• 검색 결과가 없습니다.

AOT   BSA -

N/A
N/A
Protected

Academic year: 2022

Share "AOT   BSA - "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

AOT

    



   , 

(2001 9 7 , 2001 12 11 )

Liquid-liquid Extraction of BSA Using AOT Reverse Micelles:

Effects of pH and Salts in Forward and Backward Transfer

Seon-Gyun Rho and Choon-Hyoung Kang

Department of Chemical Engineering, Polymer Science and Technology Research Center, Chonnam National University, Gwangju 500-757, Korea

(Received 7 September 2001; accepted 11 December 2001)

 

   BSA   AOT isooctane    , !"#

 $% & '( )*+. , -./& pH 01 23 4 567  89. :& ;<. =>*

+. 0.1 M1 KCl, NaCl, MgCl2?@A CaCl2 BC 1 : 1 0 DC 1 : 2 0 "#. E7 E7 01 23. FG pH=5-7 H./ IJ1  89 K*+. CaCl2 NaCl1 LM, 1 MNO& 01 567 P7Q. FG  89 6 P7*R MgCl21 LM.& S L< K*+. 01 567 TUR pH7 TC LM.& VWX YZ[\

"# ]^_1 . `ab& cC =>d ef+. 1 water-pool g^& h. J 1 ij

W0 k l*+. MgCl21 LM.& pHmn. o p W0=201 U1 q r K s CaCl2 KCl1 L M 0 567 P7Q. FG W0& tu*+. 1 LM.& vaw 1 xC pH xC 056./ IA1 

 89 K*+.

Abstract−By using the phase-transfer method, bovine serum albumin(BSA) was solubilized into a reverse micellar phase consisting of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and isooctane. In order to recover the solubilized protein, the laden organic phase was brought into contact with an excess aqueous phase under a prescribed condition. Of particular interest in this study were the effects of pH and the added salt type and concentration on the forward and backward extraction effi- ciency. When salt containing univalent or divalent cations such as KCl, NaCl, MgCl2, or CaCl2 were added to the aqueous phase at a concentration of 0.1 M, maximum forward extraction efficiency was achieved at a pH ranging from 5 to 7, depend- ing on the added salt type. Increasing the salt concentration up to 1 M led to an enhanced forward extraction efficiency for CaCl2 and NaCl, while the addition of MgCl2 beyond 0.1 M showed an anomalous trend. Further, it was noteworthy that to a large extent the protein precipitated in the interface between the organic and aqueous phases at lower pHs and lower salt con- centrations. The size of the reverse micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, W0. Independently of pH in the aqueous phase, the resulting value of W0 was almost constant, eg., 20 for MgCl2. How- ever, the value of W0 decreased with increase of the salt concentration in the cases of KCl and CaCl2. It was also shown that the backward extraction efficiency of the protein increased with pH and salt concentration in the excess aqueous phase. The higher the salt concentration in the excess aqueous phase, the smaller the value of W0 in the organic phase.

Key words: Solubilization, Reverse Micelle, AOT, BSA, Extraction

To whom correspondence should be addressed.

E-mail: chkang@chonnam.ac.kr

(2)

 40 2 2002 4

1.  

      

    !" #$ %&' () *+ & $ , $ -.!/. #0   1, 2, 3 pH  4

 56 78 9:; <=> 9%" ?%' @AB C D

 #E+ $FG .HI/. JKL MN OP Q+  H ?O0 HR OST U KV WXY Z[ \ 

 & $, )] ^_ `a bc' de f/. ) WX

& $, gh S)ijh, kSh, column liquid chromatography h [1, 2] Ql[ +m no `  `p/ Wq' rAR D/. s @ ^_ mV?%,t  + & $, gh  Hr ?O0 uvR D/[3-5]. #0 wxy'  + WX z{

  ?%' @A|}V ~ |€  ‚ ƒ W X' z{B C D/ „q' rAR D) no A… 10†‡ 

ˆ‰*!e Hr uvR D/[3-8].

wxy'  + z{$ H mV?%,r Š‹I @)

Y WX Š‹I C Œ € Ž + $z{Y @)

wxy  Š‹I WX' Y C ŒL z{! wz{$

L H%I Žh, mV?%,r Š‹I @) WX ‘ C Œ' ’ r :|“ #$%& ”' z{! •–h, — R @)

Y WX &˜' ’ Ž|} R™-Œ™ z{h  • š/.

