• 검색 결과가 없습니다.

Isothermal and Non-isothermal Pyrolysis Characteristics of Polypropylene in Stirred Batch Reactor

N/A
N/A
Protected

Academic year: 2022

Share "Isothermal and Non-isothermal Pyrolysis Characteristics of Polypropylene in Stirred Batch Reactor"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

> ²ª >wVöB polypropylene~ N 5 jN ªš>w ßW

fß>Á;Rê*ÁfW***

ÿš&v ~ã"

*ãžÂ*^& ~ãë"

**J&v z"

(2001j 2ú 16¢ 7>, 2001j 8ú 22¢ j)

Isothermal and Non-isothermal Pyrolysis Characteristics of Polypropylene in Stirred Batch Reactor

Seung-Soo Kim, Chan Jin Park* and Sung Hyun Kim**

Department of Environmental Engineering, Dong Hae University, 119, Jiheung-dong, Dong Hae, Kangwondo 240-713, Korea

*Department of Environmental Engineering, Incheon City College, 235, Dohwa-dong, Nam-gu, Inchon 402-060, Korea

**Department of Chemical Engineering, Korea University, 1, 5-Ka, Anam-dong, Seongbuk-Ku, Seoul 136-701, Korea (Received 16 February 2001; accepted 22 August 2001)

º £

7ï ªC»j šÏ~ > ²ª >wVöB ßN³ê¢ 0.5, 1.0 5 2.0oC/min‚ æzʚB polypropylene~ ª ö.æ 5 >wN>¢ ’~&. >wš /Ï~² ê¯>º ’*öB ‚Wzö.æº 208-288 kJ/molræ 6ê'b‚ Ã&

~&b– >wN>º 0.01šî. > ²ª >wVöB >wNê¢ 410-430oC‚ æzʚB 60ª ÿn ªš>w þ j >¯‚ Ö" >wNê& Ã&†>ƒ WB ªš J¢~ ·f Ã&~æò Wb~ ê²> ªº –~ ¢;~² ¾æ Òb–, ß;‚ êz>²zbö &‚ FWf ¾æ¾æ p~.

Abstract−Kinetic tests on pyrolysis of polypropylene were carried out by thermo gravimetric technique heating the sample at the rates of 0.5, 1.0, 2.0oC/min in a stirred batch reactor. The activation energy and the reaction order were determined at conversions from 1 to 100%. The activation energies increased slowly from 208 kJ/mol to 288 kJ/mol and the reaction order was 0.01. Polypropylene was thermally cracked in a semi-batch reactor at 410-430oC for 60 minutes. As the reaction temper- ature increased, the yields of product oil increased. However, the selectivity of specific hydrocarbons was not observed.

Key words: Polypropylene, Pyrolysis, Thermogravimetric Technique, Stirred Batch Reactor, Carbon Number Distribution

1. B †

“ÚöB ÖB ºÏ2¢Êf 1998j V&b‚ 762òʚ&b–[1], 1997j “Ú polypropylene(PP) Öïf 208òʚî, š7 &¦ªf ÒÏ ê öVb‚ ¾ÒB. ö2¢Êj ¾Ò~V *š ¢>'b‚

ïj &ê öVbj ¾Ò† r ~ãJ"š ì, öVbj ¶öz

~º VFBBš º’>šB “ÚÁžöB ªšö &‚ ôf ’&

>¯> ®[2-14]. ö2¢Êj ҂Ï~º O»b‚º bî' Ò

‚Ï(material recycle)" z' ҂Ï(chemical recycle) š ®. b

î' ҂Ï~ &çš >º ©f ¢>'b‚ &~ Ï[ÁÒW;š

&˂ &²W 2¢Êš–, ãzW 2¢Ê~ ãÖöº ªêš

B Ï*҂ šÏ~º O»š ®[6]. ¾ ‚" “Ú~ ãBÎ&

>~ ÒÒÏ ~º ©ö &‚ žš ±æ pV r^ö ҂Ï'f Ö Ôj ö jî¢ bÒ'b‚ 2N, 3N'ž ҂Ïj † ãÖ ‚«

'b‚º ҂Ϯ~ bÒ'ž ßW &~‚ öVbš >æ‚ š©f '

