 4K7

G1

14V

R728 2K7 1/4w 1%

D306 RL4A

7V

R748 4K7

R347 27 1/2w

C309 0u33 MEB

SW704UP D3021N4148

Q314 C5588

DF E S307FOCUS PACK

R207 100 HSCL

R710 N.C

C522 100P SL

C524 39P SL 14V

R414 3K3

R750 N.C

C404 0u22 MEB

D709 1N4148

GND

AD-DRIFT

CRFB

S305CR-BLOCK

2 3 4 7 8 6T3025

109 1

D308 1N4937

ZD7016C2

Q201 C5945 R525 0R27 3w

R7402K2

D707 N.C

TP2

R749 4K7

R706 N.C

R303 10K

OGLED101L-59GH

R763 220 1/4w

R502 100

R155 750 1/2w

R767 100

B302

C710220PY5P

D320 UF4006

Q319 YTAF640

C716 1000P Y5P

GND

C709220PY5P

+C351 47u 16V

SW701EXIT

+C155 470u 16V

C325 47P SL 2KV

B307

R726 4K7

BRIGHT

R380 1K 1/2w R339

5K6

Q320 KRC102M

D304 1N4148

ABL

+C311 1u 350V 105

C5050u1 MEB

R403 1 1w

Q324 C945 Q157

D882

D321UF4003

D312 1N4937

ABL

+C409 1u

D503 1N4148

SW707RESET R3754K7

T501 45uH

1 4

2 3

R416 330

R137 10K

C203 0u1 C332 6200P PMS 2KV

+C349 1000u 25V R154

10K 1/4w

R719 5K6 1/4w 1%

+

C160 220u 25V

R344 10K

L501 8mH

14

23

112 P303

R717 N.C

Q323 BF423

+C502 10u

+C501 100u 16V

R513 1K

+ C515 220u 100V 105

OSDG D323UF4003

R410 3K

R304100K

R742 15M 1/4w 1%

D505 RL4A

D322UF4003

R526 2K2

1%

R734 4K7

R725 750 1/4w 1%

C706100PSL ZD7026C2

OSDR Q502

C945

R756 10K

C306 0u022 MEB

AT24C08B U702

1 2 3 4 5 6 7 8

E0 E1 E2 GND SDA SCL WP VCC

5V(PC)

B205

+C347 10u

SW705DOWN

Q325 BF422 R367 15K

R751 10K

R158 750 1/2w

R325 820 -14V

R736 2K2

B306

C345 0u01 R404

2R2 1/4w

R701 4K7

R531 100

R342 10K

C346N.C

Q317 YTAF630

18

P301

Q156 KRC102M

R702 4K7

R311 10K

R413 4K7

R407 1R2 1w

R164 1 1/2w

+ C526 220u 25V

R3691K2 C516

470P Y5P

V5V

R532 47K 1/4w 1%

Q504 YTAF640

R760 3K9

C718 0u1 Y5V

R210 100

R723 100

ZD102 18-2

CS1

CS0 C307 100P SL

R208 100 Q501

C945

D3031N4148

7V

R376 10K

C507 0u082 MEB +

C527 220u 16V

C512 0u01 MEB

R758 33K R759 270K

C202 0u01 PEI C503

39P SL

C207 0u01 R153

220K

1/2w U301TL49411612152314341345125611671078989

10

11

12

13

14

15

16

JP2

~

1

2

4

3 6

HV FOC 1

FOC 2

G2

8

5

10 7 -HV

-DF

-E -C T301

FBT C305680PY5P

D706 N.C 5V

S302 DY-B

R744 4K7 C508 0u01 PPN

C301+ 47u 16V Q304 C945

U202

MTV030N 1 2 3 4 5 6 7

8 9

10 11 12 13 14 15 VSSA 16 VCO RP VDDA HFLB SSB SDA SCLVDD

VFLB HTONE FBKG BOUT GOUT ROUT VSS

R335 100 1w C402

1000P MEB

S303 DY-G

R310 22

+C703 100u 16V

+C120 470u 100V

R704 100

VR501 22K H. Center

6.3V

CS4 R3061K

C331 0u1 PMD 250V

R317 5K1

C719 0u01

R338 10K 1/4w 1%

D318 1N4148 6.3V(1A)퐑촴 꽈?

R166 0R5 2w

R732 100

+ C163 47u 250V

R201 5K6 +C158

470u 25V

+ C316 47u 16V

R365 1M +C302

100u 16V

R735 470

D507 1N4148

D510 1N4937

C523 39P SL

R271 10K

Q312 KSP44

R716 4K7

+

C344 4u7 250V

R534 1K

R316 71K5 1/6w 1%

R148 1K6 1/4w

R527 10K

HS C338

1u5 MPP 250V

17S701

14V

R707 1M 1/4w

R747 4K7

C326 0u01

C352 2u2 NP R165

1K 1/2w

Q155 Bead

CS[0..2]