•–h • WX &l › C Œ  ! WX' @ )L $z{|}) Tœ  ž Ÿ  ¡ 4 ƒ' z{

B C D/ Wq' rAR D/. R™-Œ™ z{h @)Y WX

 &˜ ’ Ž!) no WX ?%' ¢' C D Wq' rAR DL" £ % WX +$!† ž R D/. +¤, 

Žh ‚ ƒ WX' z{B C D/ „q K!† `¥ ¦ WX 8¡ $z{ FG §/¨/ Wq' rAR D/.

Œ-Œ z{ $ ž  ©U mV?%, AOT ©

U' ª «C% ¬ 6&Y ƒU' ª 2­ aC% ® 6&L

H%T D/. ¯+ mV?%, HF % !† «C%

¬ 6& C ŒY ° ± wxy' ²%!e I/. ³+

FG wxy ²%V aC% 6& ®  C ŒY KO

° ± @)L j!e I/. s ´ t  !† C Œ

µ¶D WX' @)L $z{B C De I/. @)L

z{I WX #E+ FGL F³I · Y C ŒY 

Ž|“ wz{!e I/.

C % WX R@ Sq' rAR DL" wxy'  +

Œ-Œ z{$ C Œ  pH, ¸ ¹º» — ;, mV?%

, HF» ;  r„ ¦ i¼' x«/R ½œ¾ ¿/[9-11]. —

¯ `¥ 4 WXY À &l  ¡ ¦ WX 8¡

 wxy'  + PÁ $z{ FG  ¡ §/ ÃÄe ž !A Å+ Æ$/. žÆ, &l ¦ WX 8¡ $Ç+ z { )Hr ÈÉA ÊR D Æ$Ÿ Æ, &l ¦ WX

8¡ wxy water pool ËN Ì)Í/ Î ¦ ÆÏÐY; ÍR

R D); !/[12].

'  !† `¥ ¦ WX BSA' z{B n z{ 9C pH, ¸

 ¹º — R ; Ò z{ PÁ' bÓ!Ô/. ÎÕ JKL

 C Œ ;”' &Ö!† @) ;t z$! Q× ’

 @) ;t &Ö!† z{ PÁ' Ð$!Ô/. @) ;

t ’ &Ö! @ C Œ FG ÒØ WX z{A Å!R @)Y C Œ € mV kS(3 ÙÚ)Û C; D) n o/.  PY z{$ SFG' Ð$!Ü DT €Y

± ÝÛ  ¡ Þ.+ 9Ct ,|! ß' x+/.

2.  

2-1. 

Ñ ÆÏ ž I C % WX &l 65,000R Sq 4.9

 BSA(from Bovine serum, Sigma Type A-7906)t àá WX ž !Ô/. wxy' ²%! ƒ « % & ©U mV?%, AOT

 Sigmaž6â H–!ÔLŸ, @)   isooctane(99.0%)

YAKURI ž6â H–!Ô/. 1 : 1¸ KClY NaCl ãã Sigma ž

» Junseiž6â H–!ÔLŸ, 1 : 2¸ MgCl2» CaCl2 YAKURI

ž6â H–!Ô/. * | àä $,Y$ å ž !Ô/.

C Œ ž I æç Œ 10 mM acetate æç ŒY glycine-

NaOH æç Œ' ,F!† ž !Ô/.

2-2.   

1 mg/ml WX éT¾ D/. æç Œ pH ÝS% +mt

rAR DL" pH=6§A acetate æç Œ', pH=6-8§A acetate æç Œ NaOHt êr!† ž !ÔLŸ pH=8-9§A glycine- NaOH æç Œ' ž !Ô/. @) 200 mM AOT/isooctaneL

éT¾ D/.

