• 검색 결과가 없습니다.

Matrix Methods in paraxial optics

N/A
N/A
Protected

Academic year: 2022

Share "Matrix Methods in paraxial optics"

Copied!
67
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Chapter 4.

Matrix Methods in paraxial optics Chapter 4.

Matrix Methods in paraxial optics

(2)

Complex optical systems Complex optical systems

Thick lenses, combinations of lenses etc..

Thick lenses, combinations of lenses etc..

tt

n

n

LL

n

n

n’

n

Consider case where

Consider case where tt is not is not negligible.

negligible.

We would like to maintain our We would like to maintain our Gaussian imaging relation Gaussian imaging relation

R P n R

s n n s

n

L

⎟⎟ =

⎜⎜ ⎞

⎛ −

= +

2 1

1 ) 1

' ' (

'

But where do we measure

But where do we measure s, ss, s’’ ; f, f’

; f, f

from? How do we determine P

from? How do we determine

P??

We try to develop a formalism that can be used with any system!!

We try to develop a formalism that can be used with any system!!

(3)

Matrix Methods in paraxial optics Matrix Methods in paraxial optics

• Development of systematic methods of analyzing optical systems with numerous elements

• Matrices for analyzing the translation, refraction, and reflection of optical rays

• Matrices for thick and thin lenses, optical systems with numerous elements

(4)

What is the ray-transfer matrix What is the ray-transfer matrix

Let’s start with definition of cardinal points (planes) :

focal (F), principal (H), and nodal (N) points (planes)

(5)

Cardinal points and planes:

2nd Focal points (F2)

Cardinal points and planes:

2nd Focal points (F2)

. . .

F'

1 k (마지막 면)

u =01

F'

1 k

u =0

1

제 2 초점 (second focal point, image side focal point) : F

2

¾ 무한대에 있는 축 상 물체 점의 상점

¾ 광축과 평행하게 입사한 광선이 모이는 점(실상), 또는, 모이는 것처럼 보이는 점(허상)

F2

F2

(6)

Cardinal points and planes:

1st Focal points (F1)

Cardinal points and planes:

1st Focal points (F1)

제 1 초점 (first focal point, object side focal point): F

1

¾ 무한대에 상이 생기는 축 상 물체 점

¾ 상 측에서 광 축과 평행하게 입사한 광선이 모이는 점, 또는, 모이는 것처럼 보이는 점.

u'k=0 u'k=0

1 k 1 k

... ...

F1 F1

(7)

Cardinal points and planes:

2nd principal planes (PP2) and points (H2)

Cardinal points and planes:

2nd principal planes (PP2) and points (H2)

n n

LL

n n n’ n

H

H

22

ƒ’ƒ’

FF22

PPPP22

제 2 주요면 (상측 주요면) : PP2

- 물체측에서 광축과 평행하게 입사한 광선을 상측에서 보아 굴절되는 것처럼 보이는 가상면.

제2 주요점 (상측 주요점 ): H2 - 제2 주요면과 광축의 교점.

(8)

Cardinal points and planes:

1st Principal planes (PP1) and points(H1)

Cardinal points and planes:

1st Principal planes (PP1) and points(H1)

n n

LL

n n n’ n

H

H

11

ƒƒ FF11

PPPP11

제 1 주요면 (물체측 주요면) : PP1

-상측에서 광축과 평행하게 입사한 광선을 물체측에서 보아 굴절되는 것처럼 보이는 가상면.

제1 주요점 (물체측 주요점 ): H1 – 제1 주요면과 광축의 교점.

