• 검색 결과가 없습니다.

¶  ¥ Œ £ ?8 ý ] k ùV R Ë õ m Í ° ‚ ÇX ì Ä — ¤V R Ë

N/A
N/A
Protected

Academic year: 2021

Share "¶  ¥ Œ £ ?8 ý ] k ùV R Ë õ m Í ° ‚ ÇX ì Ä — ¤V R Ë"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Mechanical Alloying ; c 8 ý” X ¢ R X N Ëù m Ç Ti

40

Cu

40

Ni

10

Co

10

¶  ¥ Œ £ ?8 ý ] k ùV R Ë õ m Í ° ‚ ÇX ì Ä — ¤V R Ë

™»g`@¦

›

¸‚@<Ɠ§ Óüto§¹¢¤õ, F gÅÒ 501-759 (2008¸ 9Z4 29{9 ~ÃÎ6£§)

l

>&h ½+ËFKo\ _K q&ñ|9 Ti40Cu40Ni10Co10 ìr´ú˜`¦ ½+Ë$í #Œ \P&h :£¤$í 1px`¦ ›¸ %i.

40rߖ x9aA Êê\H( —¸€ªœ`¦  q&ñ|9 4Ÿxĺo 2θ = 42.8ÂÒH\"f +þA$í÷&%3¼ 9, &ñwn ß

¼lH €• 2.0 nms%3. „^‰&h x9a&ñ“Ér x9aArߖ (tm)Z>Ð 3éߖ>Ð üt ú e”%3¼ 9, é#Q o

o éߖ> (0 < tm≤ 3 h), Ôæõ éߖ> (3 h < tm≤ 20 h),Õªo¦ çH{9o éߖ> (20 h ≤ tm≤ 40 h)s



. þj@/ µ1Ï\P 4Ÿxĺo:r•¸ Tp1, Tp2,Õªo¦ &ño rŒ•“:r•¸ Tx1, Tx2H yŒ•yŒ• 470.4C, 555.3C, Õ

ªo¦ 446.2Cü< 510.9Cs%3¼ 9, ÅÒ x¼“ Tp1\ @Ç µ1Ï\P\-tH€• -9.5 mJ/mgs%3. 

\P

5Åq•¸_ 7£x\ "H Tpü< TxH—¸¿º 7£x<Ê`¦·ú˜ ú e”%3¼ 9, :£¤y \P5Åq•¸ 40C/min\

"

HÄ»os:r•¸ (Tg) +þA$íH†d`¦ ^¦Ãº e”%3¦, Õª °úכ“Ér€• 391.9Cs%3. ¢¸ôÇ Kissinger ~½ÓZO¼

–

Ð ½¨ôÇ &ño\ €9¹ôÇ Ö¸$ío\-tH 40rߖ x9aA_ âĺ Tp1õ Tp2\"f yŒ•yŒ• 227.7 kJ/molõ 282.4 kJ/mole”`¦·ú˜ ú e”%3.

PACS numbers: 81.20.E

Keywords:l>&h ½+ËFKo, Ti-Cu-Ni-Co,Ö¸$ío\-t

I. "e Â]Ø

í

HúôÇ &ñ ìr´ú˜`¦ "é H›¸$íõ ¸ ß¼l_ &ñ x9

q&ñ|9 FK5Åq½+ËFKܼ–Ð ½+Ë$í H DÐîr lüts l>

&

h ½+ËFK (Mechanical Alloying, MA) [1–5] ~½ÓZOs.

MAH 6 xl  "f "éd”4s FK5År´ú˜[þtõ ^¦[þt

\

 Œ•6 x #Œ #¼ &ñ•¸t s[þt`¦ =åJ#Q `¦o¦, ×æ§4_



Œ

•6 xܼ–Ð 6 xl{Œ•Ü¼–Ð s[þts b# 6£§, ìr´ú˜[þts Ø

æ[t H ^¦[þt\ _K 8£x—¸€ªœ_ {9[þt–Ð +þA$í÷¦ [6],

>

5Åq<Ê\  {9[þts [r"f q&ñ|9o

)

a. "f MAH /å‰tZO 1px_ ~½ÓZO¼–Ð ½+Ë$í l #Q

§>

 Ô¦0pxôÇ ›¸$ít FK5Åq½+ËFKçߖ < ʓÉr FK5Åq-qFK 5

Å

q 4Ÿ¤½+ËÓüt[þt_ ½+Ë$ís 0px½+É ÷rëߖ m, q&ñ|9 ìr´ú˜

–

Рĺo €9¹–Ð H —¸€ªœÜ¼–Ð $í+þA]Œ•õ @/|¾ÓÒqߖ s

 0px l MH\ ´ú§“Érƒ¨[þts :£¤Z>Ǜ'ad”`¦°ú

“

¦ e”. MAH Koch 1px [7]\ _K Ni60Nb40 FK5ÅqÄ»o _

 ]Œ•\ 6£x6 x÷&%3¼ 9, q&ñ|9\ ›'aôÇ \P%i<Æ&h õ&ñ

“

Ér Schwarz 1px [8]\ _K ƒ¨÷&%3.