’8 20 mm glass vial C ŒY @)' ãã 5 mlë Ö

 ¥K)t  !†  2|€ $; + /© 20oC @A ì UF  3J  gí!Ô/. æS0  & r éTu î C

ŒY @)L6â ãã |ït ðñ!† 280 nm &ˆˆ;

m(Bausch & Lambž Spectronic21)'  !† òº WX ;

t &Ö!Ô/. $z{ (Tu @)' \ 6ó pH=8 F³

R KCl J$l êrI Y C ŒY Ž!† wz{' Cv!Ô/.

$z{ PÁ ô) C Œ WX ; Q+ @) WX

; ` Ð$!ÔLŸ wz{ PÁ @) z{I WX 

; Q+ Y C Œ WX ; ` Ð$!Ô/. JKL

 C Œ”' &ÖB 8¡ C ŒY @) ž mV WX

 kSÛ C; DL" $Ç+ z{ PÁ' (A ÅB C; D/.

WX &l 4 8¡ `¥ 4 õöt ÍA” BSA»

\ &l ¦ WX 8¡ cã+ õöt Š‹B C; D)

Fig. 1. A280 Calibration curve for BSA.

(3)

no @)' ’ &Ö!† z{ PÁ' Ð$!†÷ +/. ø+ @ ) wxy Ý Š‹I WX ù” ¶úØ al ; ûˆ; ü

+ —ý/. BSA @) &Ö 8¡ @)  ! C&‹l

 W0(=[H2O]/[AOT])ü 16.7 ! FG ûˆ; ü WX

 ;» þ²bmÿ' ½ C D/. 16.7  W0ü ;»

ûˆ; üY bm þ²bm Te " ;Ð$  ¡

!e I/. —¯" Ñ H @) BSA ;t Ð$!

) *!† @) |ït Ö!† W0ü' 16.7! FG' @A!

† &Ö!Ô/. +¤, @) C&‹l Denver Instrumentž model 150 titration controllerr 6I Coulometric Karl-Fisher titratort 

!† $!Ô/.

3. 

3-1.   pH 

Fig. 2 C Œ ¸ ¹º» pH Ò WX $z{ PÁ 9 :t  —ý/. à ÆÏ C Œ ¸ ; 0.1 M R

$!Ô/. à ¸ ãã #$ pH ^Q $z{ PÁ' 

U mV?%, AOT 8¡ Sq ! pH  ¡  $z { PÁ' Í ßY À , &l  ¡ ÌR þ² HFt r Á @A ß' C D/. ß WXY mV?%, ž 

…/ ß' x+/. Fig. 3 Í » \ JKL WX

Sq ! kS 8¼' Í"  ÐYt Fig. 2 ÐY»

¹!V Sq  pH PY WX z{ JT'

½ C D/.

Ñ H ÐY6â 1 : 1 ¸ 8¡  ¡  pHiw ^Rq

 $z{ PÁ' ÍÔ/. , KCl 8¡ pH=5, NaCl 8¡ pH=5.5 Í/ Î  pHiw $z{ éTAA” z{ ÎÕ PY

ÒØ $z{ PÁ  ¡ 0 a! 8¼' ÍÔ/. MgCl2 8

{ PÁ € a!Ô/. CaCl2

$z{ PÁ' ÍÔLŸ —  pH € a! 8¼' Í Ô/. ø+ ^Rq ! pH CaCl2r MgCl2Í/ Î  $z{

PÁ' ÍŸ pH 9: + $z{ PÁ rt Í KV,

^Qq  pH MgCl2r Î  $z{ PÁ' ÍA”  r $; 攋' ͆•R D/. ø+ JKL Sq 

pH 1 : 2 ¸ 1 : 1 ¸Í/ Î  $z{ PÁ' Íÿ' ½ C D

)! ßL z$B C D/.

3-2.      

Ñ H ž I mV?%, AOT ƒ« % " C Œ

¡ LV AOT C Œ  !, U;r ¶AV AOT

@)ŒL j!e I/.  U;r r‹ ÒØ AOT«:

° @)Œ L 9!) no/. Æ, Ñ H ÆÏ

; ¸ ;r  8¡ C Œ ±A  bÓ

fLŸ  !† Î  Œ-Œ & ÆÏ' CvB C åf/. 

