• 검색 결과가 없습니다.

Poissonequation perturbation and Jacobi preconditioning for solving Comparison of eigenvalue ratios in artificial boundary Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Share "Poissonequation perturbation and Jacobi preconditioning for solving Comparison of eigenvalue ratios in artificial boundary Journal of Computational Physics"

Copied!
10
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Comparison of eigenvalue ratios in artificial boundary perturbation and Jacobi preconditioning for solving Poisson equation

Gangjoon Yoon

a

, Chohong Min

b,

aNationalInstituteforMathematicalSciences,Daejeon34047,RepublicofKorea bDepartmentofMathematics,EwhaWoman’sUniversity,Seoul03760,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received8December2016

Receivedinrevisedform2August2017 Accepted5August2017

Availableonline10August2017

Keywords:

Shortley–Weller

Artificialboundaryperturbation Jacobipreconditioner Conditionnumber Poissonequation Finitedifferencemethod

TheShortley–WellermethodisastandardfinitedifferencemethodforsolvingthePoisson equationwithDirichletboundarycondition.Unlessthedomainisrectangular,themethod meets an inevitable problem that some of the neighboring nodes may be outsidethe domain. Inthiscase,anusual treatmentis toextrapolatethefunctionvaluesatoutside nodesbyquadraticpolynomial.Theextrapolationmaybecomeunstableinthesensethat someof theextrapolation coefficients increase rapidlywhen thegrid nodes are getting closer to the boundary. A practical remedy, whichwe call artificial perturbation,is to treat gridnodes verynear the boundary as boundarypoints. The aimof thispaper is torevealtheadverseeffectsoftheartificialperturbationonsolvingthelinearsystemand theconvergenceofthesolution.Weshowthatthematrixisnearlysymmetricsothatthe ratioofitsminimumandmaximumeigenvaluesisanimportantfactorinsolvingthelinear system.Ouranalysisshowsthattheartificialperturbationresultsinasmallenhancement oftheeigenvalueratiofromO(1/(h·hmin)toO(h3)and triggersanoscillatoryorderof convergence. Instead,we suggestusing JacobiorILU-typepreconditioneron thematrix withoutapplyingtheartificialperturbation.Accordingtoouranalysis,thepreconditioning not onlyreduces theeigenvalueratio from O(1/(h·hmin)to O(h2),butalsokeepsthe sharpsecondorderconvergence.

©2017ElsevierInc.Allrightsreserved.

1. Introduction

Inthisarticle,weconsiderthestandardfinitedifferencemethodforsolvingthePoissonequation

−

u

=

f inadomain



⊂ R

nwithDirichletboundaryconditionu

=

g on∂.Lettheuniformgridofstepsizeh isdenotedby(h

Z)

n.Thediscrete domainisthendefinedasthesetofgridnodesinsidethedomain,i.e.h

:=  ∩ (

h

Z)

n.

Thestandard finitedifference methodisadimension-by-dimension applicationofthecentralfinite difference,andwe present mainly the caseof one dimension andreport anynominal differences inthe other dimensions, when required.

Unlessisrectangular,themethodmeetsaninevitableproblemthatsomeoftheneighboringnodesmaybeoutside.As

*

Correspondingauthor.

E-mailaddress:chohong@ewha.ac.kr(C. Min).

http://dx.doi.org/10.1016/j.jcp.2017.08.013 0021-9991/©2017ElsevierInc.Allrightsreserved.

(2)

Fig. 1. uhi,j hasfourneighboringnodes.Theoneintherightisoutside,andtheghostvalueuGi+1,jisquadraticallyextrapolatedfrominsidevaluesuhi,j anduhi1,jandtheboundaryvaluegI.

depictedinFig. 1,a neighboringnodeofthegridnodeisoutside.Thenodeoutsidehiscalledghostnode[10],andthe functionvalueattheghostnodeisextrapolatedbythequadraticpolynomialasfollows.

uiG+1,j

:=

uhi1,j1

− θ

1

+ θ

2uhi,j1

− θ θ +

gI

2

(

1

+ θ) θ .