'ž ¾ÒO»š¢ † > ì.

z' ҂Ïf ö2¢Êj 7*~ ïÚ(monomer), CFz

öò 6º ò‚ šÏ~º O»š[6-9]. ¢>'b‚ ª¶¢ ïڂ

*~~º ãÖ >Nf PET, Nylon, Urethane ~ ester֏j &ê 7»

; 2¢Ê~ ãÖöº jv' ¸æò, polyethylene" polypropylene

f ïÚ >Nš ÔjB ïÚ Ò‚Ï O»b‚º ¦'‚ ©b

‚ rJ^ ®. ö2¢Êj ªš~&j r &Ë – Ë6f 2¢Ê

~ «~ 5 ªš–šö V¢ ;ê~ Nšº ®æò j &~š £²

To whom correspondence should be addressed.

E-mail: ks7070@dreamwiz.com

(2)

z B39² B6^ 2001j 12ú

ªš& &Ë~–, šr WB J¢" &ʺ ò‚ ÒÏ &Ë~. 6

‚ ²'";" Ò Ö²& ìº –š _f Ö²& ’;‚ –šöB >w j Úb‚ &VJ" FBbî " ?f 2N öVbj WÊæ p

š>w ßWö &‚ ’ Ö"& B‚>î. 7ï ªCV(Thermogravimetric

Analyzer; TGA)öB ï~ þò¢ ÒÏ~ 7ïæz Fb‚

¦V ª» _f 'ª»j šÏ~ >w~ ‚Wzö.æ 5 >wN

7ï ªCV~ ãÖ thermocouple~ *~& >wš ç7 ¢Ú¾º >w b Ú¦¾ _f >wb ‚šö J~>Ú ®æ pj Nêö Vž >w

wNê 5 *ö &‚ 'Ëj ÚÚj¢ ~º–, ò 5 Ë~~ ß

B Wbö &‚ ;ï' WªªCš –~ šÚ^ ®æ p.  

’öBº > ²ª >wV¢ 7ï ªC~ ö҂ PP~ ªš>w

wb~ Ú¦ö J~~ >wNê¢ –.~&. 6‚ ªš Wbj

>÷~ Wb~ ê²> ªö V¢ ;ï'b‚ ªC~&.

 ’º ªš¢ šÏ‚ PP~ ҂Ïj *‚ V.’‚B 7 ï ªC»b‚ &³ê¢ æzB áf 7ïFb‚¦V ª»

j šÏ~ *~N æzö &‚ ‚Wzö.ææz 5 >wN>¢ ’

~&. 6‚ >wNê(410-430oC)~ æzö V¢ WB J¢~ Wª j ê²> ªö V¢ ªC~ ªš>w ßWj V~&.

2. ªš>w

2-1. Polypropylene~ ªš >w V’

Polypropylenef ֏" šæ ö.æ& Ôf ֏b‚B ª¶š

ö ~š "ÒҚ .>Ú >wš BF r ¢:¢ ê>wb‚

J«š &Ë~. Fig. 1f polyethylene" polypropylene~ ªš >wš

ê¯>º ";j ¾æÞ ©š[7, 10, 15]. ª¶~ "ÒÒf ®~

² .>– β*~~ C-C ֏š "‚ Žæ² B. V¢B ö-, *

‚j- ¢:¢š W> >²ö¶~ ªšö ~š ö2" *‚j2b‚

n;zB. ªšö ~‚ "ÒÒ~ .b‚º š7(depolymerization)