‘

:r 7Ér ^¦õ †<Êa  H 6 xl?/\"f Ti40Cu40Ni10Co10 +þAd”_ ›¸$íܼ–Ð q&ñ|9 ½+ËFK`¦ ]

Œ• #Œ, tm\ Ér q&ñ|9o õ&ñ`¦ X-‚ r]X ©œu

E-mail: hgakim@chosun.ac.kr

(X-ray diffractometer, XRD)\¦ s6 xK ›¸ %i¦, {9



_ ³ð€ ©œI_ ›'a¹1ϓÉrÅÒ+þA „&³pâ (Scanning Electron Microscope, SEM), \P&h :£¤$í“Ér r Ò \P

|

¾Ó ìr$3l (Differential Scanning Calorimetry, DSC), {9



_ p ½¨›¸ ›'a¹1ϓÉr TEM (Transmission Electron Microscope), Õªo¦ tm\ Ér rÑ_ "é 0lx•¸H EDS (Energy Dispersive X-ray Spectrometry)z´+«¼–Ð 8

£¤&ñ %i.

II. ÷mÇ]MöUês0nÉ

Ti40Cu40Ni10Co10_ MAH Aldrich Chemical_ Ti, Cu, Niõ Co ìr´ú˜ (íH•¸ ≥ 99.9 %)`¦6 x #Œ "é(G'p à

Ô 40, 40, 10, x9 10_ ›¸$ís ÷¸2Ÿ¤ ™D¥½+Ë %i. ‘:r

ƒ

¨\ 6 )allHÛ¼J$™Y¼y©œÜ¼–Ð ]Œ•)aRetsch _

 "éd”4+þA ^¦x9 (centrifugal ball mills)s 9, 6 )a ^¦

“

Ér f”â 10 mm_ Û¼J$™Y¼y©œ`¦ s6 x %i. MAH ^¦ õ

 rÑìr´ú˜_ Áº> q\¦ 15 : 1–Ð ›¸$í %i¦, ^¦õ r

«

Ñ_ Øæ[t–Ð “Ç \P_ µ1ÏÒqt`¦~½Ót ¦ ½+ËFK_ +þA$í`¦

†¾

Ó©œrvl 0AK 10ìrçߖ_ x9a 10ìrçߖ &ñt H ~½Ó ZO

`¦ ÷¦s %i. 5Åq•¸H 250 rpm, tm“Ér 1, 2, 3, 5, 7, 10, 20, 40,Õªo¦ 60rߖܼ–Ð yŒ•yŒ• z´+«> %i¼ 9, -427-

(2)

Fig. 1. X-ray patterns of Ti40Cu40Ni10Co10 powder as a function of milling time.

ì

r´ú˜[þt_ ½+ËFKo ©œI\¦›¸ l 0AK XRD ìr$3`¦ 

%

i. ¢¸ôÇ rÑ ìr´ú˜\ @Ç \P&h $í|9`¦ 8£¤&ñ l 0A K

 \P5Åq•¸ (Heating Rate, HR)\¦ 10, 20, 30,Õªo¦ 40

C/min–Ð #Œ DSC z´+«>`¦ %i¼ 9, $íìr ìr$3 p [

j ½¨›¸ ìr$3`¦0AK EDXü< TEM`¦ yŒ•yŒ• s6 x %i.

s

< °ú “Ér ìr$3`¦ 0AK yŒ• tm Ar ìr0Al\"f pè

|

¾Óm” rÑ\¦G2[ %i¦, ìr´ú˜_ íߖo\¦~½Ót l 0A 

#

Œ 6 xl ?ҍH Ar ìr0AlÐ Ä»t %i.