(9)

Objective distance, image distance Objective distance, image distance

물체거리 (object distance)

: 제1 주요면에서 물체까지의 거리 l = HO

상거리 (image distance)

: 제2 주요면에서 상면까지의 거리 l’ = H’O’

l l'

1 k

H H'

h h

P P'

u1 u'k

o o'

l l’

n1 n'1

h1 A1= H1= H'1

u'1 u1

l1

l'1 면의 물체거리

면의 상거리 o

1 2

& 면에서 물체까지의 거리 l1, l2 등과는 다름.

l1

l2

(10)

Focal length Focal length

1 k...

u1=0

h1

hk

F' u'k

Ak H'

A1 H

bfl f'b

efl, f' fb

f

F u1

h1

hk

u'k=0

유효 초점거리(effective focal length, efl): f'

- 제2 주요점에서 제2초점까지의 거리 : efl = f’ = H’F’

후 초점거리(back focal length, bfl): f‘

b

-광학계의 마지막 면의 정점에서 제2 초점까지의 거리 : bfl = f’b = AkF’

제2 주요면의 위치 = bfl - efl

efl, f’

bfl, f’b

(11)

Focal length Focal length

물체측 초점거리(Object side focal length): f

- 제1 주요점에서 제1 초점까지의 거리 : f = HF

앞 초점거리(front focal length): f

b = 작동거리 (working distance)

- 제1면의 정점에서 제1초점까지의 거리 : fb = A1F

제1 주요면의 위치 : f

b - f

1 k...

u1=0

h1

hk

F' u'k

Ak H'

A1 H

bfl f'b

efl, f' fb

f

F u1

h1

hk

u'k=0

efl, f’

bfl, f’b

f fb

(12)

Utility of principal planes Utility of principal planes

H

H

22

ƒ’ƒ’

FF22

PPPP22 H

H

11

ƒƒ FF11

PPPP11

s s’

n

n

LL

n n n n

hh

h’h’

Suppose

Suppose s, s

s, s’’, f, f, f, f’’

all measured from H all measured from H

11

and H and H

22

(13)

Cardinal points and planes:

Nodal points (N1, N2) and Nodal planes (NP1, NP2)

Cardinal points and planes:

Nodal points (N1, N2) and Nodal planes (NP1, NP2)

n n n’ n

N

N

22

NPNP22 N

N

11

NPNP11

n n

LL

절점(nodal point : N

1, N2)

¾ 광학계는 입사각과 출사각이 같은 광선이 1개 존재.

¾ 제1절점:이 광선을 물체측에서 보아 입사하는 것처럼 보이는 점.

¾ 제2절점:이 광선을 상측에서 보아 출사하는 것처럼 보이는 점.

(14)

Nodal point and optical center Nodal point and optical center

N' u N

u' c

1 2

광심(optical center : C) :

절점(nodal point)를 정의하는 하나의 광선 (입사각과 출사각이 같은 광선)이 실제로 광 축과 교차하는 점.

Nodal point 의 성질

i) 제1절점으로 입사한 광선은 제2절점에서 출사 (제1절점 - 광심 - 제2절점) ii) (제1)절점으로 입사한 광선은 입사각과 출사각이 같다.

iii) 상측 매질의 굴절률과 물체측 매질의 굴절률이 같으면 절점과 주요점은 같다.

N1 = H1 , N2 = H2

iv) 제2절점을 기준으로 광학계를 회전시키면 상의 위치는 변화하지 않는다.

F'

N2 N1 F'

C

(15)

Cardinal planes of simple systems Thin lens

Cardinal planes of simple systems Thin lens

s P n s

n + = '

'

Principal planes, nodal planes, Principal planes, nodal planes, coincide at center

coincide at center VV

H, H H, H’’ V’V’

V’ V and V coincide and and V coincide and

is obeyed.

is obeyed.

(16)

Cardinal planes of simple systems Spherical refracting surface

Cardinal planes of simple systems Spherical refracting surface

n n n n

Gaussian imaging formula Gaussian imaging formula obeyed, with all distances obeyed, with all distances measured from V

measured from V VV

s P n s

n + = '

'

(17)

Conjugate Planes – where y’=y Conjugate Planes – where y’=y

H

H

22

ƒ’ƒ’

FF22

PPPP22 H

H

11

ƒƒ FF11

PPPP11

s s’

n n

LL

n n n n

yy

y’y’

(18)

Combination of two systems:

e.g. two spherical interfaces, two thin lenses … Combination of two systems:

e.g. two spherical interfaces, two thin lenses

n n

22

n n

H

H

11 H

H

11

n n

H

H

22 H

H

22

H

H

tt

y y

Y Y

d d

ƒ ƒ

tt

ƒ ƒ

11

F

F

F

F

11

1. Consider F

1. Consider F’’ and Fand F11

h h

Find

Find h h’