" ª~~ *~öB ê²Öš ªš>º ãÖ& ®. š7~ ãÖ

"‚ ïÚ(monomer)& W>, ª~~ *~öB ê²Öš ªš

~ ãÖ ª~~ *~öB ê²Ö~ ªšö ~š BN'b‚ &ª¶

z >V r^ö ïÚ~ ²>Nš Ô. ªš>wö ~š ê¯B ¢ :¢f ·f R.f~ ֏b‚ ªš Wbj W~– ß;‚ b

ªš>w Nê 700-800oC ¦"öBº ö2, *‚j2, ¦v, 1,3-

¦æ:ú, zê 5 >² j W~² B[7]. ªš>w –šö V

¢ Diels-Alder >wö ~š Î&Òz >w(cycloaddition reaction), w

» >w(condensation reaction) j –öB 7*ڞ C5, C6~ cyclo-olefin

zbž ÊF, Îú" ?f O˗(aromatic) Wª~ êz>² z

b‚ *~B. ªš>wö ~‚ O˗ Wª~ W V’º Wheelerf Woodö ~š Fig. 2f ?š Bn>î[16]. 7*ڂB WB cyclo- olefinê Diels-Alder >wö ~š ¢:¢‚  ªš>Vê ~æò ¢

>'b‚ î>² >wö jš ‚Wzö.æ& ¸jB £² ¢Ú¾æ p º. WB ÊF" ?f aromatic Wªf ªš>w –š~öB ê

³ ֏" >wj ~ Biphenyl" ?f bîj W‚[7, 17].

2-2. ‚Wzö.æ êÖ

TGA(Thermogravimetric Analyzer)º Nê~ Ž>‚Ž îïæz¢ 

³'b‚ G;~º Ë~š– ª¶bî~ ªš>wöB >wWb~

WªªCš £æ pf ãÖ îïæz‚¦V C* >w ³ê ’¢ *š

ôš ÒÏ>Ú z. 7ï ªC»b‚ áf F~ ηb‚¦V ‚W zö.æ, >wN> 5 >w ³ê ç>¢ ’† > ®.  ’öBº j¾

 (5)öB (dX/dt)f 1/T~ &ê¢ šÏ~ ;B *~NöB polypropylene

~ ªš>w ‚Wzö.æf >wN>¢ ’~&[2, 5].

(5)

VöB A: nꞶ(min1)

VöB n: >wN>

VöB E: ‚Wzö.æ(kJ/mol)

VöB R: VÚç>(8.314 J/molÁK)

VöB T: Nê(K)

VöB t: *(min)

VöB X: *~N

3. þ

3-1. þò

PPº &‚'ž &²W>æ‚B propylenej 7~ W~–, z

V& "ÒÒ~ ‚ã OËöò ®º isotactic polypropylene" "ÒÒ j 7b‚ &“'b‚ ®º atactic polypropyleneš ®. PPº W

>æ, WRF, rš*, jª 5 2š* ~ B–ö ÒÏB.

Ö"f H/Cj¢ Table 2ö ¾æÚî. H/Cjº ò~ ¦&&~¢

dX ---dt

 

 

ln [A 1 X( – )n] E R---- –

ln 1

T---

=

Fig. 1. Mechanism of depolymerization of polyethylene and polypropy- lene.

Fig. 2. Mechanism of Diels-Alder reaction.

Table 1. Characteristics of polypropylene used in this study

Mw Mn Tg

[oC]

∆Cp [J/g ·oC]

Tm [oC]

∆Hm [J/g ·oC]

PPa 209,200 52,800 - - 165.11b 107.29b

aDaelim Poly Co., LTD[PP-137].

bMeasured by DSC[PERKIN-ELMER 7 Series Thermal Analysis System].

(3)

3-2.7ï þ 5 Wb ªC

þö ÒÏB ò~ 7ï Fb‚¦V ªš>w ³ê¢ G;

ªš >wV, NêÁ{K –.Ë~, ªš>wb‚ WB VÚ¢ w

»Ò > ®º w»V, w»Vö ï'FÚ¢ /~º B~V(RBC-10, JEIO TECH),VÚ~ ·j G;~º Û&ÊV(W-NK-1A, SINAGAWA CORP), WB J¢~ Z²¢ G;~º &Þ(GT410, OHAUS), Z²¢

*b‚ Vƒ† > ®º –šV &Ë ʂ 5 WB J¢j ªC

~º Gas Chromatograph(M600D, Young-Lin)‚ ’W>Ú ®.

