• 검색 결과가 없습니다.

Applicability of UV and UV/$H_2O_2$ Processes in the Control of Pharmaceuticals and Personal Care Products and Microbiological Safety for Water Reuse

N/A
N/A
Protected

Academic year: 2021

Share "Applicability of UV and UV/$H_2O_2$ Processes in the Control of Pharmaceuticals and Personal Care Products and Microbiological Safety for Water Reuse"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

ᾂᅆ὆ᵫⱶᅆ὆ ўᏽᏦᣋጪⵇ`ᴶῲ᤟ἲӎဒⵊⵆᨆᾚὢẗ؞ᨎ၊ᤊ὆UV ᏽ

UV/H2O2 ӣ ὆`ẗ᤟

Applicability of UV and UV/H2O2 Processes in the Control of Pharmaceuticals and Personal Care Products and Microbiological Safety for Water Reuse

ʡᯝ⪙

․┡ӹ⋕⯩ಽᦥ┅

Il-Ho Kim

․Hiroaki Tanaka

Ծ⦎૮ⵇ૮ⵇẾӣⵇᷞ՚Ӫᕮ᥻Ἆᷛպ⁳ⵗ⹆ҫ↶ᷞ՚ᤪ⤞

Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University (2010֥ 4ᬵ 18ᯝ ᱲᙹ, 2010֥ 7ᬵ 30ᯝ ₥┾)

Abstract : Over the last decades, much consideration has been given to microbiological and chemical risks, especially when waste- water was reclaimed as water resources for urban water, irrigation water and recreational water etc. We investigated the perfor- mance of UV-based processes such as UV and UV/H2O2 for both the removal of pharmaceuticals and personal care products (PPCPs) as an emerging chemical and the inactivation of pathogen with bench-scale experimental study. 38 kinds of PPCPs inclu- ding antibiotics and analgesics were detected from secondary effluent used as tested water. Bench-scale experimental study showed that UV process would require considerable UV dose for the effective PPCPs removal. Contrarily, PPCPs removal efficiency signi- ficantly improved by the combination of H2O2 with UV even at a lower UV dose and, moreover, their removal efficiency increased with the increased initial H2O2 concentration. Besides naproxen (>89%), concentrations of all the investigated PPCPs decreased by more than 90% of their initial concentrations under 923 mJ/cm3 of UV dose and 6.2 mg/L of H2O2. Previous studies showed that this operational condition could get 4~5 log inactivation for Total coliform, indicating that UV/H2O2 process will be appropriate to comply with the criteria of California Title 22 for Total coliform.

Key Words : PPCPs, Pathogen, UV, Water Reuse

ᅠჾ . ⦹ᙹᰍᯕᬊᨱݡ⦽šᝍᯕɪᇡᔢ⦹Łᯩ۵aᬕߑ, ᰍᯕᬊᙹ᮹ၙపྜྷḩ॒ᨱ᮹⦽⪵⦺ᱢญᜅⓍ᪡޵ᇩᨕၙᔾ

ྜྷ⦺ᱢᦩᱥᖒᨱݡ⦽Łಅa᫵ǍࡹŁᯩ݅. ᅙᩑǍᨱᕽ۵ᄅ⊹ᜅ⍡ᯝ᮹ᩑᗮ᜾ᝅ⨹ᰆ⊹ෝᯕᬊ, ၙపྜྷḩᵲ↽ɝᵝ༊ᮥ

ၼŁᯩ۵᮹᧞⣩ඹෝݡᔢᮝಽ, UV⃹ญŖᱶ᮹᮹᧞⣩ඹᱽÑ⬉ŝၰၙᔾྜྷ⦺ᱢᦩᱥᖒ᮹ݍᖒa܆ᖒᮥŁₑ⦹ᩡ݅. ᜽⨹

ᙹಽᯕᬊ⦽⦹ᙹ2₉⃹ญᙹᵲᨱᕽ۵⧎ᔾྜྷḩ, ⧕ᩕḥ☖ᱽ॒38᳦᮹᮹᧞⣩ඹaᙹng/Lᨱᕽᙹ႒ng/L᮹ჵ᭥ಽá⇽ࡹ

ᨩᮝ໑, ᯕෝݡᔢᮝಽ⦹ᩍUV ၰUV/H2O2⃹ญᝅ⨹ᮥ⧪⦽đŝ, UV ݉ࠦ⃹ญᨱ᮹⦽᮹᧞⣩ඹ᮹⬉ŝᱢᯙᱽÑᨱ۵ᔢݚ ప᮹UV ᳑ᔍపᯕ⦥᫵⧁äᮝಽᩩᔢࡹᨩ݅. ၹ໕, UV/H2O2 Ŗᱶ᮹Ğᬑ, H2O2᮹℉a׮ࠥෝ᧞1 mg/Lᨱᕽ6 mg/Lʭḡ᷾

a᜽┕ᨱ঑௝b᮹᧞⣩ඹ᮹ᱽÑᮉᮡᱱᱱ᷾a⦹۵äᮝಽӹ┡ԍ݅. ⦽⠙, 923 mJ/cm2᮹UV ᳑ᔍపŝ6.2 mg/L᮹H2O2

ෝᄲᬊ⦽UV/H2O2⃹ญ۵Naproxen (>89%)᫙༉ु᮹᧞⣩ඹ᮹׮ࠥෝ90% ᯕᔢʭḡqᗭ᜽┍ᙹᯩᨩ݅. ੱ⦽, ᯕᬕᱥ᳑

Õᮡ⩥⧪⦹ᙹ⃹ญᰆᮁ⇽ᙹᵲ᮹ݡᰆɁǑᨱݡ⦽Ƚᱽ׮ࠥ(3,000/cm3)ෝʑᵡᮝಽ⦹ᩡᮥভ, 4~5 log᮹ᇩ⪽ᖒ⪵ෝݍᖒ⧁

ᙹ ᯩᮥäᮝಽᩩᔢࡹᨕ, ⦹ᙹ ᰍᯕᬊᨱ᫵Ǎࡹ۵California Title 22᮹criteriaෝ อ᳒᜽┍ᙹᯩᮥ äᮝಽ❱݉ࡹᨩ݅.

ሎᇞᄌ .᮹᧞⣩ඹ, ᄲᬱᖒၙᔾྜྷ, ᯱ᫙ᖁ, ⦹ᙹᰍᯕᬊ

1. ᕽು

↽ɝ, ᙹࠥᙹၰ⦹ᙹ⃹ญᙹ᮹ᦩᱥᖒᨱݡ⦽šᝍᯕ׳

ᦥḡŁᯩ۵aᬕߑ, ᮹᧞⣩ඹ(Pharmaceuticals and Personal Care Products, PPCPs)᪡zᮡၙప᪅ᩝྜྷḩᯕᵝ༊ၼŁᯩ