III. +sÇÊÝ õmÍ ÀXØ8ý

Fig. 1“Ér Ti40Cu40Ni10Co10ìr´ú˜_ tm\ Ér X-‚ r ]X

 —¸€ªœ`¦ ?¦ e”. tms 10rߖtHyŒ• "é™è[þt _

 r]Xy©œ•¸ &h  yŒ™™è %i¼ 9, r]X_ ;Ÿ¤“Ér€•çߖ m”

 7£x<Ê`¦ ·ú˜ ú e”%3. 40rߖ x9aÇ Êê\H 2θ = 42.8 ÂÒH\"f q&ñ|9©œÜ¼–Ð ˜ÐsH( 4Ÿxĺo +þA

$í

H†d`¦ ^¦Ãº e”%3¼ 9, 42.8 ÂÒH_ ( 4ŸxĺoHŒ•

“ É

r yŒ• Aá¤Ü¼–Ð pè > s1lx÷&%36£§`¦ ^¦ ú e”%3. s ü

< °ú “Érr]X_ ;Ÿ¤s 7£x Hכ “Ér ^¦õ ìr´ú˜_ Øæ Ü

¼–Ð “K 100 nm s _ &ñwn_ po x9 ìr´ú˜{9

?

Ò_ Ô¦çH{9Ç +þA\ _Ç כ ܼ–Ð ÒqtyŒ•÷& 9, 40rߖ x9

aÇ Êê 2θ_ p[Ç s1lx‰&³©œ“Ér ^¦õ 6 xl_ Øæ[t–Ð

“

K Fe_ Òqt$í\ _Ç ©œÃº_ o M כ ܼ–Ð Òq

tyŒ•÷&#Q ”.

Fig. H ^¦ x9aÇ Ti40Cu40Ni10Co10ìr´ú˜\ @Ç SEM_ ›'a8£¤ \¦ tm\   ·p ÕªaË>s. x9aA õ

&ñ“Ér 3rߖt x9aþ¡`¦âĺ ¨îçH€• 203 µm_ é#Q o

Ð Óüæ5 כ `¦ ^¦ ú e”%3¼ 9 ( é#Qoo éߖ>), 3r ç

ߖ Êê\H&h  &#Q 20rߖ x9aþ¡`¦âĺ\H€• 22 µm &ñ•¸_ ß¼lt ©œ{©œy çH{9 > &%36£§`¦

Fig. 2. SEM micrographs for Ti40Cu40Ni10Co10powder with milling time: (a) 1 h, (b) 3 h, (c) 5 h, (d) 10 h, (e) 20 h, and (f) 40 h.

Fig. 3. The grain size of Ti40Cu40Ni10Co10 powder by MA as a function of the milling time.

· ú

˜ ú e”%3. "f „^‰&h x9a&ñ`¦[roK ˜Ð

€

 3rߖt_ é#Qoo éߖ> (0 < tm ≤ 3 h), 3rߖ õ

 20rߖ_ Ôæõ éߖ> (3 h < tm ≤ 20 h),Õªo¦ 20r ç

ߖ s Êê_ çH{9o éߖ> (20 h ≤ tm ≤ 40 h)–Ð üt ú e”

6£§`¦ ·ú˜ ú e”%3 (Fig. 3). SEMܼ–Ð ‘:r x9a&ñ

“

Ér 20rߖ ÊêÂÒ' q&ñ|9©œs +þA$í÷&#QH XRD_  õ

¸ _ {9uH†d`¦·ú˜ ú e”%3.

Fig. 4H\P5Åq•¸\¦ 40C/minܼ–Ð 8£¤&ñÙþ¡`¦âĺ 



Ér tm\ @Ç q&ñ|9 ìr´ú˜ rÑ_ DSC/Bs. tms 20rߖtHÅÒ µ1Ï\P x¼[þts ±ú“Ér “:r•¸ Aá¤Ü¼–Ð s1lx

H‰&³©œ`¦ ^¦Ãº e”%3¼ 9, 20rߖ s Êê\H tms 7£x

<Ê\  ZÉr “:r•¸ Aá¤Ü¼–Ð s1lx "f µ1Ï\P x¼ _

 —¸€ªœs &h  ¶ðAá¤KtH ‰&³©œ`¦ ^¦ ú e”%3. sכ

“

Ér 20rߖ x9aA Êê\H tms 7£x<Ê\  ˜Ð îߖ&ñ

)

a q&ñ|9+ËFKs +þA$í÷&#Q Hכ ܼ–Ð ÒqtyŒ•÷&#Q ”.

tms 40rߖ\"f_ Tp1, Tp2H 470.4Cü< 555.3C, Tx1, Tx2H 446.2Cü< 510.9Cs%3¼ 9, Tp1\ @Ç µ1Ï\P\



-tH -9.5 mJ/mgs%3.

(3)

Fig. 4. The variation of DSC curves with milling time for Ti40Cu40Ni10Co10 powder.

Fig. 5. The variation of DSC curves with heating rate of Ti40Cu40Ni10Co10 powder for milling of 40 hours.