Hereθ

·

h isthedistancebetweenthegridnodeandtheboundarytotheright.

Applyingtheextrapolationtothesecond-ordercentraldifferencescheme,weobtainasecond-orderdiscretizationinthe x-direction

− (

Dxxu

)

i j

= −

ui1,j

2ui,j

+

uGi+1,j

h2

=

2

θ

h

·

hui,j

2

h

· (θ +

1

)

hui1,j

2

θ

h

· (θ +

1

)

hgI

.

(1)

ThisdiscretizationiscalledtheShortleyandWellermethod[19]andthecorrespondingdiscreteLaplacianoperatorisgiven inequation (3)insection3.OnapplyinganiterativemethodtosolvethediscretePoissonequationwhichisrelatedtoan nonsymmetric matrix,itis notedin [17]that iftherelatedmatrixis nearlysymmetric,the residualnormisbounded by theratioofthemaximumandminimumeigenvaluesinabsolutevalue.Weshow inthisworkthatthematrixinducedby the Shortley–Weller methodis nearlysymmetric inthe sense thatthe dominantmajorityofthe entriesin A

= (

ai,j) are symmetricabouttheir diagonals[23] andai j

=

0 iffaji

=

0 ([18]andreferencestherein).Inthisrespect,weestimate the convergenceperformancebytheeigenvalueratioratherthantheratioofsingularvalues.

From the discretization (1),we see that theextrapolation mayproduce large errorifθ in the denominator gets very small.ThisresultsinalargeconditionnumberforthematrixassociatedwiththeShortley–Wellermethodasanestimation

maxmin

| =

O(1/ (h

·

hmin)) shown in Theorem 3.1. Here hmin is the minimum distance from the nodes in  to the boundary ∂. To mitigate the singularity of the extrapolation, there are two treatments in practice: artificial boundary perturbationandpreconditioning.

The artificial boundary perturbationis to treat thegrid nodes nearthe boundary within a certain thresholdθ0

·

h as boundarypointsandwetakeuhi,j

=

gI [7,10,16].Thecommonchoiceofthethresholdisθ0

=

h.Wecallthepracticeasthe artificialboundaryperturbationthroughoutthispaper.

This article isaimed atrevealing theprecise effects from the artificialperturbation. We review the known facts and estimate theratioofeigenvaluesfortheunperturbedlinearsysteminsection2.Insection4,wediscusstheeffectsonthe convergenceofthenumericalsolutionandtheeigenvalueratioofthelinearsystemfortheartificialperturbation.Inpractice, we take θ0

=

h forthe perturbation value andwe reveal inTheorem 4.2 that the eigenvalueratio to thecorresponding treatment is shown to be O(h3) so that the artificial perturbation is lesseffective than any preconditioning. Another treatment to mitigatethe dependence on the minimumgrid size and condition numbers as well is preconditioning the linearsystem.WeestimatetheeffectoftheJacobipreconditioninginsection5andwetesttheusualotherpreconditioners suchassymmetricGauss–Seidel(SGS),incompleteLU(ILU)andmodifiedILU(MILU)toseetheeffectofthepreconditioning.

We showthat theJacobipreconditioningisenough tocompletelyresolve theissueofthesingularityoftheextrapolation when θ is small, by proving that theJacobi preconditioner istotally free fromthe effect ofthe minimumdistance hmin andits conditionnumberisnolargerthan O(h2).Consequently,we suggestthepreconditioningmethodratherthat the artificialboundaryperturbationinordertoimprovetheperformanceoftheiterativesolver.

Itisworthnotingthatitwasobservedformanysecondorder,self-adjoint,ellipticequationsthatthespectralcondition numbersofthediscreteoperatorgrowasO(h2)asthemeshsizeh tendstozero(see[6]fordetails).Also,Dupont,Kendall andRachford[9]observedthateventhoughtheconvergenceratesoftheJacobi,SGS,andILUpreconditionedmatricesstill

(3)

behaveasO(h2)withamuchsmallermultiplicativeconstant,theMILUpreconditionedmatrixdropstheorderto O(h1). TheMILUimprovement O(h1)fortherectangulardomainwas provedin[3,4,14,21]andwe alsoreferthereaderto[1,2, 5,12,15]forrelatedworksontheMILUpreconditioning.However,theMILUimprovementofO(h1)forgeneraldomainsis notprovedyetandweleavethestudyforafurtherwork.