݅. ᯕ్⦽᮹᧞⣩ඹaᙹng/LᨱᕽᙹɆg/L᮹׮ࠥಽ⦹ᙹ

⃹ญᙹӹ⦹⃽ᙹᨱ᳕ᰍ⦹Łᯩᮭᯕ↽ɝᙹ֥e᮹ᩑǍॅ

ᨱ᮹⧕݅ᙹᅕŁࡹᨕ᪵݅.1~5) ᮹᧞⣩ඹ᮹ᵝ᫵႑⇽ᬱ᮹

⦹ӹಽᕽ, ⦹ᙹ⃹ญᰆ᮹ႊඹᙹaḡᱢࡹŁᯩᮝ໑, ḡᩎᨱ

঑௝⦹ᙹ⃹ญᰆᯕ ᭥⊹⦹۵ ⦹ඹ⊂ᨱᕽᙹࠥᬱᙹᨱ ⪝᯦

ࢁ a܆ᖒᯕ ᯩ݅۵ ᱱ, əญŁ ⦹ᙹ⃹ญᙹ۵ ࠥ᜽ḡᩎᨱ ᕽȡᵲ⦽ᙹᯱᬱᮝಽᕽᰍᯕᬊࢁᙹᯩ݅۵ᱱᨱᕽ, ᰆ௹

ᨱ۵⦹ᙹ⃹ญᰆᨱᯩᨕᕽࠥᅕ݅᧲ḩ᮹⃹ญᙹෝ⪶ᅕ⧕

᧝⧁⦥᫵aᯩ݅. ᮹᧞⣩ඹ᮹ᱽÑᨱݡ⦽ᩑǍ۵ᮁ౞ŝ

ၙǎ, ᯝᅙᮥᵲᝍᮝಽᵝಽ⧪⧕Კ᪵ᮝ໑, ⪽ᖒᜍ్ḡᨱ

᮹⦽᮹᧞⣩ඹ᮹ᇥ⧕ᨱᕽᇡ░ส⃹ญ, ⪽ᖒ┥⯂₊ᨱ᮹

⦽ ⃹ญ ၰ UV, O3 ॒ᨱ ᮹⦽ ⃹ญᨱ ᯕ෕ʑʭḡ ݅᧲⦽

⃹ญŖᱶᨱ ᮹⦽ ᮹᧞⣩ඹ᮹ ᱽÑᩑǍa ḥ⧪ࡹᨕ᪵݅.6~9) ᯕ్⦽ ʑ᳕᮹ ᩑǍđŝಽᇡ░, ᮹᧞⣩ඹᵲᨱ۵ ᔾྜྷ⦺ᱢ

⃹ญಽ۵∊ᇥ⯩ᱽÑࡹḡᦫ۵ྜྷḩᯕฯʑভྙᨱྜྷญ

⪵⦺ᱢ⃹ญŖᱶ᮹ᮁ⬉ᖒᯕʑݡࡽ݅. ⦽⠙, ྜྷญ⪵⦺ᱢ⃹

ญŖᱶᮥᯕᬊ⦽᮹᧞⣩ඹ᮹ᇥ⧕ᨱݡ⦽ᩑǍđŝaᅕŁ

ࡹŁ ᯩᮝӹ, ݡᔢᮝಽ ⦹۵ ᮹᧞⣩ඹ᮹ ᳦ඹa ⦽ᱶࡹᨕ

ᯩʑভྙᨱ᮹᧞⣩ඹ᮹ᱽÑ✚ᖒᨱš⦽ᱶᅕ۵ᦥḢࠥᇩ

∊ᇥ⦹݅.

⦽⠙, ԕᇥእĥƱ௡ྜྷḩᯕӹ᮹᧞⣩ඹ᪡zᮡၙప᪅ᩝ

(2)

'JH  $POUJOVPVT FYQFSJNFOUBM TFUVQ

ྜྷḩ᮹ᙹ⪹Ğᵲᨱᕽ᮹Ñ࠺ᨱݡ⧕šᝍᯕ׳ᦥḡŁᯩḡ อ, ⦹ᙹ⃹ญᙹෝ ᰍᯕᬊ⦹۵ Ğᬑ ᯕ్⦽ ྜྷḩॅᨱ ݡ⧕

ᦥḢȽᱽaᯕ൉ᨕḡḡᦫŁᯩ݅. ə్ӹ, ⦹ᙹ⃹ญᙹ᮹

ᰍᯕᬊ᜽, ᯙe᮹ Õvᯕӹ ᔾ┽ĥᨱ᮹ ᩢ⨆ᮥ ↽ᗭ⪵ ੱ ۵ᔍᱥᨱᩩႊ⦹ʑ᭥⧕ᕽ۵ᯕ᪡zᮡၙప᪅ᩝྜྷḩᮥ

ᱢᱩ⯩ šญ⧕᧝ ⧁ ⦥᫵a ᯩᮝ໑, ޵ᇩᨕᕽ ၙᔾྜྷ⦺ᱢ ᮝಽࠥ ᦩᱥ⦽ ᰍᯕᬊᙹෝ ᔾᔑ⧕᧝ ⧁ äᯕ݅.

঑௝ᕽ, ᅙᩑǍᨱᕽ۵ຝᱡUVෝʑᅙᮝಽ⦹۵⃹ญŖ ᱶᮥᯕᬊ, ᳦݅᮹᮹᧞⣩ඹᨱݡ⦽ᱽÑ✚ᖒᮥá☁⦹ᩡ݅.

ੱ⦽, á☁ Ŗᱶᯕ ⦹ᙹ 2₉ ⃹ญᙹᵲ᮹ ᯵ඹ ᮹᧞⣩ඹෝ

∊ᇥ⯩ᱽÑ⦹໕ᕽ, ࠺᜽ᨱၙᔾྜྷ⦺ᱢᮝಽࠥᦩᱥ⦽⦹ᙹ

ᰍᯕᬊᙹෝᔾᔑ⦹ʑ᭥⦽Ŗᱶᮝಽᕽࠥᱢ⧊⦽ḡᨱݡ⧕ᕽ á☁⦹ᩡ݅.

2. ᝅ⨹ႊჶ

2.1. ᝅ⨹ᰆ⊹ၰ᜽⨹ᙹ

⦹ᙹ2₉⃹ญᙹෝᯕᬊ⦽ᩑᗮᝅ⨹ᮡFig. 1ᨱᱽ᜽⦽ᝅ

⨹ᰆ⊹ෝᯕᬊ⦹ᩡ݅. ᅙᰆ⊹᮹ᯝᯝ⃹ญᙹపᮡ10 m3ᯕ ໑, ၹ᮲᳑᮹Ǎᖒᮡ᳑ݚᮁ⬉ᬊᱢ35 L, ᳑ݚℕඹ᜽e5 ᇥᮥw۵ᜅ▭ᯙ౩ᜅᱽၹ᮲᳑ 3}aḢ಍ಽᩑđࡹᨕᯩ

݅. ᩑᗮᝅ⨹ᨱᕽ۵ᝅᱽ⦹ᙹ2₉⃹ญᙹᵲᨱ᳕ᰍ⦹۵᮹

᧞⣩ඹෝݡᔢᮝಽ⦹ᩡʑভྙᨱ, ᄥࠥಽ᮹᧞⣩ඹ۵℉a

⦹ḡᦫᦹ݅. ੱ⦽, ᜽⨹ᨱᯕᬊࡽ2₉⃹ญᙹ۵ᝅ⨹ᰆ⊹

᮹ᱥ݉ᨱᖅ⊹ࡽeᯕ༉௹ᩍŝᰆ⊹ᨱ᮹⧕ᩍŝࡽ⬥, ၹ ᮲᳑ᨱᵝ᯦ࡹᨩ݅. ᩍŝ⬥᮹2₉⃹ญᙹ᮹ᖒᔢᮡᬊ᳕ᮁ

ʑ┥ᗭ2.6~3.9 mg/L, UV254 0.051~0.078 /cmಽ⦹ᙹ2₉⃹

ญᙹಽᕽ۵ ๅᬑ ᧲⪙⦽ ᙹḩᮥ w۵ äᮝಽ ⪶ᯙࡹᨩ݅.