(19)

Combination of two systems:

Combination of two systems:

n n

22

n n n’ n

H

H

11

H

H

11

H

H

22 H

H

22

H

H

y y Y Y

d d ƒ ƒ

1. Consider F and F 1. Consider F and F22

F

F

22

ƒ ƒ

22

h h

F

F

Find

Find h h

(20)

Summary Summary

H

H

11

H

H

11 H

H

22 H

H

22

H

H

H’

H

ƒ ƒ h h h h ƒ’ ƒ’

F

F

F

F

d d

n n

22

n n n n

(21)

Summary Summary

2 2 1 2

1

2 1

1 2 2

2 1

2 1

2 2

1 2

,

' '

' '

' '

'

' ' '

' '

n P d P

P P

P or

f n f

f dn f

n f

n f

n

n n P

d P H

f H d f

h

n n P

d P H

f H d f

h

− +

=

=

− +

=

÷ ÷

⎜⎜ ⎞

− ⎛

=

=

=

÷ ÷

⎜⎜ ⎞

= ⎛

=

=

Hecht, 6.1, p.214

(22)

Thick Lens Thick Lens

n n

22

R R

11

R R

22

H

H

11,H

,H

11

H

H

22,H

,H

22

In air n = n

In air n = n =1 =1 Lens, n

Lens, n

22

= 1.5 = 1.5

R R

11

= - = - R R

22

= 10 cm = 10 cm d = 3 cm

d = 3 cm Find

Find

ƒ

ƒ

11,

,

ƒ

ƒ

22,

,

ƒ

ƒ

, h and h

, h and h

Construct the

Construct the

principal planes, H,

principal planes, H, H

H

of the entire

of the entire

system

system

n n n n

(23)

Principal planes for thick lens (n 2 =1.5) in air Principal planes for thick lens (n 2 =1.5) in air

Equi Equi - - convex or convex or equi equi - - concave and moderately thick concave and moderately thick

⇒ ⇒ P P

11

= P = P

22

≈ ≈ P/2 P/2

' d 3 h

h = − =

1 2

2 2

' f

f n

h d

f f n

h d

=

=

H H H’ H H H H’ H

(24)

Principal planes for thick lens (n 2 =1.5) in air Principal planes for thick lens (n 2 =1.5) in air

Plano

Plano- -convex or convex or plano plano- - concave lens with R concave lens with R

22

= = ∞ ∞

⇒ ⇒ P P

22

= 0 = 0

d h

h

3 ' 2

0

=

1 2

2 2

' f

f n

h d

f f n

h d

=

=

H H H’ H H H H H

(25)

Principal planes for thick lens (n=1.5) in air Principal planes for thick lens (n=1.5) in air

For meniscus lenses, the principal planes move For meniscus lenses, the principal planes move

outside the lens outside the lens

R R

22

= 3R = 3R

11

(H (H reaches the first surface) reaches the first surface)

P Same for all lenses Same for all lenses

1 2

2 2

' f

f n

h d

f f n

h d

=

=

H H H’ H H H H H H H H’ H

H H H’ H

(26)

Examples: Two thin lenses in air Examples: Two thin lenses in air

2 2

f d f P

d P

h = =

ƒ ƒ

11

ƒ ƒ

22

d d

H

H

11

H

H

11 H

H

22 H

H

22

n = n

n = n

2 2

= n’ = n = 1 = 1 Want to replace H

Want to replace H

ii

, H , H

ii

with H, H’ with H, H

1

'

1

f d f P

d P

h = − = −

h

h

h

h

H H H’ H

(27)

Examples: Two thin lenses in air Examples: Two thin lenses in air

ƒ ƒ

11

ƒ ƒ

22

d d

n = n

n = n

2 2

= n’ = n = 1 = 1

2 1 2

1

2 2 1 2

1

1 1

1 ,

f f

d f

f f

or

n P d P

P P

P

− +

=

− +

=

H H H’ H

F F F F

ƒ ƒ ƒ’ ƒ’ s s f

1 '

1

1 + =

s’ s

s s

(28)

