• 검색 결과가 없습니다.

Analysis of Final Equilibrium Pressure Conditions

N/A
N/A
Protected

Academic year: 2022

Share "Analysis of Final Equilibrium Pressure Conditions"

Copied!
24
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Containment Pressurization Process

 Control volume approach

 Let’s see if the following equation is true. 

 Energy conservation equation for the primary coolant system volume.

Integrating the above equation yields

 Those two equations are identical!

(2)

Containment Pressurization Process

 Control volume approach

 Energy conservation equation for the containment volume

Containment condition histories can be evaluated in the following manner.

Obtain the break flow from a critical flow analysis

Obtain the heat transfer rate from the coolant to the containment Obtain the heat transfer rate from the containment to the structure

(3)

Analysis of Final Equilibrium Pressure Conditions

 Simplification of the problem

 Consider only final conditions upon completion of the blowdown process.

 Establishment of pressure equilibrium

Between the containment vessel and the primary system

 Consider the total heat transfer rather  than the rate of heat transfer.

 Control mass approach

 Simplified!

(4)

Analysis of Final Equilibrium Pressure Conditions

 Control volume approach

 At the final state, there are no entering or exiting flow streams, no shaft work, and no expansion work.

 Governing equations for determination of final conditions

 We need subsidiary relations!

 The initial state (designated “1”)

For a PWR,

Pressure ( , temperature ( , mass ( Initial mass of air (

Initial mass of water vapor in the air (from relative humidity) (

 Negligible

 The final state

For a preexisting plant  containment volume is known  peak pressure is sought!

For a new plant  peak pressure is specified as a design limit  seek the containment volume!

(5)

Analysis of Final Equilibrium Pressure Conditions

 Analysis

 Redesignate the water initially in the containment air: 

 Subscript (p)  sys

 

(mwamwsys)uw2mwauwa1mwsysuwsys1

ma

ua2ua1

QnwsysQcst

 

ma ua2 ua1

macva

T2 Ta1

Two unknowns in one equation!

: dependent variable of (T and P)

Initial water energy  in the air and the RCS Final water energy 

in the air and the RCS

(6)

Analysis of Final Equilibrium Pressure Conditions

 Analysis

 Additional relations are needed!

Assumptions

The volume of liquid water  can be neglected.

The air occupies the same total volume with liquid water plus vapor 

The water vapor and liquid exist at the partial pressure of the saturated water vapor.

 Actually, the liquid is at a pressure equal to the total pressure.

Dalton’s law of partial pressure

s c p

c

T V V or V V

V   

Air volume Air volume=vapor volume

Dalton’s law of additive pressures

(7)

Analysis of Final Equilibrium Pressure Conditions

 Analysis

 Additional relations are needed!

Dalton’s law of partial pressure

Water in the final state: two‐phase mixture 

Initial air pressure:  

Total pressure: 

Relative humidity:  Dry bulb temperature:

Air mass

By the perfect gas law

Liquid volume is neglected! 

Air is a perfect gas!

(8)

Analysis of Final Equilibrium Pressure Conditions

 Individual Cases

 Two general cases for the final condition

Saturated water mixture in equilibrium with the air. 

It is the expected result in the containment after a postulated large primary system pipe rupture.

Because the heat addition from the core is relatively small , we neglect it here for simplicity. 

Superheated steam in equilibrium with the air.

This case requires that heat be added to the thermodynamic system . 

Such a situation could occur upon rupture of a PWR main steam line, as the intact primary system circulates  through the steam generator and adds significant heat to the secondary coolant, which is blowing down  into the containment. 

(9)

Example 7.1

(10)

Example 7.1

(11)

Example 7.1

 Recall the governing equations

 Iterative solution method

Assume a final temperature,  415 !

 Parameters that we can evaluate from the given information

,

0.101

Energy conservation Dalton’s law

) (

, ) (

, ) ,

( 2, 2,

2 st f2 sat fg2 sat

w f x P v f T v f T

u    Three equations with three unknowns + steam table!