2.2. ᝅ⨹᳑Õ

UV ၰUV/H2O2 ⃹ญᨱ᮹⦽⦹ᙹ2₉⃹ญᙹᵲ᮹᮹᧞

⣩ඹෝ⬉ŝᱢᮝಽᱽÑ⦹ʑ᭥⧕᫵Ǎࡹ۵ UV ᳑ᔍపᮥ

á☁⦹ʑ᭥⧕, ᗭእᱥಆᯕ݅ෙ2᳦ඹ᮹ᱡᦶᙹᮡఉ⥥(ᗭ

5BCMF  &YQFSJNFOUBM DPOEJUJPOT GPS 67 BOE 67)0 USFBUNFOUT 67-BNQ

67 67)0

*OJUJBM)0

$POD NH-

0QFSBUFE SFBDUPS

678     3

678     3

እᱥಆ41W᮹UV Lamp: UV41W Lamp, 65W᮹UV Lamp:

UV65W Lamp)ෝᯕᬊ⦹ᩍ⃹ญ᜽⨹ᮥ⧪⦹ᩡ݅. UV41W Lamp ᮹UVvࠥ۵0.639 mW/cm2, UV65W Lamp᮹Ğᬑ۵1.025 mW/cm2᮹ UVvࠥෝ w۵݅. Table 1ᨱ UV ၰ UV/H2O2

⃹ญᝅ⨹᜽᮹ᬕᱥ᳑Õᮥᱽ᜽⦹ᩡ݅. ⃹ญᝅ⨹ᮡbᬕᱥ

᳑Õ⦹ᨱᕽ 1⫭ᦊ ᙹ⧪⦹ᩡᮝ໑, ₥≉⦽ ᜽ഭᨱ ݡ⧕ᕽࠥ

LC/MS/MSෝ ᯕᬊ⦹ᩍ 1⫭ ᇥᕾᮥ ᝅ᜽⦹ᩡ݅.

2.3. ᇥᕾႊჶ

b ⃹ญᝅ⨹࠺ᦩ ₥≉⦽ ᜽ഭ۵ LC/MS/MS ᇥᕾᱥᨱ

Watersᔍ᮹ Oasis HLB Extraction Cartridge (6 cc/100 mg) ᮝಽŁᔢ⇵⇽ᮥ⧪⦹ᩡ݅. ᜽⨹ᙹၰb⃹ญŖᱶᨱ᮹⧕

⃹ญࡽ ⃹ญᙹᵲ᮹ ᮹᧞⣩ඹ ׮ࠥ۵ ng/L᮹ ݉᭥ಽ ๅᬑ

ԏᦹʑ ভྙᨱ, ᩑᗮᝅ⨹᜽ ₥≉⦽ ᜽ഭ۵ GF/B (1.0 Ɇm) ᩍḡಽ ᩍŝ⦽ ᩍᧂ 1 Lෝ Łᔢ ⋕✙ญḡಽ ׮⇶⦹ᩡ݅.

ᩍᧂᮡ׮⇶ᱥᨱEDTA ᬊᧂᮥ℉a⦹ᩍ᧞pH 4᮹ᔑᖒ᳑

Õᮝಽ᳑ᱶ⦹ᩡ݅. Łᔢ⇵⇽ᨱᯕᬊ⦽Oasis HLB ⋕✙ญ ḡ۵3 mL᮹ີ┥᪍ŝ6 mL᮹Ⅹᙽᙹෝᯕᬊ, ၙญ⍉ॵ ᖵܾ⦹ᩡᮝ໑, Concentrator (ᮁప: 10 ml/min)ෝ ᯕᬊ⦹ᩍ

1 L᮹ ᜽ഭෝ ׮⇶⦹ᩡ݅. Łᔢ⇵⇽ ŝᱶᮡ ⋕✙ญḡᨱ᮹

᜽ഭ᮹☖ᙹ, ⋕✙ญḡ᮹┩ᙹ, ີ┥᪍ᮥᯕᬊ⦽⋕✙ญḡ ԕ ᮹᧞⣩ඹ᮹ ᬊ⇽ᙽᮝಽ ⧪⦹ᩡ݅. ᬊ⇽ࡽ ᬊᧂᮡ ḩᗭ aᜅෝ ᯕᬊ⦹ᩍ ີ┥᪍ᮥ ⭹ၽ᜽┉ ݅ᮭ, ݅᜽ 0.1%

formic acid᪡ ີ┥᪍᮹ ⪝⧊ᬊᧂᨱ ᬊ⧕᜽┉ ⬥, ↽᳦ ᜽ ഭᬊపᮥ1 mLಽ⦹ᩍLC/MS/MSಽᇥᕾ⦹ᩡ݅. Fig. 2۵

Łᔢ⇵⇽ŝᱶᮥᅕᩍᵝ໑, LC/MS/MS᮹⊂ᱶ᳑Õᨱݡ⧕

ᕽ۵ Table 2ᨱ ᱽ᜽⦽݅.

(3)

'JH  11$1T EFUFDUFE GSPN UFTUFE XBUFS

'JH  4PMJE QIBTF FYUSBDUJPO QSPDFEVSF GPS -$.4.4 BOBMZTJT

3. đŝၰŁₑ

3.1. ᜽⨹ᙹಽᇡ░á⇽ࡽ᮹᧞⣩ඹ

Fig. 3ᨱᅙᝅ⨹ᨱᯕᬊ⦽᜽⨹ᙹಽᇡ░á⇽ࡽ᮹᧞⣩ඹ ᮹᳦ඹၰə⠪Ɂ⊹ෝᱽ᜽⦽݅. Fig. 3ᮝಽᇡ░᦭ᙹᯩ

۵ ၵ᪡ zᯕ, ᜽⨹ᙹᯙ ⦹ᙹ 2₉ ⃹ญᙹಽᇡ░ ⧎ᔾྜྷḩ

11᳦, ⧕ᩕḥ☖ᱽ 7᳦, ᇡᱶๆᬊᱽ 4᳦, ʑ┡ ḥ☖·ᗭᩝᱽ,

⩩š⪶ᰆᱽ ॒ ⅾ 38᳦ඹ᮹ ᮹᧞⣩ඹa á⇽ࡹᨩ݅. 38᳦

᮹᮹᧞⣩ᵲ, ⧎ᔾྜྷḩᯙclarithromycinᯕ481 ng/L᮹aᰆ

׳ᮡ׮ࠥಽá⇽ࡹᨩᮝ໑, crotamiton, sulpiride, DEET, levo-

5BCMF  .FBTVSFNFOU DPOEJUJPO GPS -$.4.4 BOBMZTJT

61-$:61-$"26*5:

$PMVNO:8BUFST"26*5:*.61-$#&)$

NNⰛNN 을N

$PMVNO5FNQ:℃

'MPXSBUF:N-NJO

*OKFDUJPOWPMVNF:을-

.PCJMF1IBTF:"'PSNJDBDJE#.FUIBOPM

(SBEJFOU: 5JNF NJO "  # 

  