(1) 1

(2) N2¢ >wVö IÚ >wVÚö ®º V¢ j*® B–Î.

(3) v>V‚ >wbj v>ʚB >wV~ Nê¢ RÖ. ªš

>wš ê¯>æ pº 0-300oCræ~ ßN³ê¢ 10oC/min‚ çß

Vb– 300-500oC~ Nêº* ÚöB ßN³ê¢ 0.5-2.0oC/min‚ æ zʚB Ã&Î.

(4) w»V¢ B~~º FÚ~ Nêº 0oC‚ ;B ªš Wb j w»Î.

(5) w»B J¢f &Þ *ö ®º ÏVö >÷>– *'>º J¢~

Z²º &ÞöB ¾Jº RS-232C ^¢ Vf Ö~ 10. * Ïb‚ Z²æz¢ &Ë~&. PP ªš>wb‚ W>º J¢~ *

(6)

VB W0, Wf WẠþö ÒÏB PP~ Z², ªš>wb‚ W B J¢~ Z² 5 PP¢ 500oCræ ªš~&j r >wVö Îj

®º >wb~ Z²š.

(6) PP¢ ªš~ WB J¢Wª" ê²> ªº j6ª¢

šÏ~ Ö;~&. ªCöº Gas Chromatograph(GC)¢ ÒÏ~&b

– ASTM D 2887O»j šÏ‚ ÎÒ Ã~¢ ۚ yº6~ ª¢ G

;‚ r Hewlett-PackardöB B~º ê²>f yº6*~ ¶ò [18, 19]¢ šÏ~ J¢Wª~ ê²> ª¢ Ö;~&.

3-3. Polypropylene ªš ³ê

Polypropylene(PP)f ª¶¢ ’W~º ïÚö zV¢ ~¾O 

Ž~®.  ’ö ÒÏB ò~ îï襁ïf 209,200š

>襁ïf 52,800š.

>w{K 1V{~öB ªš>wš ¢Ú¾º 300-500oC~ Nê’

*öB ªš>wV~ ßN³ê¢ 0.5-2.0oC/min‚ æzVj r PP

~ 7ï æz Fj Fig. 4ö ¾æÚî. ªš& /Ï~² ê¯>

º Nêº*öB ßN³ê& ·j>ƒ J¢~ *~Nš /Ï~² Ã&

~&.

PP~ ïÚ ê²>º C3š– ªš &Ê 7öB ï'V~ Nê¢

0oC‚ –.®j r w»>æ pº &Ê~ ·f Û&ÊV‚ G;~

oC š

~~ &N ªš>wöB > ²ª >wV¢ ÒÏ~ PP¢ ªš

† ãÖ ê²> C4š~ž êz>² zb‚º ªš>æ pº ©j ~

‚. PP~ ªš>wf ßN³ê& 0.5oC/min¢ r 387oCöB ê

¯>V ·~&b– 395-445oC Nêº*öB /Ï~² ¢ÚÒ. 

’¢ >¯~V *ö ¶ÿNÏ öJ‚Ff polystyreneö &š > ²

[4, 5]. ßN³ê¢ 0.5, 1.0" 2.0oC/min‚ Fæ®j r öJ‚F~

ãÖ ªš>wf 380oCšçöB ê¯>V ·~&b– 400-460oC Nê’*öB /Ï~² ¢ÚÒ. PSº 360oCöB ·>îb– 365oC

šç~ NêöB ªš>wš /Ï~² ê¯>î. Fig. 4öBf ?š

X W

W0–W ---

= Table 2. Elemental analysis of polypropylene

Element(wt%)

H/C ratio

C H N S

Polypropylene 85.20 14.40 - 0.31 2.03

Fig. 3. Schematic diagram of pyrolysis reactor for thermogravimetric analysis.

1. Nitrogen bomb 09. Condenser

2. Flowmeter 10. Circulator

3. Ball valve 11. Solenoid valve

4. Heater 12. Cylinder

5. Pyrolysis reactor 13. Wet gas meter 6. Thermocouple 14. Reservoir

7. Stirrer 15. Balance

8. Temperature, pressure and 16. GC

rpm controller 17. Computer

Fig. 4. Effect of different heating rates on the conversion for pyrolysis rate of polypropylene.

