Matrix
Wanho Choi (wanochoi.com)
• A branch of mathematics
concerning linear equations using vector and matrix
Linear Algebra (
선형대수학, 線型代數學)
System of Linear Eqns.
(
연립 일차 방정식, 聯立一次方程式)
• A rectangular array of numbers with
dimensions m (# of rows) by n (# of columns).
Matrix (
행렬, 行列)
a
ij: (i, j) element (component, entry)
A
m×n=
a
11a
12⋯ a
1na
21a
22⋯ a
2n⋮
⋮
⋱
⋮
a
m1a
m2⋯ a
mn i ∈ {1,2,⋯, m} j ∈ {1,2,⋯, n}N-Dimensional Vector
• It can be thought as an n×1 column matrix:
X
T= [x
1, x
2, ⋯, x
n]
X =
x
1x
2⋮
x
n X = x12 + x22 + ⋯ + xn2 A ∙ B = a1 × b1 + a2 × b2 + ⋯ + an × bn n × 1 1 × nMatrix-Matrix Addition
• Component-wise addition a11 + b11 a12 + b12 ⋯ a1n + b1n a21 + b21 a22 + b22 ⋯ a2n + b2n ⋮ ⋮ ⋱ ⋮ am1 + bm1 am2+ bm2 ⋯ amn + bmn = a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋱ ⋮ am1 am2 ⋯ amn + b11 b12 ⋯ b1n b21 b22 ⋯ b2n ⋮ ⋮ ⋱ ⋮ bm1 bm2 ⋯ bmnC
m×n= A
m×n× B
m×n• The new vector is the dot product of each
row of the matrix with the column vector.
Matrix-Vector Multiplication
b
i=
∑
n k=0a
ik× x
ka
11a
12⋯ a
1na
21a
22⋯ a
2n⋮
⋮
⋱
⋮
a
m1a
m2⋯ a
mnx
1x
2⋮
x
n=
b
1b
2⋮
b
nMatrix-Matrix Multiplication
c
ij=
∑
n k=0a
ik× b
kj c11 c12 ⋯ c1n c21 c22 ⋯ c2n ⋮ ⋮ ⋱ ⋮ cm1 cm2 ⋯ cmn = a11 a12 ⋯ a1p a21 a22 ⋯ a2p ⋮ ⋮ ⋱ ⋮ am1 am2 ⋯ amp b11 b12 ⋯ b1n b21 b22 ⋯ b2n ⋮ ⋮ ⋱ ⋮ bp1 bp2 ⋯ bpnC
m×n= A
m×p× B
p×nOuter Product Matrix
ABT = a1 a2 ⋮ an [b1 b2 ⋯ bn] = a1b1 a1b2 ⋯ a1bn a2b1 a2b2 ⋯ a2bn ⋮ ⋮ ⋱ ⋮ anb1 anb2 ⋯ anbn A ∙ B = ATB = a1 × b1 + a2 × b2 + ⋯ + an × bn n × 1 1 × n n × n 1 × n n × 1 1 × 1Types of Matrix
Square MatrixDiagonal Matrix Sparse Matrix
Null Matrix (Zero Matrix) Identity Matrix
Transpose Matrix Symmetric Matrix
Skew Symmetric Matrix Upper Triangular Matrix Lower Triangular Matrix
m = n m = n m = n m = n m = n aij = 0 if i ≠ j
# of zero elements ≫ # of non-zero-elements
aij = 0 aij = 0 if i ≠ j aij = 1 if i = j aij = aji B = AT m = n m = n aij = 0 if i > j aij = 0 if i < j aij = − aji bij = aji