 è+ ¸ ;r C Œ -.‹' x+/.

Fig. 3

:t f/. KCl 8¡ ¸ ;r r‹ ÒØ $z{ PÁ

0 a!ÔLŸ 0.7 M  Î  $z{ JTA

z{ PÁ r!A”  1 M  0 a!† Î 

$z{ WX {A Ê/. 1 : 2 S± MgCl2 8¡  0.3 M

J$+ ü' ÍÔ/. ÎÕ CaCl2 8¡  ¡  ¸ ;»

 ¸ ; $z{ PÁ € a! 8¼' ÍÔ/. #0 1 : 1

¸ 8¡ ¸ ;r  ¡ ¶AV $z{ PÁ 0 a!

Fig. 2. Effects of pH and salt type on forward extraction efficiency; [AOT]org,o

=200 mM, [BSA]aq,o=1.0 mg/mL, [salt]aq,o=0.1 M.

Fig. 3. Effects of salt type and its concentration on forward extraction efficiency; [AOT]org,o=200 mM, [BSA]aq,o=1.0 mg/mL, [salt]aq,o=0.1 M.

(4)

 40 2 2002 4

8¼' ÍÔ/.   ¡  ¸ ; C Œ S! !;r  r!† WXY mV?%, ž  4 ! ° 0  a!) no/. —¯ 1 : 2 ¸ 8¡ ¸ ;r ¶AV 

€ $z{ PÁ at ÍÔLŸ  ¸ ; r Ò C

Œ S!!; r!A” 1 : 1 ¸ 8¡» À WXY mV

?%, ¬ ž / wB' !e " + ° 4 !e  T  ¸ ;; $z{ r"±A) noL žïI/.

3-3.  

Ñ H ÆÏ ÐY Fig. 4» 5 C ŒY @) ž mV

 WX kS $;t ͆•R D/. kS $; ô) C

ä  ;t ’ &Ö!† — ö ` f/. C Œ

pHr  8¡  Ž î C ŒY @) WX ; ô

T D' ßL z$B C Df/. ø+ ¸ êrA Ê FG

; C ΠY mV kS  #/.

Fig. 4

¹º bmå kS ƒ 0 r!ÔL Sq  pH

S± 8¡ Sq  kSÁ ^Qr  pHr  ‹' ͆ •R D/. KCl 8¡r NaCl 8¡Í/ kS $; $%

 8¡ $z{ PÁ $% r‹' z&B C De  ß/. 1 : 2 S± 8¡ CaCl2r MgCl2Í/ Î ˆ‰*+ pH ‰* kS

 JT' ½ C D/. ÎÕ CaCl2 8¡r MgCl2 8¡ `¥

!† Sq _ + kSl at ÍÔ/.

Fig. 5 ¸ ; Q+ WX kSl' f/. ^Q $z

Sl' f/. KClY MgCl2 8¡ ^Q kSl' Í ¸

 ;r  !ÔL NaClY CaCl2 8¡ J$; L

¸ ;t r|}V Î  kS bÓA Ê/. ' mV C Df/.

3-4.   ! "#$ %&:  

Ñ H $z{ FG' )(L!† wz{ FG' )$

!Ô/. Fig. 2 ÐY6â wz{ ^ pH à ¸ Q±  ¡

 pH(5!)ÿ' ÇB C D/. ø+ 1 : 1 S± 8¡ KCl

6, NaCl 8 pHÿ' ½ C DL Fig. 4 ÐY Í

kS" wz{ Y C Œ pHr R 1 : 1 S±' êr

! 8¡ PÁØ žÆ' @zB C D/. s @ Ñ 

± KCl' êr!Ô/.

Fig. 6

 $z{+ WX' Y C ŒY Ž|“ wz{B n Y C Fig. 4. Effects of pH and salt type on precipitation of BSA in the inter-

face; [AOT]org,o=200 mM, [BSA]aq,o=1.0 mg/mL, [salt]aq,o=0.1 M.