(4)

z B39² B6^ 2001j 12ú

PPº PS  £ 20oC ¸f NêöB ªš& ·>îb– öJ‚Ff º j݂ NêöB ªš >wš ·>î. ¾ PPf PSº ªš>w f /Ï~² Ã&~º ãËj ¾æîæò öJ‚F~ ªš>wf 

·NêöB 6ê'b‚ Ã&~º ãËj ¾æî. 7ï FöB V ÞV 8f Nê æzö Vž W J¢~ æzïj ¾æÞ. öJ‚F, PSf PP¢ jv®j r ''~ ßN³êöB PS, PPf öJ‚F BB‚

ªš>wöB ÊF›j &ê PS& zV¢ &ê PP Ôf Nê öB z /ς ªš>wj ¢bV. Westerhout [20]~ ’ö ~

~š ªš>wöB çÒÒj &ê ª¶bîš çÒÒj &æ®

. çÒÒj &ê ª¶bî 7öBê ª¶ïš – çÒÒj &ê  ª¶bî~ ªš>wš z Ôf NêöB †š² ê¯>º ©j þÖ"‚¦V {ž† > ®.

Fig. 5º ßN³ê¢ 0.5, 1.0 5 2.0oC/min&j r *~N æz³ê¢

NêÃ&ö V¢B ¾æÞ ©š. *~N æz³ê& ‚&ž Nêº ''~ ßN³êöB 407, 423" 431oC&b–, š 8f PS £ 30oC

Nš 5% šç¢ r /Ï~² ê¯>º ©j {ž† > ®. š©f PP f ?f ª¶bîš Ÿº6 šç~ NêöB ‡çb‚ šÒ~&  ªšNêræ ê~š "ÒÒ~ ªš& /³~² ê¯>V r^ž © b‚ 6B.

Fig. 6f ''~ ßN³êöB ¢;‚ *~N¢ r~ *~N æz³ê ln(dX/dt)f 1/T‚¦V êÖB ‚Wzö.æ¢ ¾æÞ ©š. ‚Wzö .æº ªš>wš ·F r¦V ²~² Ã&~º ãËj ¾æÚ

– *~N æzö V¢ 207.79-288.45 kJ/mol~ º* Úö ª~ ® . š©f öJ‚Ff PS~ ªš>w" îR&æ‚ PPê ªš>

ê& Ã&†>ƒ "ÒÒ~ C-C֏š ‚B~² ªš>º ©j ~‚

. *~Nš Ã&Žö V¢ ‚Wzö.æ& Ã&~º šFº PP& Ï [B ç‚ šÒ~& ªš& ·>šB >w.Vöº jv' ê²

^š& f êz>² zbš ªš> *š æÎö V¢ 6ê' b‚ "ÒÒöB ^š& Z êz>² zbš ªš>, ªš>º · ê Ã&~V r^š. ¾ PP~ ‚Wzö.æ æz f PSf ö

Ö>º– ~ bÒ'ž ~¢ ÚÚš ‚Wzö.æ~ æz š · º ©f ¢;‚ ßN³ê‚ ;B Nêræ RÚ r PPš ªš& 

·B 6šê Nê& Ã&šê ªš>º ·~ š ’² Ã&~æ p ß;‚ êz>²ö &š FWj &æ ®æ p~b– propylene 

Wb~ ªCÖ" 5 šö &‚ ßWf 3-4.ö ¾æÚî.

 ’öB PP¢ ªš®j r *~N æzö V¢B ’‚ ‚Wz ö.æ~ ï8f 226.05 kJ/molš&. š 8f Wu [20]š 

*VöB 367-487oC~ Nêº*öB êւ 8 184 kJ/mol  –.

¸f 8š, Westerhout[20]š 400-440oC~ Nêº*öB ªš>w

*~Nš 70-90%¢ r êւ 8 244 kJ/mol –. Ôf 8j ¾æ îb– Bockhorn [20]š 200-600oCöB *~Nš 0-100%¢ r ê ւ 8 224 kJ/molf j݂ 8j ¾æî.