2829 Pa ?

(12)

Example 7.1

 Parameters that we can evaluate from the given information

,

0.101

, 48.87 ?

(13)

Example 7.1

 Parameters that we can evaluate from the given information

 at state 2

211372

0.001082 /

0.483 /

) ,

2 f (x P

uwst

Assume a final temperature,  415 !

(14)

Example 7.1

 Parameters that we can evaluate from the given information

 at state 2 (saturated state)

596,734 [J/kg] 

1,954,676  [J/kg] 

1,603,772 [J/kg]  , 

718 ⁄

Assume a final temperature,  415 !

Initial vapor  partial pressure

(15)

Example 7.1

 Iterative solution method

 Change the temperature and repeat the procedure until the two qualities are equal! 

 Final solution

Assume a final temperature,  415 !

For a preexisting plant 

 containment volume is known

 peak pressure is sought!

2

415.6

(16)

Example 7.1

 Homework 

 Solve this problem by yourself!   반복계산 코딩으로!

 Solve the problem B by yourself!

function example1

P=15.5e6;       

Tsol=250.0;      

Tinit=400.0;  

rho_sol=XSteam('rho_pT',P/1.0e5,Tsol);

fun=@(Tinit)test(Tinit,P,rho_sol);

T = fzero(fun,Tinit)

function result=test(T,P,rho_sol)

rho_spray=XSteam('rho_pT',P/1.0e5,T); 

result=rho_spray‐rho_sol;

참고, 0 을 만족하는 T 찾기!

0

초기값 T 입력 시 아래 식을 만족시키는 T 찾기!

(17)

Example 7.1

5 bar, 5.5 bar

(18)

Example 7.2

(19)

Example 7.2

(20)

Example 7.2

 Superheated Steam in Equilibrium

 Treat the superheated steam as a perfect gas. 

 Unknowns

 Iterative solution method

Assume 

Calculate 

Calculate  and compare it with the steam table!

Do we really need this assumption?

Procedure in the textbook

) ,

( 2 2,

2 steam

w f T P

u

(21)

Example 7.2

 Superheated Steam in Equilibrium

 Unknowns

, , , , ,

 Iterative solution method

Assume 

Calculate  and  ,

Calculate  and compare it with the steam table!

) ,

( 2 2,

2 steam

w f T P

u  )

, ( 2 2,

2 g steam

w

T m v T P

V

2 2 a

a a

T P

T R Vm

, ,

Normal steam table What we need

One more iteration to get the pressure Too complicated!

Perfect gas assumption for steam!

(22)

Homework #5 

Homework #5 

 Select one problem in Example 7.1 (A or B)

 Select one problem in Example 7.2  (B if you selected 7.1 A or A otherwise) 

Problems in Textbook

 7.1, 7.3

Due date: 6/18

In total, 4 problems

• 2 example problems 5 bar, 5.5 bar

(23)

Homework #6 

Problems in Textbook

(24)

Homework #6 

Problems in Textbook

참조

관련 문서

The approach used in the following analysis is to investigate the effect of neglecting the strain energy due to the 2 nd invariant of the strains in the middle surface

The correct typing results for the DNA samples are listed in Table 1 for all STR loci in the Powerplex 16 multiplexes.(Table 1.) The multiplex typing results based on the

○ The calculation model which converts general equilibrium model into computable general equilibrium (CGE) model and then analyzes quantitative effects of

period was prolonged unavoidably, (3) by explaining the risk factors associated with the failure to patients honestly, and subsequently performing

• Under the assumption of equilibrium conditions, and knowing the composition of the fluid stream coming into the separator and the working pressure and temperature

• Beams that have more number of unknown reactions loads (forces or moments) than can be obtained by conditions of equilibrium. • The deflections of such beams must be taken

radial pressure balance, toroidal force balance, β limits, q-profiles, etc.. - The stream function ψ is closely related to the poloidal flux

Many studies using the assumed mode method have been found for the free vibration analysis of stiffened plate with known elastic boundary conditions.. However