2. ReviewofShortley–Wellermethod

Inthiswork, we focusboth onthe convergenceperformance ofthestandard finitedifference methodforthe Poisson equationandontheeffectofthetwomethodsimprovingtheperformance:artificialboundaryperturbationandprecondi- tioning. Inthisrespect,itissufficient tocomparethe performancesforthetwo dimensionalcase.Letusintroduce some discretizationsettingsofdomainforsolvingthePoissonproblem

 −

u

=

f in



u

=

g on

∂,

(2)

where

⊂ R

2 isan openandboundeddomainwithsmoothboundary ∂.Consider auniformgridwithstepsize h,i.e.

h

Z

2.Byh wedenotethesetofgrid nodesbelongingto ,and∂h denotestheset ofintersectionpoints between∂

andgridlines,i.e.h

=  ∩ 

h

Z

2



and∂h

= ∂ ∩ {(

h

Z × R) ∪ (R ×

h

Z)}

.A gridnode (xi,yi)

∈ 

h hasfourneighboring nodesinh

∪∂

h,namely



xi±1,yj



and



xi,yj±1



inh

∪∂

h.Lethi+1

2,jdenotethedistancefrom



xi,yj



toitsneighbor



xi+1,yj



,andotherdistanceshi1 2,j,hi,j±1

2 aredefinedinthesamefashion,seeFig. 1.

Byapplyingthe quadraticpolynomial extrapolationfortheghost values,its discrete Laplacianhuh

: 

h

→ R

foruh

:

h

∪ ∂

h

→ R

readsas





huh



i j

=



uhi+1,j

uhi j hi+1

2,j

u

h

i j

uhi1,j hi1

2,j



2

hi+1

2,j

+

hi1

2,j

+



uhi,j+1

uhi j hi,j+1

2

u

h

i j

uhi,j1 hi,j1

2



2

hi,j+1

2

+

hi,j1

2

.

(3)

Notethatwhenhi+1

2,j<h,wesetxi+1

=

xi

+

hi+1

2,jsothat(xi+1,yj)

∈ ∂

h anduhi+1,j

=

g(xi+1,yj)inequation(3).

Throughoutthework, wedenote byu the solutiontothe Poissonequation(2) andby uh thesolution ofthediscrete equation

 −

huh



xi

,

yj



=

f



xi

,

yj



, 

xi

,

yj



∈ 

h uh



xi

,

yj



=

g



xi

,

yj



, 

xi

,

yj



∈ ∂

h

.

(4)

Now,weintroducesomelemmasonthediscretizationinageneralsetting.Fortheproofswereferto[22].

Lemma2.1(Monotoneproperty).Foranyvh,wh

: 

h

∪ ∂

h

→ R

with

−

hvh

≥ −

hwh inhandvh

whon∂h,wehave vh

whinh

∪ ∂

h.

Letusdefinethefunctionsph

: 

h

∪ ∂

h

→ R

asthesolutionof

−

hph

=

1 in



h

withboundarycondition ph

=

0 on∂h.Thenwehavethefollowingestimationforph [22].

Lemma2.2.Letp(x)betheanalyticsolutionof

−

p

=

1 inwithp

=

0 on∂.LetCp

=

Cp()betheconstantgivenby Cp

:=

max



p

xi

(

x

) ,

3p

x3i

(

x

) ,

4p

x4i

(

x

)

:

x

∈  ∩ ∂,

i

=

1

,

2

.

Ifh

min



1,8C3p



,thenforeach



xi,yj



∈ 

h,wehave 0

phi j

2Cp

·

dist



xi

,

yj

 , ∂

h

 .