Two separated lenses in air Two separated lenses in air

f f

11

=2f =2f

22

d = 0.5 d = 0.5 f f

22

H H H’ H

F’ F F F

f’ f

d = d = f f

22

H H H H

F’ F F F

f’ f

(29)

Two separated lenses in air Two separated lenses in air

f f

11

=2f =2f

22

d = 2 d = 2 f f

22

H H H’ H

F’ F F F

f’ f

d = 3 d = 3 f f

22

Principal points at Principal points at

∞ ∞

e.g. Astronomical telescope e.g. Astronomical telescope

(30)

Two separated lenses in air Two separated lenses in air

f f

11

=2f =2f

22

d = 5 d = 5 f f

22

f’ f

e.g. Compound microscope e.g. Compound microscope

H H

F’ F F F

H’ H

(31)

Two separated lenses in air Two separated lenses in air

f f

11

= = - - 2f 2f

22

d = d = - - f f

22

e.g. Galilean telescope e.g. Galilean telescope

Principal points at

Principal points at ∞ ∞

(32)

Two separated lenses in air Two separated lenses in air

f f

11

= = - - 2f 2f

22

d = d = - - 1.5 1.5 f f

22

e.g. Telephoto lens e.g. Telephoto lens

H H H H

F’ F

f’ f

F F

(33)

우와아~ !!! 복잡하다.

우와아 우와아 ~ !!! ~ !!! 복잡하다 복잡하다 . .

HH11

HH11 HH22 HH22

HH H’H

ƒ

ƒ ƒ’ƒ’

h

h hh’

FF FF’

d d nn22

nn n’n

렌즈 렌즈 2 2 개가 개가 있는 있는 경우도 경우도 힘들다 힘들다 . .

좋은 좋은 방법이 방법이 없을까 없을까 ? ?

H H11 H

H11 HH22 HH22 HH H’H

ƒ

ƒ ƒ’ƒ’

hh h’h

FF F’F

dd n n22 n

n n’n

H H11 H

H11 HH22 HH22 H

H H’H

ƒƒ hh hh’ ƒ’ƒ’

FF FF’

dd n n22 n

n nn’

3 3 개 개 이상 이상 있으면 있으면 ? ? 못하겠다 못하겠다 . .

포기 포기 ? ?

(34)

Matrix Method Matrix Method

⎟⎟ ⎠

⎜⎜ ⎞

⎟⎟ ⎛

⎜⎜ ⎞

= ⎛

⎟⎟ ⎠

⎜⎜ ⎞

1 1 2

2

α α

y D

C

B A

y

1 1

2

1 1

2

θ α

θ

D Cy

B Ay

y

+

=

+

=

(35)

What is the ray-transfer matrix

What is the ray-transfer matrix

(36)

How to use the ray-transfer matrices

How to use the ray-transfer matrices

(37)

How to use the ray-transfer matrices

How to use the ray-transfer matrices

(38)

Translation Matrix Translation Matrix

( ) ( )

( ) ( )

1 0 1 0 0 0 0

1 0 0

1 0 0

0 0

1 1 0

0 0

1

tan

1

0 1

1 1

0 1 0 1

y y L y L

y y L

y

y y

y L x x

α α α α

α

α α

α α

α

= = + ≅ +

= +

= +

⎡ ⎤ − ⎡ ⎤

⎡ ⎤ ⎡ = ⎤ ⎢ ⎥ = ⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( yo, αo)

( y1, α1 )

L

(39)

Refraction Matrix Refraction Matrix

' :

1 1

y R y R y

R

Paraxial Snell s Law n n

y n y n y y n n

R n R n R R R n y n

α θ φ θ α θ φ θ θ α

θ θ

α θ θ α α

′= ′− = ′−

= − = −

= +

= ′ ′

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

′= ′− = ⎜ ⎟⎝ ⎠′ − = ⎜ ⎟⎜⎝ ⎠⎝′ + ⎟⎠− = ⎜⎝ ′ − ⎟⎠ + ⎜ ⎟⎝ ⎠′

( )

1

( )