  

  

  

  

  

  

  

.4.4:2VBUUSPNJDSP"1*

*POJ[BUJPO:&MFDUSPTQSBZ*POJ[BUJPO &4*

1PTJUJWF /FHBUJWF

4QSBZ7PMUBHF: L7 L7

4PVSDF5FNQ: ℃ ℃

$BQJMMBSZ5FNQ: ℃ ℃

floxacin ၰdisopyramide۵100 ng/L ᯕᔢᮝಽ┡᮹᧞⣩ඹ ᨱ እ⧕ Ł׮ࠥಽ᳕ᰍ⦹ᩡ݅. Nakada ॒ᮡ࠺Ğԕ5Ŕ᮹

⦹ᙹ⃹ญᰆ᮹ᮁ᯦ᙹ᪡2₉⃹ญᙹෝݡᔢᮝಽ6᳦᮹⧕ᩕ

ḥ☖ᱽ, 2᳦᮹phenolic antiseptics, 4᳦᮹ᦥၙऽĥᩕ᮹᮹

᧞⣩, 3᳦᮹ԕᇥእĥᰆᧁྜྷḩ, əญŁ3᳦᮹⃽ᩑᨱᜅ✙

ಽñ᮹ ᳕ᰍෝ ⪶ᯙ⦽ ၵ ᯩ݅.4) ᮹᧞⣩ᮝಽᕽ۵ crotami- ton, ketoprofen, carbamazepine, mefenamic acidaá⇽ࡹᨩ ᮝӹ, ✚⯩crotamiton᮹׮ࠥa245~968 ng/Lಽaᰆ׳ᮡ

äᮝಽ ᅕŁ⦹ᩡ݅. ᅙ ᩑǍᨱᕽࠥ ᩎ᜽ 347~448 ng/Lಽ

clarithromycin ݅ᮭᮝಽ׳ᮡ׮ࠥಽá⇽ࡹᨩ݅. Crotami-

(4)

5BCMF  3FNPWBM FGGJDJFODZ PG FBDI 11$1 BU DPOUBDU UJNF PG  NJO EVSJOH 678 BOE 678)0 QSPDFTTFT

6TF 11$1T 678 678)0

NH-

678)0

NH-

678)0

NH-

"OBMHFTJDT

%JDMPGFOBD    

,FUPQSPGFO    

*TPQSPQZMBOUJQZSJOF    

/BQSPYFO    

*OEPNFUIBDJO    

&UIFO[BNJEF    

.FGFOBNJDBDJE    

"OUJBSSIZUINJD

BHFOUT

%JTPQZSBNJEF    

"UFOPMPM    

1SPQSBOPMPM    

.FUPQSPMPM    

"OUJCJPUJDT

4VMGBNFUIPYB[PMF    

$JQSPGMPYBDJO    

/BMJEJYJDBDJE    

4VMGBEJNFUIPYJOF    

-FWPGMPYBDJO    

5SJNFUIPQSJN    

-JODPNZDJO    

$MBSJUISPNZDJO    

&SZUISPNZDJO    

"[JUISPNZDJO    

3PYJUISPNZDJO    

5IFPUIFST

%JMUJB[FN    

%JQZSJEBNPMF    

$MPGJCSJDBDJE    

$IMPSBNQIFOJDPM    

'VSPTFNJEF    

*GFOQSPEJM    

$SPUBNJUPO    

(SJTFPGVMWJO    

#F[BGJCSBUF    

1JSFO[FQJOF    

4VMQJSJEF    

$BSCBNB[FQJOF    

5IFPQIZMJOF    

%&&5    

$ZDMPQIPTQIBNJEF    

1SJNJEPO    

tonᮡᦥḢʭḡá⇽ᯕᅕŁࡽᔍಡaÑ᮹ᨧᮝӹ, ᯝᅙԕ ᨱᕽ۵ŝÑᙹ֥e⦹ᙹ⃹ญ᜽ᖅᨱᕽ᳦᳦á⇽ᯕᅕŁࡹ

ᨕ᪵݅. Okuda ॒ᩎ᜽⦹ᙹ⃹ญᰆ᮹ᮁ᯦ᙹᨱᕽᯕྜྷḩ

ᮥ á⇽⦹ᩡᮝ໑, ᔾྜྷ⦺ᱢ ᱽÑŖᱶᨱᕽ 30% ᯕ⦹᮹ ᱽ Ñᮉᯕ᨜ᨕᲙ, ᔾྜྷ⦺ᱢ⃹ญಽ۵⬉ŝᱢᮝಽᱽÑ⦹ʑᨕ ಅᬕྜྷḩಽᅕŁ⦹ᩡ݅.5) Herberer ॒ᮡࠦᯝ᮹ᄁෝฑԕ

⦹ᙹ⃹ญᰆ᮹ ᮁ᯦ᙹ᪡ ᮁ⇽ᙹಽᇡ░ diclofenacᯕ 2.51~

3.02 µg/L᮹ Ł׮ࠥಽ á⇽ࡹᨕ, ᯕ ྜྷḩᮥ ᙹ⪹Ğԕᨱᕽ

aᰆᵝ༊⧕᧝⧁ྜྷḩಽḡᱢ⦹ᩡ݅.1) ə్ӹ, ᅙá☁ᨱ

ᕽ۵᧞30 ng/LಽHerberer ॒ᨱ᮹⧕ᅕŁࡽ׮ࠥᅕ݅᧞

100႑ᱶࠥԏíá⇽ࡹᨕᔍᬊ᮹᧞⣩ඹaӹ௝ᄥಽๅᬑ

݅᧲⦹݅۵ äᮥ ᦭ ᙹ ᯩ݅.

⦽⠙, ᜽⨹ᙹಽᇡ░á⇽ࡽ38 ᳦ඹ᮹᮹᧞⣩ඹᵲ, atenolol, naproxen, N,N-diethyl-m-toluamide (DEET) ၰketoprofenᮡ

⦹ᙹŁࠥ⃹ญ ᜽ᜅ▽ᨱᕽ᮹ Ñ࠺ᮥ ᳑ᔍ⦽ ᩑǍđŝಽᇡ

░, ᔾྜྷၹ᮲᳑ᨱᕽ᧞70% ᯕᔢᱽÑࡹᨕእƱᱢ⪽ᖒᜍ

్ḡᨱ᮹⧕ᔾᇥ⧕ࡹʑᛍᬕྜྷḩಽᅕŁࡽၵᯩ݅.10)

⦽, ᔾᇥ⧕ᖒᯕԏᮡྜྷḩಽᇥඹࡽdisopyramide, crotami-

(5)

ton᮹⠪Ɂ׮ࠥ۵bb366 ng/L, 404 ng/Lಽ┡᮹᧞⣩ඹ ᨱእ⧕ๅᬑŁ׮ࠥಽ⦹ᙹ2₉⃹ญᙹᵲᨱ᯵ඹ⦹ᩍ, ᯕ

ॅᯕᨕ۱ᱶࠥ᮹ญᜅⓍෝw۵ḡᨱݡ⧕ᕽ۵޵ᬒᩑǍ a ḥ⧪ࡹᨕ᧝ ⦹ӹ, ᰍᯕᬊᙹಽᕽ᮹ ᯕᬊ᜽ ᯙℕᨱ ၙ⊹

۵ᩢ⨆ੱ۵ᔾ┽ĥᨱ᮹ᩢ⨆ᨱݡ⦽ᔍᱥᩩႊᱢᯙ⊂໕

ᮥŁಅ⦹໕ᔾྜྷ⦺ᱢ⃹ญŖᱶᨱ⇵aᱢᯙ⃹ญŖᱶᯕ⦥

᫵⧁ äᯕ݅.