 (5)¢ šÏ~ ª»b‚ ‚Wzö.æ, >wN> 5 nꞶ¢

ª >wV¢ šÏ‚  B~ 7ï æz Fb‚¦V ª»j

šÏ~ *~Nš ¢;† r~ ln(dX/dt) vs. 1/T~ &ê¢ šÏ~ ‚ Wzö.æ¢ ’~&. šr  (5)~ .Þ8ž ln[(1−X)n]‚¦V Fig. 7 j JB, VÞV‚¦V >wN>(n)" .Þb‚¦V nꞶ¢ ’~

Fig. 5. Variation of the instantaneous reaction rate with temperature at different heating rates for pyrolysis of polypropylene.

Fig. 6. Calculated activation energies at different conversions for pyrol- ysis of polypropylene.

Fig. 7. Overall reaction order for pyrolysis of polypropylene.

(5)

&. šf?f O»b‚ ªš>wš ¢Ú¾º *’*öB ‚Wzö.

æ 5 >wN>¢ ’‚ ’º ê>Úê :& ì. Wu [20]š 

*VöB 367-487oC~ Nêº*öB êւ 8š 0.90š&, Westerhout [20]š 400-440oC~ Nêº*öB ªš>w *~Nš 70-90%¢ r êւ 8 1š&, Bockhorn [20]š 200-600oCöB *~Nš 0-100%

F r WB J¢~ *~N‚¦V êւ >wN>º 0.01š&b–

ªC»b‚¦V ’‚ >wN> 0.01f polypropylene~ ªš>wš 0 Nž ©j ~‚. š Ö"¢ "–‚ >w³êj Fê~ ª

>wVöB >wNêf *j æzBB WB bîj lumping~

zö.æ 5 nꞶ¢ Table 3ö ¾æÚî.

Nêæzö Vž PP~ ªš ßWj 2k~V *š >wNê¢ 

;‚ ê W>º J¢~ Z²¢ G;~ Wb~ –Wj ªC~&.

Fig. 8f J;Nê¢ 410, 420 5 430oC‚ ;~ ßN³ê¢ 10oC/

min‚ Fæ~ ''~ Nêö ê‚ ê * æzö Vž PP~ 7 ï Fj ¾æÞ ©š. DSC‚ ªC‚ PP~ Ï[Nê(Tm)º 165.11oC

Қ ªš>V ·‚. J;B ªšNê& 410oCf 420oCöBº 10ª" 6ª ê¦V ªš>wš ·>, š©f J;Nêö ê

† rræ /B ïš PP~ "ÒÒj ªš† > ®j ;ê‚ Ïª

® />æ pV r^š. ªš Nê 410oCf 420oCöB~ *

æf šf ?f šF r^ö B‚ ©b‚ '>– 430oCöBº J;Nêö ê®j r¦V ªš>wš ê¯>î. ''~ ªš

NêöB 1* ÿn Fæ~&j r J¢~ *~Nf 66.62, 74.35 5 86.87%&. šr WB J¢~ ê²> ªCÖ"º Table 4ö ¾æÚ î.

3-4. Polypropylene ªš Wb~ Wª ªC

Polypropylene(PP)~ ªš& ¢Ú¾º 300-500oC ’*j 0.5, 1.0 5 2.0oC/min~ ßN³ê‚ Nê¢ çßVj r ªš>w ";ö B WB J¢~ Wªj Fig. 9ö ¾æÚî. PP~ ªš Wbf ß;‚ êz>² zbö &‚ FWj <æ pº ê²> ª¢ ¾ æÚ®.  ’öB ÒÏB > ²ª >wVöB >wbš ª

š Nêö ê‚ 6¦V ªšB êz>² zbf >wV <b‚

VÂ> ªš>æ pf >wbf ªš& F rræ >wVÚö ê³

šÒ~šB Nê& R¢&š "ÒÒ~ ª~~ *~öB ªš& B.