Therefore,thereisaconstantC>0 suchthatwehave



2

hi+1 2,j

·

hi1

2,j

+

2

hi,j+1 2

·

hi,j1

2



phi j

C 1 h2 forall



xi,yj



∈ 

h

(4)

3. Nearlysymmetricmatrix

Forasymmetriclinearsystem,ConjugateGradientmethodistheoptimalsolverintheKrylovspaceassociatedwiththe linear system. Its convergence speed isdetermined by the condition number. Thus preconditioningthe symmetric linear systemisfocusedonreducingtheconditionnumber.

For a nonsymmetriclinear system, GeneralMinimal RESidual(GMRES) methodis the optimalsolver tominimize the residualintheKrylovspace. Unlikethesymmetriccase,theconvergencespeedisnotalwaysdeterminedby thecondition number, theratioofthemaximumandminimumsingular values.Theconvergenceis guaranteedforgeneralnonsingular matrices,butthemeasureofconvergencespeeddependsoneachtypeofthematrix.Thetypesandcorrespondingestimates arelistedbelow.

For normal matrix

,

rk

minpπk

maxλσ(A)

|

p

(λ)|

.

For diagonalizable matrix

,

rk

minpπk

maxλ∈σ(A)

|

p

(λ) |

· κ (

X

) .

In general

,

rk

=

minpπk

p

(

A

)

r0

.

Now letusconsiderthematrixA associatedwiththeShortley–Wellermethod,andcheckthetypetowhichitbelongs.

Fig. 2showsthatall ofitseigenvaluesarelocatednearthepositiverealaxisinthecomplexplane.Insidethedomain,the Shortley–Wellermethodequalstothestandardmethodwhoseassociatedmatrixissymmetric.Withsmallerstepsizeh,the numberofgridnodesinsidethedomaindominatesthenumberofgridnodesadjacenttoboundary.Fromthisreason,the matrixA canbethoughasasmallperturbationofitssymmetricpartbyitsnonsymmetricpart.

A

=

A

+

AT

2

+

A

AT 2

.

Fig. 3 confirms the dominance of thesymmetric part over the nonsymmetric part. In particular, thematrix A

= (

ai j) is nearly-symmetricinthesensethatai j

=

0 iffaji

=

0 ([18]andreferencestherein)andthedominantmajorityoftheentries inA aresymmetricabouttheirdiagonals[23].Sincethesymmetricparthasonlyrealeigenvaluesandisdiagonalizable,the perturbation argumentexplainstheobservedrealeigenvaluesofA andindicates thatthematrix A maybestill diagonal- izable. Thereforeitisreasonabletoapply theconvergenceestimatefordiagonalizablematricestoA.Accordingto[17],the estimatecanbesimplifiedwhentheeigenvaluesarelocatedonthelinesegment[λmin, λmax] onthepositiverealaxisas

rk

r0

κ (

X

)

1

− λ

min

max

1

+ λ

min

max



k

.

(5)

Here X isatransformationmatrixtomake X1A X diagonal,and

κ

(X)isits conditionnumber.When A isdiagonalizable, all ofitsILU-typepreconditionedmatricesarediagonalizable. Thuswe aimtoreducethe eigenvalueratio.Fig. 4 provides empiricalevidencesthatGMRESconvergesfasterwithsmallereigenvalueratiothatvalidatestheaboveestimate.

Now,letusestimatetheeigenvaluesofthematrixassociatedwiththediscretization,whichisdenotedbyA

Theorem3.1.LetλbeaneigenvalueofthematrixA associatedwiththediscretization,0<CA

≤ |λ| ≤

h·h8min forsomeconstant CA

=

CA(),thatisindependentofgridsizeh.