Fig. 5. Effects of salt type and its concentration on precipitation of BSA in the interface; [AOT]org,o=200 mM, [BSA]aq,o=1.0 mg/mL, [salt]aq,o=

0.1 M. Fig. 6. Effects of KCl concentration on backward extraction of BSA.

(5)

/. $z{ FG 1 : 1 S± NaCl 8¡  95% wz{

PÁ' ÍÔLŸ KCl ;r r‹ ÒØ qq r!Ô/. —¯

$z{ FG 1 : 2 ¸ 8¡  0.3 M KCl ;§A 10% !

 ¡  wz{ PÁ' ÍA” KCl ;r 0.3 M L r!

V wz{ PÁ !e ¼f/. ÎÕ CaCl2t ž !† $z {+ 8¡r MgCl2t ž + 8¡Í/ Î  wz{ PÁ' Íÿ'

½ C D/. ' 1 : 1 S± $z{ FG 1 : 2 ¸' ž ± $

! wxy * WXY 1 : 2 S± mV?%, ¬ 6&Y

4 ! ° 1 : 1 S± 8¡Í/ $% !e 4 !R D ) noL ãI/.

Fig. 3

Q+ pH i¼ > åL KCl ;r  1 M L r!V

— i¼ +,±-' ½ C D/.

3-5. "' ()

@)  ! wxy Ì)t $! gh ’ g h ˆ[.hY € gh @) C&‹lL6â $!

 gh D/. Q6& wxy Ì) S ÆÏ ÍRI 

» \ € gh'  !† Ì)t $+ ÐY» ˆ[.h'

 !† ’ $+ Ì)» `¥B n è0 _+ ÐYt ÍR D/[14-16]. s @ Ñ H €¤+ Karl-Fisher $)t

 !† @) C&‹l' $!† wxy Ì)t m[!Ô/.

wxy Ì) water pool K8(Rwp) /©L /B C D/.

Rwp[nm]=(3Vw/Σ)W0 (1)

†) Vw WJ & 6óR, Σ mV mV?%, + &

r öA! V' /. Vw» Σ > J$!) no W0 ü  01ØR r$!V wxy Ì)t 2e HB C D/.

Fig. 7 0

ü' ;|!Ô/. 1 : 1 ¸ KCl 8¡ 10 !  ¡ 4 ü' Í

A” Sq  pH ^Rq'  pHr  !Ô/. —

¯ 1 : 2 S± MgCl2 8¡  20 > J$+ W0ü'

0ü 9

&‹l W0ü qö 4¶-' ½ C Df/.  ¸ ;r r BC3 !SI WX &» mV?%, 4%6& ž °  a!e T Ì)r 4 wxy' ²%!) noL ãI/. —¯

 CaCl2

; $z{ PÁ ¡C!Ÿ   WXY mV?%, ž

°' r|“ QL C&‹l  wxy' ²%!) no

 ßL z&B C D/. —¯" BSA\ `¥ &l ¦ W X 8¡ ) € ghL wxy Ì)t z[!

ß ‚ õöt Š‹B C DLŸ #0  ¸ ; ’

ghL wxy Ì)t $!†÷ Î è+ Ð&' 5 C D' ßL )QI/.

Fig. 9 KCl ; Q+ wz{ C&‹l' ;|+ —ý/. KCl

;r 'C3 @) ò! C&‹l a! 8¼' ÍÔ

Fig. 7. Effects of pH on the molar ratio of water to AOT in forward extraction.

Fig. 8. Effects of salt type and concentration on the molar ratio of water to AOT, W0.

Fig. 9. Effects of salt type and KCl concentration on water content in backward extraction.

(6)

 40 2 2002 4

r qq 4¶AŸ ÒØ wz{ PÁ QL r‹' ½ C D/.

4.  

Ñ H 20oC ©U mV?%, AOT» isooctaneL

6â ²%I wxy'  !† BSA àá WX $z{Y wz { ÆÏ' v!Ô/. #0 pH, ¸ ¹º» ; Ò BSA $z{

Y wz{ PÁY —n wxy Ì)t bÓ!Ô/.