0

1 0

: 0

1 1 : 0

y y

y y Concave surface R

n n

Convex surface R

R n n

α

α α

′ = +

⎡ ⎤

′ <

⎡ ⎤ = ⎢ ⎛ ⎞ ⎛ ⎞⎥⎡ ⎤

⎢ ⎥′ ⎢ − ⎥⎢ ⎥ >

⎣ ⎦ ⎢⎣ ⎜⎝ ′ ⎟ ⎜ ⎟⎠ ⎝ ⎠′ ⎥⎦⎣ ⎦

y=y’

(40)

Reflection Matrix Reflection Matrix

( ) ( ) ( )

:

2

1 0

2 1

1 0 2 1

y y y

R R R

Law of Reflection

y y

R R R y

y y

R y

y y

R

α θ φ θ α θ φ θ θ α

θ θ

α θ θ α

α

α α

α α

′ = ′− = ′− = + = + = +

− −

= ′

′ = ′+ = + = +

′ = +

′ = ⎛ ⎞⎜ ⎟⎝ ⎠ +

⎡ ⎤

⎡ ⎤′ = ⎢ ⎥⎡ ⎤

⎢ ⎥′ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

y=y’

(41)

Thick Lens Matrix I Thick Lens Matrix I

0 0

1

1

0 0

1

1

1 0

: L

L L

y y

Refraction at first surface y n n n M

n R n α α

α

⎡ ⎤

⎡ ⎤ ⎡ ⎤

⎡ ⎤ = ⎢ − ⎥⎢ ⎥ = ⎢ ⎥

⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢⎣ ⎥⎦⎣ ⎦ ⎣ ⎦

2 1 1

2

2 1 1

1 2 : 1

0 1

y t y y

Translation from st surface to nd surface M

α α α

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= =

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 2 2

3

3 2 2

2

1 0

: y L L y y

Refraction at second surface n n n M

n R n

α α α

⎡ ⎤

⎡ ⎤ = ⎢ − ′ ⎥⎡ ⎤ = ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎢⎣ ′ ′⎥⎦

(42)

Thick Lens Matrix II Thick Lens Matrix II

( )

( )

( )

1

2

1

1

2 1 1 2

: 1

1 0

1

1 1

L

L L

L L

L

L L

L

L L

L L L L

L L

Assuming n n

t n n t n

n R n

M n n n

n n n

n R n

n R n

t n n t n

n R n

t n n

n n n n n n

n R n R n R n R t

= ′

⎡ − ⎤

⎡ ⎤ ⎢ + ⎥

⎢ ⎥ ⎢ ⎥

= ⎢ − ⎥ ⎢ − ⎥

⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢⎣ ⎥⎦

⎡ − ⎤

⎢ + ⎥

⎢ ⎥

= ⎢⎢ − ⎡⎢ + − ⎤⎥ + − − + ⎥⎥

⎢ ⎣ ⎦ ⎥

⎣ ⎦

2 1

1 0 1 0

1

L L 0 1 L

L L

M n n n t n n n

n R n n R n

⎡ ⎤ ⎡ ⎤

⎡ ⎤

⎢ ′ ⎥ ⎢ ⎥

= ⎢⎢⎣ ′− ′⎥⎥⎦⎢⎣ ⎥⎦ ⎢⎢⎣ − ⎥⎥⎦

3 2 1

:

Thick lens matrix M = M M M

(43)
(44)

Thin Lens Matrix Thin Lens Matrix

2 1

1 2

:

1 0

1 1

1

1 1 1

1 0

1 1

L

L

Thin lens matrix

M n n

n R R

n n

but f n R R

M

f

⎡ ⎤

⎢ ⎥

= ⎢ ⎢ ⎣ − ⎛ ⎜ ⎝ − ⎞ ⎟ ⎠ ⎥ ⎥ ⎦

⎛ ⎞

= − ⎜ − ⎟

⎝ ⎠

⎡ ⎤

⎢ ⎥

= ⎢ − ⎥

⎢ ⎥

⎣ ⎦

The thin lens matrix is found by setting t = 0:

nL

(45)

Summary of Matrix Methods

Summary of Matrix Methods

(46)

Summary of Matrix Methods

Summary of Matrix Methods

(47)

System Ray-Transfer Matrix System Ray-Transfer Matrix

Introduction to Matrix Methods in Optics, A.