Proof. Forsufficientlysmallh,wemayassumethatwhenever



xi,yj



∈ 

handoneofitsneighbors,letussay



xi1,yj



,is on∂,thenitsneighborintheoppositesidebelongstoinside,i.e.



xi+1,yj



∈ 

h.Letλbeaneigenvalueofthematrix A associated withthediscretizationand v itscorresponding eigenvector,thatis,Av

= λ

v.The Gerschgorincircletheorem impliesthat 0<

|λ| ≤

h·h8min.Since A is anM-matrix,the Perron–FrobeniusTheorem [13]applying toA1 showsthat the minimumeigenvalueλm isapositiverealnumberandthereexistsaneigenvectorv

= (

vP)P∈h withvP>0 forall P

∈ 

h corresponding to λm.We mayassume that v isdefinedon h

∪ ∂

h by a trivialextension.Let vP0

=

max

{

vP

:

P

∈ 

h

}

. ThenwecanseeAv

= (−

hv)andforthefunction phgiveninLemma 2.2,wehave

( −

hv

) = λ

mv

≤ λ

mvP0

( −

hph

).

ApplyingLemmas 2.1 and 2.2showsthatthereexistsaconstantC0independentofh suchthat

vP

C0

λ

mvP0

P

∈ 

h

.

Thisshowsthatλm

CAforsomeconstantCA,whichcompletestheproof.

2

Table 1showsthattheestimationofTheorem 3.1istight:fortheunperturbedmatrixA,

min(A)|

CAforsomeconstant CA and

max(A)

| ≈

8/hhmin.

(5)

Fig. 2. TheeigenvaluedistributionofA arenearlyreal.Thetoprowdepicttheeigenvaluesincomplexplaneforthecase= {(x,y)|x2+y2<1}and h=803,andthebottomrowfor= {(x,y,z)|x2+y2+z2<1}andh=203.Theellipsesincludingtheeigenvalueshaveeccentricity12.79×1010and 11.70×108,respectively,whichmeanthatalltheeigenvaluesarealmostreal.

4. Effectoftheperturbation

Letuh be thenumerical solutionwithout perturbation,and u

˜

h be the numericalsolution withperturbation. Whileit has been well known that



uh

u



L

=

O



h2



[19,22], the convergence order of the perturbed solution has been left

(6)

Fig. 3. Theratiobetweenthenumberofnonsymmetricentriesandthenumberofsymmetricentries.TheratiodecaysasfastasO(h),whichmeansthe dominanceofthesymmetricpartovernonsymmetricpart.= {(x,y)|x2+y2<1}.

Fig. 4. ThedecreaseoftheresidualnorminGMRES.Asestimatedin(5),GMRESconvergesfasterwithsmallereigenvalueratio.= {(x,y)|x2+y2<1} andh=3/80..

Table 1

EigenvaluesoftheunperturbedmatrixoftheShortley–WellermethodinExample 4.1:theresultstightlyobeytheestimateofTheorem 3.1,0<CA≤ |λ| ≤

8 h·hmin.

grid Original (unperturbed) matrix

max| ratio hmin ratio hh8

min rate min| ratio

202 4.00×102 5.03×102 5.30×102 5.74

402 2.17×104 54.3 1.53×103 0.0304 3.49×104 65.8 5.77

802 1.09×105 5.02 7.03×104 0.459 1.52×105 4.35 5.78 1.00

1602 1.59×106 14.5 9.15×105 0.130 2.33×106 15.4 5.78 1.00

3202 2.30×107 14.4 1.31×105 0.143 3.26×107 14.0 5.78 1.00

unclear. Inthissection,we investigatetheconvergenceorderof

˜

uh

u



L.Let∂ ˜h bethegridnodesthatweretreated asboundarypointsbytheperturbation.Thenthedifferenceu

˜

h

uh satisfythediscreteharmonicequation,

−

h



˜

uh

uh



=

0 in



h

− ∂ ˜

h

.

On ∂ ˜h, the perturbed value u

˜

hi is assigned by g(xI)

=

u(xI). It is known that the unperturbed numerical solution is third order accurate near the boundary [22], so that uhi

=

u(xi)

+

O



h3



. Applying the mean-value theorem, we have

˜

uhi

uhi

=

u(xI)

u(xi)

O



h3



=

ux(ξ ) θ0h

+

O



h3



, for some ξ between xi and xI. Thus the boundary value of the discreteharmonicsolutionu

˜

h

uh isgivenas

˜

uh

uh

=



0 on

∂

h

\ {

x

∈ ∂

h

:

dist

(

x

, 

h

) ≤ θ

h

}

u

x

(ξ ) θ

0h

+

O



h3



on

∂ ˜

h

.