V¢B ßN³ê& Ôj>ƒ ÿ¢‚ Nêö ê~º *š ÌV r

^ö >wbš >wVÚöB Ú~~º *š ^Úæ– ªš† r  />º ïê Ã&~V r^ö ê²>& z ·f êz>² zb‚

Table 3. Kinetic parameters reported in literature for the pyrolysis of polypropylene[20]

Authors T(oC) ζ(wt%) n(-) k0 Eact(kJ/mol)

Bockhourn et al. 200-600 0-100 0.78 8.6×1011 224

Wu et al. 367-487 - 0.90 6.3×1010 184

Westerhout et al. 400-440 70-90 1 3.2×1015 244

This study Mw 209,200 300-500 0-100 0.01 42.08 208-288 avg. 221

Fig. 8. Effect of temperature on the pyrolysis rate of polypropylene.

Table 4. Analysis of product oil for the pyrolysis of polypropylene - effect of temperature(410-430oC)

Temperature (oC)

Conversion (%)

C5-C11 (%)

C12-C25 (%)

>C25 (%)

410 66.62 41.10 57.34 1.56

420 74.35 40.91 56.15 2.94

430 86.87 42.16 54.18 3.66

Fig. 9. Carbon number distribution of polypropylene upon heating rate change.

(6)

z B39² B6^ 2001j 12ú

ªšB. öJ‚Ff PS~ ãÖ *öB J«‚ ÚÏ" ?š ßN³ê

& Ôj>ƒ ê²>& z ·f êz>² zbš Ã&~º ãËj  ]~² ¾æî[2, 4, 5]. ¾ PPº Fig. 9öB~ Ö"f ?š ªš

Wbš Ú~*ö –~ 'Ëj Aæ pº ©j r > ®. ¯, >

²ª >wVöB PP ªš Wbf ß; êz>²~ FWš –

~ ì ªšWbf Ú~*š Ã&~ê ê²>& ·f êz>² zbš ²~² Ã&~&.

Table 4º >wNê 410, 420 5 430oCöB 1* ÿn PP¢ ªš

®j r WJ¢j C5-C11, C12-C25f >C25‚ ’ª~ Wªê Žïj

¾æÞ ©š. WB J¢~ ê²> ªCÖ"öB Nê& Ã&†>ƒ

C5-C11

 Nšº Z† > ®j ;ê~ 8j ¾æî. Nê& Ã&†>ƒ ê

²> C12-C25º £* 6²~& C25šçf Ã&~&æò .&ïf – Nš& ì. öJ‚Ff PS~ ãÖ WB J¢~ *~N" C5-C11, C11-C25 5 C25 šçb‚ ''~ Wªj \ÚB ê²>¢ J®j r Nê& Ã&†>ƒ ªš³ê& Ž¢^ ê²>& ·f êz>²z

b‚ ªšF > ®º Ϫ‚ Ú~*š ¦—šB C5-C11~ Žïš * Úº ãËj ¾æîb¾ PP ªš Wbf šf ?f ãËj ¾æ Úæ p~[2, 4, 5]. 6‚ PS~ ãÖöº ªš Wb 7öB styrene

ãÖ Nê¾ Ú~* æzö &š ß;bî~ FWš –~ ìº © j {ž† > ®.

4. Ö †

Polypropylene~ 7ï æz ßWj 2k~V *~ > ²ª >

wVöB ßN³êf Nê¢ æzʚB ªš¢ >¯~ áf Ö

(1) > ²ª >wVöB ßN³ê¢ æzʚB polypropylene~

ªš>w þj >¯~ ''~ *~NöB ‚Wzö.æ¢ êÖ

~&b– ‚Wzö.æº *~N æzö V¢ 208-288 kJ/mol~ º*

Úö ª~&. ‚Wzö.æº *~Nš Ã&†>ƒ 6ê'b‚ Ã

0.01šî.

(2) Polypropylene~ ßN³ê æzö &‚ 7ï þb‚¦V W B J¢~ ê²> ªC Ö" ß;‚ êz>²zbö &‚ FWf ìî.