Gerrard and J.

M. Burch

1 1

y

α

⎡ ⎤⎢ ⎥

⎣ ⎦

2 2

2 2

n n

y α

+ +

(48)

System Ray-Transfer Matrix System Ray-Transfer Matrix

Any paraxial optical system, no matter how complicated, can be

represented by a 2x2 optical matrix. This matrix M is usually denoted

: system matrix A B

M C D

⎡ ⎤

= ⎢ ⎥

⎣ ⎦

A useful property of this matrix is that

Det

0

f

M AD BC n

= − = n

where n0 and nf are the refractive indices of the initial and final media of the optical system. Usually, the medium will be air on both sides of the optical system and

Det

0

1

f

M AD BC n

= − = n =

(49)

Significance of system matrix elements

Significance of system matrix elements

The matrix elements of the system matrix can be analyzed

to determine the cardinal points and planes

of an optical system.

0 0 f

f

y A B y

C D

α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⇒

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦

Let’s examine the implications

when any of the four elements of the system matrix is equal to zero.

0 0

0 0

f f

y Ay B Cy D

α

α α

= +

= +

D=0 : input plane = first focal plane

A=0 : output plane = second focal plane

B=0 : input and output planes correspond to conjugate planes C=0 : telescopic system

(50)

D=0 A=0

B=0 C=0

(51)

System Matrix with D=0 System Matrix with D=0

Let’s see what happens when D = 0.

0 0

0 0

0

0

f f

f f

y A B y

C

y Ay B Cy

α α

α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⇒

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦

= +

=

When D = 0, the input plane for the optical system is the input focal plane.

(52)

Ex) Two-Lens System Ex) Two-Lens System

f1 = +50 mm f2 = +30 mm

q = 100 mm

r s

Input

Plane Output

Plane

F1 F1 F2 F2

T1 R1 T2 R2 T3

0

3 2 2 1 1

0

2 1

1

2 1 1 2

1 0 1 0

1 1 1

1 1

1 1

0 1 0 1 0 1

1 0 1 1 0 1

1 1 1

1 1 1

1 1 1

0 1 0 1 0 1

f f

y y s q r

M M T R T R T

f f

q q r

r q

r f f

s q s

M r

f f f f

α α

⎡ ⎤ ⎡ ⎤

⎡ ⎤ = ⎡ ⎤ = = ⎡ ⎤⎢ ⎥⎡ ⎤⎢ ⎥⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢⎣ ⎥⎦⎢− ⎥⎢⎣ ⎥⎦⎢− ⎥⎢⎣ ⎥⎦

⎣ ⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦

− + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥

= ⎢⎣ ⎥⎦⎢⎢⎣− ⎥⎥⎦⎢⎣ ⎥⎦⎢⎢⎣− − + ⎥⎥⎦ = ⎢⎣ ⎥⎦⎢⎢⎣− ⎥⎥⎦

1

1 1

1 r 1

f f

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ − − + ⎥

⎢ ⎥

⎣ ⎦

(53)

1 1 3 2 2 1 1

2 1 1 2 1 1

1 2 1 1 2 2 1 1

2 1 1 2 1 1

1 1

0 1 1 1 1

1 1

1 1 1

1 1 1

1 1

q q r

r q

f f

M T R T R T s

q q r r

r q

f f f f f f

q s s q q r r q q r r

r q s

f f f f f f f f

q q r r

r q

f f f f f f

+ −

⎤ ⎢

= = = ⎢ ⎥ ⎢⎦ − + − +

+ + − + − +

= ⎢⎢ − + − +

⎥⎦

( )( ) ( )( )

2 1 1

2 1 1

1 2

1 1 0

30 50 100 50 100 50 30 175

q r r

D r q

f f f

f f q f

r q f f

r mm

⎛ ⎞

= − ⎜ + − ⎟− + =

⎝ ⎠

− +

⇒ = − −

− +

= =

− −

ƒ

ƒ11 ƒƒ22

d d HH H’H

FF F’F

ƒ

ƒ ƒ’ƒ’

s’s ss

h h rr

1 2

1 2 1 2 1 2

1 1 1

f f

d f

f = f + f f f = f f d +

2 2

f d f P d P

h= =

2 1 2 1

2 1 2

f d f f f d

r f h f

f f f d

⎛ − ⎞ −

= − = ⎜⎝ ⎟⎠ = + −

< check! >

(54)

System Matrix with A=0, C=0 System Matrix with A=0, C=0

0 0 0

0 0

f

0

f f

f

y B y

C D

y B

Cy D

α α

α

α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦

=

= +

When A = 0, the output plane for the optical system is the output focal plane.