3.2. UV Ŗᱶ᮹᮹᧞⣩ඹᱽÑᖒ܆

ᅙᝅ⨹࠺ᦩá⇽ࡽ38᳦᮹᮹᧞⣩ඹᨱݡ⦽UV ၰUV/

H2O2 Ŗᱶ᮹ᱽÑᖒ܆ᮥ᳑ᔍ⦹ʑ᭥⧕, ຝᱡUV41W ఉ⥥

ၰH2O2ෝᯕᬊ⦽ᩑᗮᝅ⨹ᮥ⧪⦹ᩡ݅. ᅙᩑǍᨱᕽ۵á

☁Ŗᱶ᮹ᖒ܆እƱෝ᭥⧕b᮹᧞⣩ඹ᮹90% ᱽÑෝ༊⢽

⊹ಽᖅᱶ⦹ᩡ݅. Table 3ᨱUV41W ݉ࠦ⃹ญၰUV41W᪡

H2O2ෝ ᄲ⧪⦹ᩡᮥ Ğᬑᨱ ᨜ᨕḥ b ᮹᧞⣩ඹ᮹ ᱽÑᮉ

ᮥ ᱽ᜽⦽݅. 575 mJ/cm2᮹ UVa ᳑ᔍࡹᨩᮭᨱࠥ ᇩǍ⦹

Ł, UV41W ݉ࠦ⃹ญ᮹Ğᬑ, b ᮹᧞⣩ඹ᮹ ᱽÑᮉᮡ 1%

(primidon)ᨱᕽ>98% (diclofenac)᮹ჵ᭥ಽݡᇡᇥ᮹᮹᧞

⣩ඹ᮹ ᱽÑᮉᯕ 90% ᯕ⦹ᨱ ນྕ෕۵ äᮝಽ ӹ┡ԍ݅.

ᅙᩑǍᨱᕽ۵bᝅ⨹ᨱᕽ᮹⃹ญᙹᵲ׮ࠥaá⇽⦹⦽⊹

ᯕ⦹ಽá⇽ࡽĞᬑ, ᱽÑᮉᮥ100%ಽ⦹ᩡᮝ໑, ᱶప⦹⦽

⊹ᯕ⦹ಽá⇽ࡽĞᬑ۵Ⅹʑ׮ࠥ᪡⃹ญᙹᵲ᮹׮ࠥ᮹₉ ಽᇡ░ᱽÑᮉᮥᔑᱶ⦹ᩍ, “>ᱽÑᮉ”ಽ⢽᜽⦹ᩡ݅. Table 3ᨱᕽ᦭ᙹᯩ۵ၵ᪡zᯕ, macrolideĥ᮹⧎ᔾྜྷḩᯙclari- thromycin, erythromycin॒᮹ᱽÑᮉᮡ10% ԕ᫙ᩡᮝ໑, ᔕ

∊ᱽDEET, ⧎ᦵᱽcyclophosphamide ॒᮹᮹᧞⣩ඹ۵ᙹ

%᮹ ๅᬑ ԏᮡ ᱽÑᮉᮥ ᅕᩡ݅. ✚⯩, DEET, cyclophos- phamide᮹ Ğᬑ۵ əॅ᮹ ᇥᯱǍ᳑ԕᨱ, UVᨱ ᮹⦽ ԏᮡ

ᇥ⧕ᮉᮥⅩ௹⧩ᮥäᮝಽᩩᔢࡹ۵ᦥၙऽđ⧊ᮥŖ☖ᱢ ᮝಽ wŁ ᯩ݅.

⦽⠙, UV41W᪡⧉̹H2O2ෝᄲ⧪⦹ᩡᮥĞᬑᨱ۵b᮹

᧞⣩ඹ᮹ᱽÑᮉᯕᬵ॒⯩᷾a⦹ᩍ, ᜽⨹ᙹᵲ᮹H2O2 ׮ࠥ

ෝ6.0 mg/Lಽḡᗮᱢᮝಽ℉a⦹ᩡᮥĞᬑ, naproxen, ery- thromycin, azithromycin, chloramphenicol, theophyline, cyclo- phosphamide, primidon ᯕ᫙᮹༉ु᮹᧞⣩ඹ۵90% ᯕᔢ ᮹ᱽÑᮉᮥᅕᩡ݅. ⩥ᰍ, ᯵ඹ᮹᧞⣩ඹ᮹ᔾ┽ၰᯙℕ ᨱ᮹ᩢ⨆ᨱݡ⧕Ǎℕᱢᮝಽ᦭ಅᲙᯩḡᦫᮝ໑, ʑᵡੱ

⦽ษಉࡹᨕᯩḡᦫʑভྙᨱ⦹ᙹ⃹ญ݉ĥᨱᕽ᮹ᱽÑ ᙹᵡᮡᇩ໦⪶⦹݅. ঑௝ᕽ, ⩥݉ĥᨱᕽ۵ᯝᱶᙹᵡ᮹ᱽ Ñ౩ᄉᮥݍᖒ⦹ʑ᭥⦽⦹ᙹ⃹ญŖᱶ᮹ᬕᱥ᳑Õᨱݡ⦽

ᱶᅕᱽŖᯕ⦥᫵⦹໑, ᅙᩑǍ۵ᯕෝ༊ᱢᮝಽ⦹ᩍᙹ⧪

ࡹᨩ݅.

á⇽ࡽ ᮹᧞⣩ඹᨱ ݡ⧕ 90% ᱽÑᮉᮥ ݍᖒ⦹ʑ ᭥⧕, UV41Wᅕ݅׳ᮡUV vࠥෝw۵UV65W ఉ⥥ෝᯕᬊ⦽ᝅ

⨹ᮥ⧪⦹ᩡ݅. Table 4۵UV65W ݉ࠦ⃹ญ᜽᪡UV65W/H2O2

Ŗᱶ᮹᮹᧞⣩ඹᱽÑᮉᮥእƱ⦽݅. UV65W ఉ⥥ෝᯕᬊ⦽

ᝅ⨹᜽᮹UV ᳑ᔍపᮡ923 mJ/cm2ᩡᮝ໑, H2O2 ׮ࠥෝ᷾

a᜽┕ᨱ঑௝b᮹᧞⣩ඹ᮹ᱽÑᮉࠥ⩥ᱡ⦹í᷾a⦹۵

äᮥ᦭ᙹ ᯩ݅. UV᪡ H2O2᮹ᄲᬊ⃹ญ᜽ OH ௝ॵ⋝ŝ

UVᨱ᮹⦽Ḣᱲᇥ⧕᮹ʑᩍࠥᨱš⦽á☁đŝ۵ₙŁྙ

11)ᨱᅕŁ⦹ᩡᮝ໑, ᯕෝₙ᳑⦹ʑၵ௡݅. ᅙᝅ⨹đŝಽ ᇡ░, 923 mJ/cm2᮹UV ᳑ᔍపŝ᧞6 mg/L᮹H2O2ෝᄲ ᬊ⧉ᮝಽ៉ݡᇡᇥ᮹᮹᧞⣩ඹ᮹90% ᱽÑᮉᯕݍᖒࢁᙹ