(3) > ²ª >wV~ Nê¢ 410oC, 420oCf 430oC‚ ;~

ªš þj >¯~&j r ''~ NêöB WB J¢~ *~N f 66.62%, 74.35%f 86.87%&. WB J¢~ *~N" ê²> ª

C Ö"¢ J®j r 430oCöB C5-C11êz>² zb~ Žïš

&Ë – ©j r > ®.

^^ò

1. Register of Korean Plastic Industries, Plastics Information(1999).

2. Kim, S.-S.: “Pyrolysis Characteristics of Waste Lubricating Oil, Plastics, and their Mixtures,” Ph.D Thesis, Korea University(2000).

3. Kim, S.-S., Kim, S. H.: FUEL, 79, 1943(2000).

4. Kim, S.-S., Yoon, W. L. and Kim, S. H.: HWAHAK KONGHAK, 37, 828 (1999).

5. Kim, S.-S., Chun, B.-H., Park, C. J., Yoon, W. L. and Kim, S. H.: HWAHAK KONGHAK, 38, 732(2000).

6. Kim, H. T., Song, B. S., Park, C. H. and Park, Y. H.: “A Study on The Gener- ation and The New Technologies for the Recycling of The Commingled Plastics Waste,” Korea Resources Recovery & Reutilization Corpora- tion(1996).

7. Choi, J. W.: Polymer Technology, 36, September, 38(1996).

8. Brandrup, J.: “Recycling and Recovery of Plastics,” Hanser Publish- ers(1996).

9. Scheirs, J.: “Polymer Recycling,” JOHN WILEY & SONS(1998).

10. Liebman, S. A. and Levy, E. J.: “Pyrolysis and GC in Polymer Anal- ysis,” MARCEL DEKKER, INC(1984).

11. Hong, S. J., Oh, S. C., Lee, H. P., Kim, H. T. and Yoo, K. O.: HWA- HAK KONGHAK, 37, 515(1999).

12. Park, Y.-G., Choi, B.-S., Oh, J.-J., Lee, S.-W. and Yi, J. H.: HWA- HAK KONGHAK, 38, 103(2000).

13. Kong, S. N. and Bae, H.-K.: HWAHAK KONGHAK, 5, 179(1967).

14. Kim, Y. S., Hwang, G. C., Bae, S. Y. and Yi, S. C.: Korean J. Chem.

Eng., 16, 161(1999).

15.ïu–ã: ˜q–´w, 46(4), 50(1994).

16. Fessenden, R. J. and Fessenden, J. S.: “Organic Chenistry,” 5th Ed.(1993).

17.?rÅ, û ¯§, ³B6Y, NÀ¹ž: …(Japan), 36(5), 342 (1994).

18. ASTM D 2887, “Standard Test Method for Boiling Range Distribu- tion of Petroleum Fractions by Gas Chromatography.”

19. Lintelmann, K. A.: “Heavy Oils(Natural and Refined),” Analytical Chemis- try, 67(12), 327(1995).

20. Westerhout, R.: “Recycling of Plastic Waste by High Temperature Pyrolysis,” Ph.D Thesis(1998).

참조

관련 문서

 배치처리 레이어는 Batch Core, Batch Execution, Batch Support 등 총 3개의 서비스를 제공함 실행 환경..

A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine

Nitrite accumulation was achieved by the inhibitions on nitrite oxidizers with free ammonia and low dissolved oxygen in the biofilm airlift suspension reactor.. From

In this study, we developed a noble biotransformation reactor for α-ketoglutarate production using enzyme aggregated nanofiber reactor, micro reactor, monolith

Abstract−The pyrolysis process of polystyrene (PS) has been investigated to find optimal temperature profiles which minimize the reaction time and the reaction energy required

The following data are obtained in a laboratory completely-mixed batch reactor for a degradation reaction of compound A (CA: concentration of A).. Answer

The following data are obtained in a laboratory completely-mixed batch reactor for a degradation reaction of compound A (CA: concentration of A).. Assume

Key words: Biological Nutrient Removal (BNR), Food Wastes, Sequencing Batch Reactor (SBR), Volatile Fatty