When C = 0, collimated light at the input plane is collimated light at the exit plane but the angle with the optical axis is different. This is a

telescopic arrangement, with a magnification of D = αf/α0.

0 0

0 0

0

0

f f f

f

y A B y

D y Ay B

D

α α

α

α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦

= +

=

(55)

0 0

0

0 0

0 f

0

f

f f

f

y A y

C D

y Ay

Cy D

m A y

y

α α

α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎣ ⎦

=

= +

= =

When B = 0, the input and output planes are object and image planes, respectively, and the transverse magnification of the system m = A.

System Matrix with B=0

System Matrix with B=0

(56)
(57)

Ex) Two-Lens System with B=0 Ex) Two-Lens System with B=0

f1 = +50 mm f2 = +30 mm

q = 100 mm

r s

Object

Plane Image

Plane

F1 F1 F2 F2

T1 R1 T2 R2 T3

( )

( ) ( )

( )

1

1 2 2 1 1

2 2 1 1

1 2 2 1 2 2 1 2

1 1 2 2 1 2 1 1 2

1 2 1

1 0

1

1 1

r q q r

q r r q q r r f

B r q s s

r q q r r

f f f f f

f f f f

f f r q f qr r f f f q f f q f r q q r f f f r r f q f f q f f

q s s q

m A

f f f

⎛ + ⎞ + −

= + − − ⎜⎝ − − + ⎟⎠ = ⇒ = + − − +

+ − − +

= =

+ − + − − + + −

⎛ ⎞

= = − + − ⎜ − ⎟

⎝ ⎠

(58)

Location of Cardinal Points (Planes) for an Optical System

Location of Cardinal Points (Planes) for an Optical System

Distances measured to the right of the respective reference plane are positive, distances measured to the left are negative. As shown:

p < 0

q > 0

f

1

< 0

f2 > 0

r > 0

s < 0

v > 0

w < 0

(59)
(60)

Ex) Thick Lens Analysis Ex) Thick Lens Analysis

R1 = +30 mm R2 = +45 mm

Input plane (RP1 )

V1 V2

t = 50 mm nL = 1.8

n0 = 1.0 n0 = 1.0

Find for the lens:

(a) Principal Points (b) Focal Points (c) Focal Length (d) Nodal Points

output plane (RP2 )

참조

관련 문서

Transverse integrated method is an innovative way of solving 3-D neutron diffusion equation which is to convert the 3-D partial. differential equation into 3

traditional techniques for general nonconvex problems involve compromises local optimization methods (nonlinear programming). • find a point that minimizes f 0 among

선박기본설계개론, 2006.3 Computer Aided Ship Design 2008 Computer Aided Ship Design 2008 –– PART III: Optimization Methods , 2006.3 PART III: Optimization

소리 또는 음(音)은 사람의 청각기관을 자극하여 뇌에서 해석되는 매질의 움직임이다. 공기나 물 같은 매질의 진동을 통해 전달되는 종파이다. 우리들의 귀에 끊임없이

종 펌핑된 Er:Yb:Glass 디스크 매질의 온도 변화 특성을 수치적으로 분석하기 위해 펌프광 크기와 반복률, 펌프 펄스폭 변화에 대해 조사하였으며 펌프 에너지에 대한

선박기본설계개론, 2006.3 Computer Aided Ship Design 2008 Computer Aided Ship Design 2008 –– PART III: Optimization Methods , 2006.3 PART III:

 A linear system of equations in n unknowns has a unique solution if the coefficient matrix and the augmented matrix have the same rank n, and infinitely many solution if

--- Any linear combination of two solutions is again a