ᯩᮥäᮝಽ❱݉ࡹᨩᮝ໑, ᯕভUV ᳑ᔍ᜽eᮡ5ᇥᯕᨩ

݅. ᗭࠦᨱᯕᬊࡹ۵UV ᳑ᔍపၰ᳑ᔍ᜽eŝእƱ⧁Ğ ᬑ, ᮹᧞⣩ඹ ᱽÑෝ ༊ᱢᮝಽ UV/H2O2 Ŗᱶᮥ ᱢᬊ⦽݅

Ł ⦹໕, Ⅹʑ ᖅእᨱ᮹ ⚍ᯱᇡݕᯕ ᩩᔢࡽ݅. ঑௝ᕽ, ᖅ እᨱݡ⦽ᇡݕᮥĞq᜽┅໕ᕽá☁ࡽUV ᳑ᔍపᮥ⪶ᅕ

⦹ʑ᭥⧕ᕽ۵ᅙᝅ⨹ᨱᕽᯕᬊࡽUV ఉ⥥ᅕ݅޵׳ᮡ

UV ᳑ᔍvࠥෝw۵UV ఉ⥥ෝᱢᬊ⦹۵ႊᦩᮥᔾb⧁

ᙹᯩ݅. ə్ӹ, ޵׳ᮡUV ᳑ᔍvࠥෝw۵UV ఉ⥥᮹

ᯕᬊᮡᨱթḡ᫵Ǎప᮹᷾aෝⅩ௹⦹íࡹအಽ, ᯕᨱݡ

⦽ Łಅ ᩎ᜽ ⦥᫵⧁ äᯕ݅. ษḡสᮝಽ, ᅙ ᩑǍᨱᕽ۵

LC/MS/MSෝ ᯕᬊ⦽ ᮹᧞⣩ඹ᮹ ࠺᜽ᇥᕾ ႊჶᮥ ₥ᬊ⦹

ᩍ, b ᮹᧞⣩ඹa ᱢᬊŖᱶᨱ ᮹⧕ ᪥ᱥ⯩ ᔑ⪵ࡹᨩ۵ḡ

ᵲeݡᔍᔑྜྷ⩶┽ಽ᯵ඹ⦹Łᯩ۵ḡᨱݡ⦽á☁۵ᯕ

൉ᨕḡḡᦫᦹ݅. ⨆⬥, ᮹᧞⣩ඹ᮹ᵲeݡᔍᔑྜྷᨱݡ⦽

Ǎℕᱢᯙ á☁a ⧪⧕Კ᧝ ⧁ äᯕ݅.

3.3. ၙᔾྜྷ⦺ᱢญᜅⓍᱡq⬉ŝᨱݡ⦽Łₑ

ᔍ௭ᯕᱲⅪ⧁a܆ᖒᯕ׳ᮡᙹĞᬊᙹӹ⪵ᰆᝅᬊᙹಽ

⦹ᙹᰍᯕᬊᙹෝŖɪ⦹۵ḡᩎᨱᕽ۵ᰍᯕᬊᙹaw۵ญ ᜅⓍෝ↽ᗭ⪵⧕᧝⦽݅. ᯕ۵⦹ᙹᰍᯕᬊᙹ᮹ᔾᔑ᜽, ᅕ

݅ᨥĊ⦽ၙᔾྜྷᨱݡ⦽ᗭࠦŖᱶᮥ᫵Ǎ⦹۵ๅᬑᵲ᫵⦽

ᯕᮁᵲ᮹⦹ӹᯕ݅. ᯝᅙ᮹ᰍᯕᬊᙹaᯕऽ௝ᯙᨱ۵ᰍᯕ ᬊᙹෝࠥ᜽ၰ౩Ⓧญᨱᯕᖹᬊᙹಽᯕᬊ⦹۵Ğᬑ, ݡᰆ ɁǑᯕ100 mLݚ1,000ᮥⅩŝ⦹ḡᦫࠥಾᰁᱶᱢᮝಽȽ ᱽ⦹Ł ᯩ݅. ঑௝ᕽ, ⦹ᙹ 2₉ ⃹ญᙹෝ ᰍᯕᬊ⧁ Ğᬑ, ᯕʑᵡᨱݡ᮲⦹ʑ᭥⧕᯵ඹᩝᗭa᫵ǍࡹŁᯩ݅. ᖙĥ ᱢᮝಽࠥaᰆᨥĊ⦽ᰍᯕᬊᙹʑᵡᮝಽ᦭ಅᲙᯩ۵Cali- fornia Title 22᮹criteria۵ᰍᯕᬊᙹ᮹ᬊࠥᨱ঑௝100 mL ݚ⠪ɁݡᰆɁǑᮥ2.2 ᯕ⦹(unrestricted urban reuse, agri- cultural reuse - food crops, unrestricted/restricted recreational reuse) ੱ۵23 ᯕ⦹(restricted urban reuse, agricultural reuse - non-food crops)ಽȽᱽ⦹Łᯩ݅. ⦽⠙, ᩝᗭaᗭࠦᱽಽ ᕽaᰆᅕ⠙⪵ࡹᨕᯩḡอ, ݡℕᗭࠦᱽಽᕽUVӹO3

⦽ๅᬑ⬉ŝᱢᮝಽᄲᬱᖒၙᔾྜྷᮥᇩ⪽ᖒ⪵a܆⦽ä ᮝಽ᦭ಅᲙ᪅Łᯩ݅. ✚⯩, ᰍᯕᬊᙹ᮹ၙᔾྜྷ⦺ᱢญᜅ

Ⓧ᪡޵ᇩᨕ᮹᧞⣩ඹ᪡zᮡၙప᪅ᩝྜྷḩᨱᕽʑᯙ⦹۵

⪵⦺ᱢ ญᜅⓍෝ ᱡq᜽┅ʑ ᭥⦽ᰍᯕᬊᙹŖᱶᮝಽᕽࠥ

ᇡᔑྜྷ᮹ᔾᖒa܆ᖒᯕԏᮡ UVෝʑᅙᮝಽ⦹۵Ŗᱶᨱ

šᝍᯕ ༉ᦥḡŁ ᯩ݅. ᩍʑᕽ۵ ᅙ ᩑǍᨱᕽ ᮹᧞⣩ඹ᮹

ᱽÑෝ༊ᱢᮝಽᱢᬊࡽUV, UV/H2O2Ŗᱶᯕᨕ۱ᱶࠥၙ

ᔾྜྷ⦺ᱢญᜅⓍ᮹ᱡqᨱʑᩍ⧁ᙹᯩ۵ḡෝŁₑ⦹ᩡ݅.