(7)

Fig. 5. TheerrorplotofthenumericalsolutionsinExample 4.1.Theperturbationoccurssometimes(marked×)andsometimesnot(marked).Thelower bound(Ch2)andupperbound(C·h2+ ∇u L(∂)h2)aredrawnaslines.

Thediscretemaximumprinciple[22]statesthatthediscreteharmonicsolutionshouldhaveitsmaximumorminimumon theboundary,thereforewehave

 ˜

uh

uh

 

L

h

≤ ∇

u

L(∂ )

θ

0h

+

O



h3



,

foran

-neighborhood∂ of ∂andsufficientlysmallh withθ0h

.Itiswell knownthattheunperturbednumerical solutionshowsaverycleansecond orderconvergencerate[8,22],



uh

u



L

h



C

·

h2.Using theabove inequalityand thetriangleinequality,weobtaintheestimate:

 ˜

uh

u

 

L

h

C

·

h2

+ ∇

u

L(∂ )

θ

0h

+

O



h3

 .

When θ0

=

h, note that the perturbed solution is still second order accurate, however, Fig. 5 shows that while the unperturbedsolutionhasthecleansecond orderaccuracyash isvaried,thatoftheperturbedonewouldfluctuatearound thesecondorder.

Letusnowturn ourattentionto thestatistics thatshow how oftentheperturbation occurs. Theedge length ofeach gridcellish andtheboundary∂isacurveoffinitelength.Thereforethenumberofgridcellsintersectingtheboundary canbesaidtobeaboutO



h1



.Similarly,thenumberofgridedgesintersectingtheboundaryis O



h1



.Wemayassume that O



h1



numberofintersectionpointsarerandomlydistributedongridedgesoflengthh.Theintersectionpointsthat are within distance θ0h

=

h2 from the endsare classified as‘toonear’ points onwhich the perturbation isapplied. The edgelengthh isdividedintoh1 numberofsubintervalsoflengthh2.Whenthe O



h1



numberofintersectionpointsare randomlydistributedontheedgelengthh,thenumberofpointslyingontheendsubintervalsistherefore O(1).

Similarly as above, we deduct that if θ0 were taken larger as a constant such as .001, the number of perturbation pointswouldincreaseunboundedlyasO



h1



andifθ0takensmallerash2,theperturbationpointswouldnotappearfor sufficientlysmall h.

Example4.1.ConsiderthePoissonproblem

−

u

=

0 in

= 

(x,y)

|

x2

+

y2<1



withu

=

y/



(x

+

2)2

+

y2



.Theartificial boundaryperturbationwascarriedoutwithθ0

=

h.Fig. 5showstheerrorsoftheunperturbedandperturbedsolutions.

Ourargumentin thissection indicates that thechoice θ0

=

h ismarginal sothat perturbation points maysometimes appear andsometimes not. When perturbation points do appear, theconvergence order



uh

u



L

h would fluctuate betweenC

·

h2 andC

·

h2

+ ∇

u

L(∂)h2,whicharewellobservedinFig. 5.

Wehavediscussedhowmuchtheperturbationaffectstheconvergenceorderandhowoftenitoccurs.Thelinearsystem associatedwiththePoissonsolverhasanotoriouslylargecondition number



hh8min.Thethirdissueofourdiscussionisto showthattheperturbationslightlydecreasestheconditionnumberasbelow.

(8)

Fig. 6. Theeigenvalueratiooftheperturbed(marked×)andunperturbed(marked)linearsystemsinExample 4.1.Theperturbedratioissmallerthan theunperturbedratioasexpectedinTheorem 4.2.Theratiosofbothdataarebetweenthesecondorder(dottedline)andthethirdorder(solidline).