C410 0u1 MEB 250V

R415 100K

C322 680P Y5P +C403

470u 16V

C406 2200P MEB

R3051K

S304 DY-R

OSDR

CS2

R412 10K

R727 N.C

ZD151 6B2

R418 330

C405 3300P MEB

R202 1M

D311 1N4148

R753 15K

VR302 22K ABL. ADJ

R315 10 1w

H

X701 12M 49u

C324 N.C Q310KTC4370D1763 D509

RG2Z

R318 100K

D361 UF4003

Q703 A733

B304

AD-DRIFT D3411N4148

+ C312 47u 50V

R370 24K

R270 4K7

R737 4K7

FBKG ISCL

R156 10K 1/4w

R512 15K

R312 1K

F.S

+ C206 47u 16V V5V

R523 22

R515 22K

R204 5K6 D305 RK36

R713 10K

D362 1N4937

B206 R343

22 80V

R516 47K

R368 47K Q152

KRC102M

OSDG +C401

470u 16V

+

C154 470u 16V 105

R517 5K1 1/4w

C323 1u MEB

R321 10K 1/2w

C407 1000P Y5P L152

14uH

R409 6K8

R313 510

U701

MTV212MN32 25 24 23 16

40 39 38

18 33 32 31 30 37 36 35 34

29 28 27 26

17 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20 19

21 22 HSCL HSDA ADO CS1

V-IN H-IN BRIGHT

CS3 H-OUT V-OUT TL DEG SW ROT MUTE TR

PS1 PS2 CG-H CG-V CS2 OPTION DEFL-IN MUTE1 X/YRAY-IN RESET VDD VSS X2 X1 ISDA ISCL CS0 AD-DRIFT MEAN-IN HVOLT-IN

PC97 CS4

#5(PC) ADI

R520 4K7 1/6w

-+ +-

U302 LM358

3

27

8 4

1 56

R533 17K4 1/4w 1%

R761 4K7

T304 EI-19 6mH

3 4

1 6

2 180V

R336 13K 1/4w 1%

B303

C348 1000P MEB 100V

C514 1000P MEB

C510 0u01 MEB

+ C310 1u

C517 0u47 MPP 250V

R745 2M2

R7642K2

+ C519 100u 16V

R743 2M2

+

C411 100u 35V

R503 22K

R230 100

D3131N4148

D307 UF4005

R362 4K7

C511 680P Y5P

CS1

CS2 14V

R508 100

R731 4K7

R518 2K2

D401 1N4937

C720 0u01

C504 0u15 MEB

D504 1N4148

R506 7251/4w1%

R514 10K C702

0u1 Y5V

CS0 ZD7046C2

R353 4K7

D363 1N4937 Q151

Bead

+C337 4u7 50V 180V

R301 0R33 1w

C303 680P Y5P

R350 5K49 1/4w 1%

ZD7036C2

C304 0u1 MEB

R373 68K R417

330

C336 0u47 MPP 250V

R209 1K

C204 0u01 80V(1.5A)퐑촴 꽈?

ABL

R703 100

D402 1N4148

B207

R250 100

R529 10K

Q313 YTAF630

VS + C320 220u 100V

R765 100K

U502 KA7812

1 3

2

I O

GND

D501 1N4148

VS

14V

Q301 KRC102M

D310 1N4148 D3011N4148

Q303 A733

R337 10 1w

6V3 +C161

47u 16V

D364 1N4148 Q153

D669

+C209 10u R519

10K ISDA

R729 N.C

R309 1K U401

TDA8177

1 723 456

IN VREF

+VSFLY -VSOUTVSP

R501 100

R406 3K

-14V

R372 150K

ZD714 5C2 R366 220K

C335 0u1 Y5V

C509 4700P MEB

R206 1K R138

680 1/4w

C408 0u015 MEB

+C3181u

H-BLK

HSDA R126 4K7 1/6w

R738 10K

R161 1K 1/4w

R357 56K 1/4w 1%

CLP

R331 100K 2w

ZD707 6C2

Q318 KRC102M

R326 10K

Q401 BF422

R162 1K2 1/4w

R411 2K2 1%

Q302 C945

ZD7056C2 D150 1N5819

+C343 10u

D315 1SS244

R709 4K7

R356 2K2 1%

C701 0u01 PEI

Q309 BF423

+C350 1u

R377 100 1/2w

R360 100 1%

80V

R308 2K2 10 1

P302

S306HV.GND

R718 N.C

R715 2K7 1/4w 1%

R358 10K 1/4w 5%

R282 100

ZD7066C2 180V

+C159 22u 25V

R708 4K7

C506 8200P MEB

DF

V

C330 1000P MEB 100V C327

0u1 MEB R521 1K 1/4w

+C513 22u 50V

L301 14uH

Q702 C945

R746 4K7

Q105 C945

VR304 100K Brightness. ADJ C525

0u24 MPP 400V

R766 100

R348 1 3w

R349 103K 1/4w 1%

C717 0u1 Y5V

FBKG Q503

C945

R330 1K 1/2w

R722 4K7

R511 51K 1/4w1%

R721 100

R712 N.C

TC0

14V

R739 5K6 1/4w 1%

R405 6K8

R522 68K

+C321 47u 16V

5V

R355 10K

C704 33P SL

C314 2u2 NP

Q326 C945 80V(1.5A)퐑촴 꽈?

HS

R504 2K2

R320 1K 1/2w

R510 10K

D119

1N4148 5T3033

1 4

R720 N.C

C308 1500P PMS 1KV

R322 10K

R730 4K7

R379 2M2 R352

10K

SG301N.C

SW702LEFT

R334 10K

R37410K

B301 R302

1K

D502 1N4148

80V

Fig. 5 Circuit diagram of multi-sync horizontal deflection circuit design

참조

관련 문서

Based on the general circuit model of multi-winding coupled inductor together with the operating principles of dc-dc converter, the relationship between the

Note 3: Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached

Manual Handle Interrupt AI-Nano Contouring Control Data Server.

  The differential equations which the voltage or current must satisfy on a uniform transmission line..  Circuit model: tie field theory and circuit

Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor concepts.. Be able to analyze circuits containing linear transformers

Connect the test leads to the circuit to be measured, the range will change automatically to the level that will display the input voltage with the best resolution.. The

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

A bidirectional DC-DC converter using the planar transformer has advantages of high efficiency, simple circuit, and lightweight.. The operating principle,