C Π67 WX BSA Sq  pH PYL

z{fLŸ ¸ ;r 0.1 M @A 8¡ KClY CaCl2 8

2 8¡

pH=7

PÁ' Í pH 6_”  PÁ' Í KV 1 : 2 ¸ 8

pH 2» NaCl 8¡ $z{ P

Á r!ÔL ¸ ;r r‹ ÒØ a!Ô/. ø+ ¸ 

;r  ¡  8¡ $z{ JTA Å!R mV + 

' ÍÔ/. $z{ MgCl2 0=20

 > J$+ ü' Í KV CaCl2» KCl 8¡ ¸ ;r

r‹ ÒØ W0 a!Ô/. #0 wz{ 8¡ KCl ;r 

 pH» ¸ ;r  8¡  wz{ PÁ' ÍÔ/.



1. O’Farrell, P. H.: Science, 227, 1586(1985).

2. Ivory, C. F. and Gobie, W. A.: Biotechnol. Prog., 6, 21(1990).

3. Dekker, M., Piet, K. V., Bijsterbosch, B. H., Fijneman, P. and Hil- horst, R.: Chem. Eng. Sci., 45, 2949(1990).

4. Marcozz, G., Correa, N., Luisi, P. L. and Casell, M.: Biotech. Bioeng., 38, 1239(1991).

5. Abbott, N. L. and Hatton, T. A.: Chem. Eng. Prog., August 31(1988).

6. Dekker, M. and Leser, M. E.: Blackie Academic & Professional, an Imprint of Chapman & Hall(1994).

7. Andrews, B. A., Pyle, D. L. and Asenjo, J. A.: Biotech. Bioeng., 43, 1052(1994).

8. Kadam, K. L.: Enzyme Microb.Technol., 8, 266(1986).

9. Shiomori, K., Ebuchi, N., Kawano, Y., Kuboi, R. and Komasawa, I.:

J. Ferment. Bioeng., 86, 581(1998).

10. Ichikawa S., Imai, M. and Shimizu, M.: Biotech. Bioeng., 39, 20 (1992).

11. Lye, G. J., Asenjo, J. A. and Pyle, D. L.: Biotech. Bioeng., 47, 509 (1995).

12. Rho, S. G., Kang, C. H. and Park, D. H.: Proceedings of 2000 Spring Meeting, The Korean Society for Biotechnology and Bioengineer- ing, 157(2000).

13. Shiomori, K., Kawano Y., Kuboi, R. and Komasawa, I.: J. Chem.

Eng. Japan, 28, 803(1995).

14. Caselli, M., Luisi, P. L., Maestro, M. and Roselli, R.: J. Phys. Chem., 92, 3899(1988).

15. Rahaman, R. S. and Hatton, T. A.: J. Phys. Chem., 95, 1799(1991).

16. Wolbert, R. B. G., Hilhorst, R., Voskuilen, G., Nachtegaal, H., Dek- ker, M., Vantriet, K. and Bijsterbosch, B. H.: Eur. J. Biochem., 184, 627(1989).

참조

관련 문서

Developing countries in the ESCAP region are expected to see a moderate slowdown in economic growth, from 8.2 per cent in 2007 to 7.8 per cent in 2008 (see figure 9). The

The idea is usually well applied to the sample clean-up processes such as solid-phase extractions, chromatographic separation using a gel permeation chromatograph or a

12,17 In the irradiation of aqueous ammonia solution containing TiO 2 particles by 253.7 nm UV light, only TiO 2 absorbed all of the light at the initial process of

While adding choline markedly (p 그 0,°5) increased VLDL and apo B in both the growing and the laying periods, it decreased HDL and apo A in the laying period (p&lt;0.05).

20 The N -aralkylhydantoin analogues containing a phenyl or methoxyphenyl at position 1 of the hydantoin ring (R3 = n -butyl, n-pentyl, phenyl, benzyl) were synthesized in

Power drain detection: When a potentially exploitable device is added to the CAN bus network, a system or program that notifies the user of the device will detect

no reported case in-country; Phase 1 (Early stage outbreak): one or more imported cases, limited local transmission related to imported cases; Phase 2 (Expanding

(A) Mature oocytes: the percentage of LINE-1 DNA methylation levels was significantly higher in the cumulus cells of mature oocytes (M II or metaphase 2 oocytes) in the