Theorem4.2.LetλbeaneigenvalueofthematrixofthePoissonsolverwiththeperturbation,thenwehave

0

< ˜

C

≤ |λ| ≤

8

θ

0h2

8 h

·

hmin forsomeconstantC

˜ = ˜

C().

Proof. ThematrixobtainedinthisperturbationsettingisalsoanM-matrix.Inthiscase,wehavehmin

≥ θ

0

·

h andapplying thesameargumentusedfortheproofofTheorem 3.1givestheaboveresult.

2

The above theoremshows that the eigenvalue ratioof the perturbed matrix is smallerthan that ofthe unperturbed matrix. Since θ0

=

h, the estimate indicates that the two eigenvalue ratios are bounded above by h83/ ˜C

=

O



h3



and 8

hhmin/ ˜C

O



h3



,respectively.Fig. 6verifies thetheorem:theperturbed ratioissmallerthantheunperturbedratioand theratiosofbothdataarebetweenthesecond orderandthethirdorder.Inthefollowingsection,however,weshowthat theJacobipreconditioningdropsdowntherationolargerthan O



h2



.

5. EffectoftheJacobipreconditioning

For a linear system Ax

=

b, the Jacobi preconditioner is the diagonal matrix D whose diagonal entries are the same asA.The JacobipreconditioningonthelinearsystemresultsinD1Ax

=

D1b.Thepreconditioningis,inother words,to scaleeachequation sothat itsdiagonalentrybecomesone.ApplyingtheJacobipreconditioningonitslinearequation,the standardfinitedifferencemethodnowreads

ui j

− 

hi12jhi j12hi j+12 hi1

2j

+

hi+1

2j

 

hi1

2jhi+1

2j

+

hi j1

2hi j+1 2



ui+1,j

− 

hi+12jhi j12hi j+12 hi1

2j

+

hi+1 2j

 

hi1

2jhi+1

2j

+

hi j1 2hi j+1

2



ui1,j

− 

hi j12hi12jhi+12j hi j1

2

+

hi j+1

2

 

hi1

2jhi+1

2j

+

hi j1

2hi j+1 2



ui,j+1

− 

hi j+12hi12jhi+12j hi j1

2

+

hi j+1

2

 

hi1

2jhi+1

2j

+

hi j1

2hi j+1 2



ui,j1

=

fi j 2

hi1 2jhi j+1

2hi j1 2hi j+1

2

hi1 2jhi+1

2j

+

hi j1

2hi j+1 2

.

(9)

Table 2

EigenvaluesofthepreconditionedmatricesinExample 4.1:theresultsofJacobitightlyobeystheestimateO h2

<|λ|<O(1)ofTheorem 5.1,andthe otherresultsareatleastasgoodasmaxmin|=O

h2 .

grid Jacobi preconditioned SGS preconditioned

max| ratio min| ratio max| ratio min| ratio

202 1.96 3.56×102 1.00 1.29×101

402 1.99 0.98 8.53×103 0.24 1.00 0.98 3.33×102 0.26

802 1.99 1.00 2.08×103 0.24 0.999 1.00 8.28×103 0.25

1602 1.99 1.00 5.14×104 0.25 0.999 1.00 2.05×103 0.25

3202 1.99 1.00 1.27×104 0.25 0.999 1.00 5.11×104 0.25

grid ILU preconditioned MILU preconditioned

max| ratio min| ratio max| ratio min| ratio

202 1.18 2.08×101 3.28 0.999

402 1.20 0.98 5.60×102 0.26 6.64 2.02 1.00 1.00

802 1.20 1.00 1.40×102 0.25 13.4 2.02 1.00 1.00

1602 1.20 1.00 3.50×103 0.25 27.2 2.03 0.999 1.00

3202 1.20 1.00 8.72×104 0.25 55.0 2.02 0.999 1.00

Inbrief,theJacobipreconditionerD1A actsonu as



D1Au



i j

=

ui j

α

i jui1,j

− β

i jui+1,j

γ

i jui,j1

− δ

i jui,j+1

withnonnegativeconstants

α

i ji j,

γ

i ji j satisfying0<

α

i j

+ β

i j

+ γ

i j

+ δ

i j

1.ThismeansthattheJacobipreconditioner eliminatescompletelytheadverseeffectofhmin.AlsoweshowinthefollowingthattheJacobipreconditioningreducesthe ratiomagnitudeto O



h2



.