Fig. 4۵ᵝ᫵ḡ⢽ၰᄲᬱᖒၙᔾྜྷŝ᮹᧞⣩ඹ᮹ᱽÑ ᨱ ⦥᫵⦽ UV ᳑ᔍపᮥ እƱ⦽݅. ᯝᅙ ⦹ᙹࠥ⩲⫭(Japan Sewage Works Association, JSWA)᮹⦹ᙹࠥᮁḡšญḡ⋉

ᨱᕽ۵ ⦹ᙹ 2₉ ⃹ญᙹᵲ᮹ ݡᰆɁǑᮥ 1 log, 2 log, 3

(6)

5BCMF  3FNPWBM FGGJDJFODZ PG FBDI 11$1 BU DPOUBDU UJNF PG  NJO EVSJOH 678 BOE 678)0 QSPDFTTFT

6TF 11$1T 678 678)0

NH-

678)0

NH-

678)0

NH-

"OBMHFTJDT

%JDMPGFOBD    

,FUPQSPGFO    

*TPQSPQZMBOUJQZSJOF    

*OEPNFUIBDJO    

.FGFOBNJDBDJE    

/BQSPYFO    

&UIFO[BNJEF    

"OUJBSSIZUINJD BHFOUT

%JTPQZSBNJEF    

1SPQSBOPMPM    

"UFOPMPM    

.FUPQSPMPM    

"OUJCJPUJDT

4VMGBNFUIPYB[PMF    

$JQSPGMPYBDJO    

/BMJEJYJDBDJE    

4VMGBEJNFUIPYJOF    

-FWPGMPYBDJO    

-JODPNZDJO    

$MBSJUISPNZDJO    

5SJNFUIPQSJN    

"[JUISPNZDJO    

3PYJUISPNZDJO    

&SZUISPNZDJO    

5IFPUIFST

%JMUJB[FN    

$MPGJCSJDBDJE    

%JQZSJEBNPMF    

$IMPSBNQIFOJDPM    

'VSPTFNJEF    

*GFOQSPEJM    

#F[BGJCSBUF    

$SPUBNJUPO    

(SJTFPGVMWJO    

1JSFO[FQJOF    

%&&5    

$BSCBNB[FQJOF    

4VMQJSJEF    

1SJNJEPO    

5IFPQIZMJOF    

$ZDMPQIPTQIBNJEF    

log ᇩ⪽ᖒ⪵᜽┅ʑ ᭥⧕, bb 150~200 mJ/cm2, 200~300 mJ/cm2, 300~500 mJ/cm2᮹UV ᳑ᔍపᮥǭᰆ⦹Łᯩ݅.12)

⦽⠙, Kruithof ॒ᮡᮁʑ᪅ᩝྜྷḩ᮹ᱽᨕၰᯝ₉ᗭࠦᮥ

༊ᱢᮝಽ ḡ⢽ᙹෝ ᯕᬊ, UV/H2O2 Ŗᱶ᮹ ᮁ⬉ᖒᮥ á☁

⦽ၵᯩ݅.13)əđŝ, 540 mJ/cm2᮹UV ᳑ᔍపŝ6 mg/L ᮹ H2O2ෝ ᄲᬊ⦽ Ğᬑ, atrazine, N-Nitrosodimethylamine (NDMA), MTBE, dioxane, bisphenol A, microcystine ၰ᮹

᧞⣩ඹ(diclofenac, ibuprofen)a80% ᯕᔢᱽÑࡽäᮝಽᅕ Ł⦹ᩡ݅. ޵ᬑʑ, CryptosporidiumŝGiardia᮹3 log ᇩ⪽

ᖒ⪵ᨱ20 mJ/cm2 ᯕ⦹᮹UV ᳑ᔍపᯕ᫵Ǎࡹᨩᮭᮥᅕᩍ ᵝᨩ݅. ᯕॅ đŝಽᇡ░ UV/H2O2 Ŗᱶᯕ ၙప ᮁʑྜྷḩ

ᮥᮁ⬉⦹íᱽÑ⧁ᙹᯩ۵ᬕᱥ᳑Õ⦹ᨱᕽၙᔾྜྷᨱݡ

⦽ᗭࠦᩎ᜽᧲⪙⦹í⧪⧁ᙹᯩᮭᮥ᦭ᙹᯩ݅. ⦽⠙, Fig. 4ᨱᕽ, UV ݉ࠦ⃹ญ᜽ݡᰆɁၰCryptosporidiumᮡb b5~18 mJ/cm2, 2~12 mJ/cm2᮹UV ᳑ᔍపᨱ᮹⧕ᕽࠥๅ ᬑ⬉ŝᱢᮝಽᇩ⪽ᖒ⪵ࢁᙹᯩᮭᮥ᦭ᙹᯩ݅.14) ၹ໕, UVᨱaᰆԕᖒᮥw۵ᄲᬱᖒၙᔾྜྷಽ᦭ಅḥAdenovirus type 40᮹Ğᬑ۵56~167 mJ/cm2᮹UVᨱ᳑ᔍࡹᨩᮥĞᬑ,

(7)

'JH  67 EPTFT GPS UIF FGGFDUJWF QBUIPHFO BOE 11$1T SFNPWBMT

1~3 log ᇩ⪽ᖒ⪵aݍᖒࢁᙹᯩ۵äᮝಽᅕŁࡹᨕᯩ݅.

⩥ᰍ, ⦹ᙹ⃹ญᰆ ႊඹᙹᵲ᮹ ݡᰆɁǑᮡ 3,000 /cm3ಽ

ȽᱽࡹŁᯩᮝӹ, ᯕෝCalifornia Title 22᮹criteriaෝอ᳒

⦹۵ᰍᯕᬊᙹಽᯕᬊ⦹Łᯱ⧁Ğᬑ, 4~5 log᮹ᇩ⪽ᖒ⪵

a ᫵Ǎࡽ݅. UV ၰ UV/H2O2᮹ ᗭࠦ܆ᨱ ݡ⦽ ʑ᳕ᩑǍ ಽᇡ░᮹ đŝ᪡ እƱ⦹໕, ᅙ ᩑǍᨱᕽ á⇽ݡᔢ ᮹᧞⣩

ඹ᮹90% ᱽÑෝݍᖒ⧁ᙹᯩ۵UV/H2O2 Ŗᱶ᮹ᱢᱶᬕ ᱥ᳑Õ(UV ᳑ᔍప: 923 mJ/cm2, H2O2 ׮ࠥ: 6.2 mg/L)ᮡ

⩥ᰍ⦹ᙹ⃹ญᙹ᮹ ᭥ᔾ⦺ᱢ ʑᵡ⧎༊ᯙݡᰆɁǑᨱ ݡ⦽

California Title 22᮹criteriaෝ∊ᇥ⯩อ᳒᜽┍ᙹᯩᮥä ᮝಽ ❱݉ࡽ݅.