Fig. 5H\P%ƒo t ·ú§“Érq&ñ|9 FK5Åq½+ËFK`¦ 40rߖ x9

aÇ Êê HR`¦ 10, 20, 30,Õªo¦ 40C/min–Ð 8£¤&ñÙþ¡

`

¦M:  ߖ r Ò\P|¾Óìr$3 /Bs. HRs 10, 20, 30, Õªo¦ 40 C/min{9 M: Tp1“Ér 444.6, 455.7, 463.6, Õ

ªo¦ 470.4C/min, Tp2H 530.7, 539.6, 550.8,Õªo¦ 555.3 C/mins%3¼ 9, Tx1“Ér 423.1, 432.4, 437.7,Õªo

“

¦ 446.2C/min, Tx2H 477.7, 489.8, 503.9,Õªo¦ 510.9

C/min–Ð"f HRs 7£x<Ê\  Tpü< Tx[þts —¸¿º 7£x

<Ê`¦·ú˜ ú e”%3¼ 9, :£¤y HRs 40C/min\"H€• 391.9C ÂÒH\"f Tg +þA$íH†d`¦ ^¦ ú e”%3. q&ñ|9 F

K5Åq½+ËFÉr \P&h¼–Ð Ô¦îߖ&ñ l MH\ 7᧠8 ½©gË:&h

“

 &ñ|9Ð +É M: \-t €9¹ >)a. sÇ



&ño sÒ#QtHX< €9¹ôǁָ$ío\-t\¦%3l 0A

Fig. 6. Kissinger plots of ln(Q/T2p) vs. 1/Tp of Ti40Cu40Ni10Co10powder.

Fig. 7. Composition (at.%) of Ti40Cu40Ni10Co10powder as a function of milling time.

#Œ Kissinger ~½ÓZO [9]`¦s6 x %i.

d[ln(Q/Tp2)]/d(1/Tp) = −E/R

#

Œl"f TpH þj@/ µ1Ï\P 4Ÿxĺo:r•¸, QH \P5Åq•¸ (C/min), R“Ér l^‰©œÃº, Õªo¦ EH Ö¸$ío\-ts



. 0A_ d”¼–ÐÂÒ' ln(Q/T2p)@/ 1/Tp_ ÕªaË>\"f f” _

 l¦l (Fig. 6)\¦s6 x #Œ Ö¸$ío\-t\¦ >ߖ 

%

i. Kissinger_ ~½ÓZOÉr\P5Åq•¸ü< Tpü<_›'a>Ð yŒ• r

Ñ\ @Ç DSCz´+«> _ K$3\"f ©œ {9øÍ&h

~

½ÓZO¼–Ð 6 x÷&l MH\ ‘:r ƒ¨\"¸ s ~½ÓZO`¦×þ˜

%i. MT 40rߖ“ âĺ Kissinger_ ~½ÓZO¼–Ð ½¨ôÇ q

&ñ|9 ìr´ú˜rÑ_Ö¸$ío\-tH Tp1õ Tp2\"f yŒ•yŒ• 227.7 kJ/molõ 282.4 kJ/mol`¦ ?/%3.

수치

Fig. 2. SEM micrographs for Ti 40 Cu 40 Ni 10 Co 10 powder with milling time: (a) 1 h, (b) 3 h, (c) 5 h, (d) 10 h, (e) 20 h, and (f) 40 h.
Fig. 6. Kissinger plots of ln(Q/T 2 p ) vs. 1/T p of Ti 40 Cu 40 Ni 10 Co 10 powder.
Fig. 8. TEM images of bright-field and dark-field images and the corresponding diffraction pattern for as-milled powder

참조

관련 문서

The surface of untreated Ti, SLA treated Ti, and AA plasma polymerized SLA/Ti were also examined for their proliferation and differentiation of

Surface morphology and chemical composition of samples were characterized by field emission scanning electron microscopy (FE-SEM), contact angle measurement and

50 simulated resin blocks with J-shaped curvature canals were instrumented by ProTaper (Dentsply Maillefer, Ballagiues, Switzerland) Ni-Ti files using the

In the second case, regional maritime safety tribunal will play the role as the 1st instance for the most ordinary marine accidents and central maritime safety tribunal may be

해외 원자력 인력양성 교육의 시사점... 원전 전문인력

The structure and film optical properties were investigated by X-ray diffraction(XRD), the particle size and thickness were investigated by scanning

Superior tensile properties were obtained, and heat treatment time could be shortened by the austenitizing treatment at A C1 +30∼40℃ followed by

Radial distribution functions (and also X-ray) of amorphous silicon and model Si with ~ 2 nm crystalline grains are essentially the same - medium range order difficult to