Theorem5.1.ForanyeigenvalueλoftheJacobi-preconditionedmatrixD1A,wehave0<CJ

·

h2

≤ |λ|

2 forsomeconstant CJ

=

CJ().

Proof. LetλbeaneigenvalueoftheJacobi-preconditionedmatrixD1A and v itscorrespondingeigenvector,thatis,Av

=

λDv. Sinceallthediagonalentries ofD arepositiveandA isan M-matrix,the Jacobi-preconditionedmatrixD1A is also an M-matrix. The Gerschgorincircletheorem for D1A shows

|λ|

2, andit remains to show that

|λ|

CJh2 forsome constant CJ independent ofh. Wemayassume that λ

= λ

min is aminimum eigenvalue.Since D1A isan M-matrix,the Perron–FrobeniusTheoremappliedtoA1D showsthatthereexistsaneigenvectorv

= (

vP)P∈h withvP>0 forallP

∈ 

h correspondingtoλ.Wemayassumethat v isdefinedonh

∪ ∂

h byatrivialextensionassettingvaluesofv equalto0.

LetaP0P0vP0

=

max

{(

Dv)P

:

P

∈ 

h

}

.ThenwecanseeAv

= (−

hv)andforthefunction ph giveninLemma 2.2,wehave

( −

hv

) = λ

minDv

≤ λ

minaP0P0vP0

( −

hph

).

ApplyingCorollary 2.1andLemma 2.2givethatthereexistsaconstantC independentofh suchthat

vP0

≤ λ

minaP0P0vP0ph

(

P0

)

C

h2

λ

minvP0

.

Thisshowsthatλmin

CJ

·

h2 whereCJ

=

1C,whichcompletestheproof.

2

NotethattheeigenvalueestimatefortheJacobi-preconditionedmatrixisindependentofhmin,whilethatfortheoriginal matrixisdependent.ThusthepresenceofgridnodestooneartheboundaryisnotproblematicintheJacobi-preconditioned matrix.

Remark. Theorem 3.6in[20]showstheILU-typepreconditionersareactuallyappliedontopoftheapplicationoftheJacobi preconditioner.HencewecanexpectthattheireffectsareatleastasgoodasJacobi;SeeTable 2.

6. Conclusion

The matrix derived from the standard finite difference method called as the Shortley–Weller method is sparse and non-symmetric, and nearly symmetric. Hence the ratio

maxmin

|

, an accurate measure of eigenvalue distribution, is a veryimportantfactorinsolvingitsassociatedlinearsystem.Weshowedtheestimation

maxmin

| =

O(1/ (h

·

hmin))that isproved andverifiedthrough numericaltests.Furthermore,the testssuggestthat theestimate isoptimal. Thereforethe

참조

관련 문서

In this work, we focus both on the convergence performance of the standard nite dierence method for the Poisson equation and on the eect of the two methods improving

The Shortley-Weller method is a standard central finite-difference- method for solving the Poisson equation in irregular domains with Dirichlet boundary conditions.. It is

A classical finite difference method for solving the Poisson equation with the Dirichlet boundary condition is the Shortley-Weller method.. It has been long known to have a

5 해설 학교에 청소해 주는 사람들이 있어야 한다고 생각한다 는 A 의 말에 B 가 빈칸 뒤에서 우리가 교실을 사용하니 우리 가 교실을 청소해야 한다고 말하고

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

For the first time in a random vibration test of an INS, it has been shown that the magnitude of instantaneous outputs, which is closely related to the distribution function,

[r]

The Bernoulli equation is based on the application of Newton's law of motion to a fluid element on a streamline.. A streamline is hence an instantaneous pattern which