4. đು

ᅙ ᩑǍᨱᕽ۵ ⦹ᙹ⃹ญᙹ᮹ ᰍᯕᬊᮥ ༊ᱢᮝಽ UV Ŗ ᱶᮥᱢᬊ⧁Ğᬑ, ↽ɝšᝍᯕ༉ᦥḡŁᯩ۵ၙపྜྷḩᯙ

᮹᧞⣩ඹ᮹ᱽÑ᪡ ޵ᇩᨕ ᰍᯕᬊᙹ᮹ ၙᔾྜྷ⦺ᱢᦩᱥᖒ ᮹ ݍᖒa܆ᖒᨱ ݡ⦹ᩍ á☁⦹ᩡ݅. á☁ đŝ, ຝᱡ, ᅙ

ᝅ⨹ᨱᕽᯕᬊ⦽⦹ᙹ2₉⃹ญᙹಽᇡ░38᳦᮹᮹᧞⣩ඹ a á⇽ࡹᨩᮝ໑, ᵝಽ ⧎ᔾྜྷḩŝ ⧕ᩕḥ☖ᱽa ə ݡᇡ ᇥᮥ ₉ḡ⦹Ł ᯩᨩ݅. ⦹ᙹ 2₉ ⃹ญᙹෝ ᯕᬊ⦽ UV ᝅ

⨹đŝ, UV ݉ࠦ⃹ญᨱ᮹⦽᳦݅᮹᮹᧞⣩ඹ᮹ᱽÑᨱ۵

ᔢݚప᮹UV ᳑ᔍపᯕ᫵Ǎࢁäᮝಽᩩᔢࡹᨩ݅. ᯕ۵᮹

᧞⣩ඹ᮹ᱽÑෝ᭥⦽UV ݉ࠦ⃹ญ᮹ᱢᬊᮡᔢݚప᮹ᨱ թḡᗭእపᮥⅩ௹⧁äᯥᮥ᮹ၙ⦽݅. ၹ໕, UV᪡H2O2

ෝᄲᬊ⧁Ğᬑ, ᅙᝅ⨹࠺ᦩá⇽ࡽ᮹᧞⣩ඹ᮹ᱽÑaUV

݉ࠦ⃹ญᨱ እ⧕ ᬵ॒⯩ }ᖁࡹᨩᮝ໑, 923 mJ/cm2᮹ UV

᳑ᔍపŝ6.2 mg/L᮹H2O2᮹ᄲᬊ⃹ญ۵á⇽᮹᧞⣩ඹ᮹

90% ᱽÑᮉݍᖒᯕa܆⦽ᬕᱥ᳑Õᮝಽ⪶ᯙࡹᨩ݅. ੱ⦽, ᯕ ᬕᱥ᳑Õ⦹ᨱᕽ۵⩥ᰍ ⦹ᙹ⃹ญᙹ᮹᭥ᔾ⦺ᱢᙹḩḡ

⢽ಽ ᯕᬊࡹŁ ᯩ۵ ݡᰆɁǑᨱ ݡ⧕ ᖙĥᱢᮝಽࠥ aᰆ

ᨥĊ⦽ʑᵡᮥᱢᬊ⦹Łᯩ۵California Title 22᮹criteria

ෝ อ᳒⧁ ᙹ ᯩᮥ äᮝಽ ❱݉ࡹᨩ݅.

ᔍᔍ

ᅙᩑǍ۵ᯝᅙ⪹Ğᖒ᮹⪹Ğʑᚁ}ၽ॒⇵ḥእ(ŝᱽ໦:

「ᙹ⪹Ğᵲ᮹᧞⣩ඹ᮹႑⇽݉ĥᨱᕽ᮹ྜྷญ⪵⦺ᱢ⃹ญᨱ

š⦽ ᩑǍ」)ᨱ ᮹⧕ ᙹ⧪ࡹᨩᮝ໑, ᯕᨱ qᔍऽพܩ݅.

ₙŁྙ⨭

1. Heberer, T., “Occurrence, fate and removal of pharmaceu- tical residues in the aquatic environment: a review of recent research data,” Toxicol. Lett., 131, 5~17(2002).

2. Kanda, R., Griffin, P., James, H. A. and Fothergill, J., “Phar- maceutical and personal care products in sewage treatment works,” J. Environ. Monit., 5, 823~830(2003).

3. Smital, T., Luckenbach, T., Sauerborn, R., Hamdoun, A. M., Vega, R. L. and Epel, D., “Emerging contaminants-pesti- cides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms,” Mutation Res., 552, 101~117(2004).

4. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K. and Takada, H., “Pharmaceutical chemicals and endocrine disrup- ters in municipal wastewater in Tokyo and their removal during activated sludge treatment,” Water Res., 40, 3297~

3303(2006).

5. Okuda, T., Kobayashi, Y., Nagao, R., Yamashita, N., Tanaka, H., Tanaka, S., Fuji, S., Konishi, C. and Houwa, I., “Removal efficiency of 66 pharmaceuticals during wastewater treat- ment process in Japan,” Water Sci. Technol.,57, 65~71(2008).

6. Huber, M. M., Canonica, S., Park, G. Y. and von Gunten, U., “Oxidation of pharmaceuticals during ozonation and ad- vanced oxidation processes,” Environ. Sci. Technol., 37,

(8)

1016~1024(2003).

7. Ternes, T. A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M. and Teiser, B., “Ozonation: A tool for removal of pharmaceuticals, contrast media and musk frag- rances from wastewater?,” Water Res.,37, 1976~1982(2003).

8. Rosenfeldt, E. J., Linden, K. G., Canonica, S. and von Gun- ten, U., “Comparison of the efficiency of ․OH radical for- mation during ozonation and the advanced oxidation pro- cesses O3/H2O2 and UV/H2O2,” Water Res., 40, 3695~3704 (2006).

9. Lau, T. K., Chu, W. and Graham, N., “Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozona- tion, and UV/O3 processes,” Water Res.,41, 765~774(2007).

10. 小林義和, 奥田隆, 山下尚之, 田中宏明, 田中周平, 藤井 滋穗, 小西千絵, 宝輪勲, “都市下水の高度処理システムに

おける医薬品の動態,” Environ. Eng. Res.,43, 65~72(2006).

11. Kim I. H., Yamashita N. and Tanaka H., “Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments,” Chemosphere,77, 518~525(2009).

12. Japan Sewage Works Association, Guidelines for sewer main- tenance(2003).

13. Kruithof J. C., Kamp P. C. and Martijn B. J., “UV/H2O2

Treatment: A practical solution for organic contaminant con- trol and primary disinfection,” Ozone: Science & Enginee- ring, 29, 273~280(2007).

14. Hijnen W. A. M., Beerendonk E. F. and Medema G. J.,

“Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res., 40, 3~22(2006).

참조

관련 문서

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

Most submerged lamp system have a fundamental fouling problem and due to the absorption of UV light by fouling materials on the quartz sleeve, germicidal power of UV

Bactericidal effect of photocatalytic reactor depending on the UV-A illumination time and flow rate of V.. Bactericidal effect of photocatalytic reactor

Excitation Detection X-ray photoelectron spectroscopy (XPS) Photons(X-ray) Electrons UV photoelectron spectroscopy (UPS) Photons (UV) Electrons

과산화수소는 분자 구조의 특성;단일 결합,물 (H 2 O)과 비슷한 구조,상 UV/vi sSpectrophotometer로는 농도 의존성 UV/vi sSpectrum을 얻을 수 없었 다.만약 높은

Activated H-Ras expression in human fibroblast cell lines increases the activity of Ku80 to bind injuried DNA, reduces γ-H2AX expression by UV irradiation,

Figure 1 UV-Vis absorption and fluorescence spectra of Compound 4 Figure 2 UV-Vis absorption and fluorescence spectra of 2-Aminopyridine Figure 3 UV-Vis absorption

 Casting is a manufacturing process by which a molten material such as metal or plastic is introduced into a mold made of sand or metal, allowed to solidify within the mold,