• 검색 결과가 없습니다.

Tokamak equilibrium

N/A
N/A
Protected

Academic year: 2022

Share "Tokamak equilibrium "

Copied!
21
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

I ntroduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

(2)

Tokamak equilibrium

(3)

- Consider the axisymmetric torus, the simplest, multi-dimensional configuration

- We shall derive the Grad –Shafranov equation for axisymmetric equilibria.

- This provides a complete description of toroidal equilibrium:

radial pressure balance, toroidal force balance, β limits, q-profiles, etc.

Tokamak Equilibrium

B J p  

J B  

0

 0

 B

(4)

• The Grad-Shafranov Equation

, sin

0

r cos Z r

R

R   

Z

R

e e

e   

- Nonlinear

- Partial differential equation

- Grad and Rubin (1958), Shafranov (1960) - Toroidal axisymmetric ∂/∂Φ = 0

Tokamak Equilibrium

 

d

F dF d

R dp

* 0 2

p J B

 

J B  

0

 0

 B

(5)

p B

J     

J J

p

  B B

p

p    

Tokamak Equilibrium

• The Grad-Shafranov Equation

Sequence of solution of the MHD equilibrium equations 1. The ▽∙B = 0

2. Ampere’s law: μ0J = ▽xB

3. The momentum equation: JxB = ▽p

B J p  

J B  

0

 0

 B

(6)

• Momentum equation

J   B    p

J J

p

  B B

p

p    

- aim: to express each term with ψ and F

  

e

B

p

R 1 

R e

J

*

0

1 

 

2 2 ,

0 p

p

I

F

 0

 B

J

p

B

0

 

J

B

0

R e

B F F

R e

J

p

  

 1 ,

0

Tokamak Equilibrium

• The Grad-Shafranov Equation

(7)

1 0 )

(

1 

 

 

Z B B

R R

RB R

Z R

0

 B

- The ▽ ∙B Equation

In cylindrical coordinates for toroidal axisymmetric fields (∂/∂Φ=0)

R B R

Z

B

R

R

Z

 

 

  1

1 ,

 0

  B

Ψ: Stream function for the poloidal

magnetic field

 0

 

B Z

B

R

R

Z

Magnetic flux surface

Tokamak Equilibrium

• The Grad-Shafranov Equation

(8)

- The stream function ψ is closely related to the poloidal flux in the plasma.

Poloidal flux on axis is zero

R B

Z

R

 1  



 

2 )

0 , ( )

0 , ( 2

2 1

) 0 ,

(

) 0 ,

(

2 0

a R

R

R

R Z

Z p p

R R

R dR R R

Z R RdRB d

dR Rd

Z R B

A d B

a

a

-

∫ ∂

Tokamak Equilibrium

• The Grad-Shafranov Equation

dR

(9)

- The ▽ ∙B Equation

1 0 ) (

1 

 

 

Z B B

R R

RB R

Z

R

0

 B

B

p

e B

B   

R B R

Z

B

R

R

Z

 

 

  1

1 ,

 0

  B

Ψ: Stream function for the poloidal

magnetic field

 0

 

B Z

B

R

R

Z

Magnetic flux surface

dr RB

p

d

Rdr B

A d B A

d B A

d B d

d

p

A p

A p

A

A p



 2 ( ) 2

2

2     

       

Tokamak Equilibrium

• The Grad-Shafranov Equation

B

p

d A

p

 

 



2

Rdr

dA  2 

dr

(10)

- Ampere’s law (poloidal component)

J

p

B

0

 

 

 

A

B d A B d l 2 d ( RB ) 2 d ( RB )

 

JF

Tokamak Equilibrium

• The Grad-Shafranov Equation

) (

0

 

  F

r F F

dr d R F

J

p

 

 

 

 

 

Rdr dA2

R dr 2

Rdr RB J

d

p

 

 (

) 2

2 

0

Rdr J

A d

J

p

A

p

 

0

 

0

2

 

 

  F

dr d

R RB J

p

) / (

)

(

0

F (  )  RB

B F F

e

J    1 

  ,

(11)

 

R R RB F RB

J

Z

 1 1  , ( )

0

0 ) (

0  

F

R

B

. - Interpretation of F( ψ)

 

0

0

0 0

0 2

0

0 2

0

/ ) 0 , 0 ( )

0 , ( 2

2 1

) 1 (

) 0 ,

(

) 0 ,

(

 

 

F R

F

R dR F R R

R RB RdR R

d

Z R RdRJ d

dR Rd Z

R J

A d J I

R

R R

Z Z

p p

 

 

Tokamak Equilibrium

• The Grad-Shafranov Equation

(12)

B J  

0

 

* 0

2 2

0 0

1

1 1

1 1

 

 

 

 

 

 

 

 

 

 

R

R R R Z

R R

B Z

J B

R Z

R B R

Z

B

R

R

Z

 

 

  1 

1 ,

2 2

*

1

Z R

R R R

 

 

 

 

   

elliptic operator

Tokamak Equilibrium

• The Grad-Shafranov Equation

- Ampere’s law (toroidal component)

(13)

- Momentum equation

   

 

  e

B R F F

B R e

R J

F R e

B R e

J J

R e

B F

R e R e

J

R e B

F R e

J

B B

J J

p

p p

 

 

 

 

 

  

 

 

 

 

 

  

 

 

  

 

 

   

 

 

   

0 0

0 0

0

1 1

1 1

1

1 1

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

F R e

J

p

 

 

 

0

1

  

e

B

p

R 1  R B F (  )

 

*

0

1 

R

J

) (

) (

)

(B C B A C C A B A     

Symmetry

Tokamak Equilibrium

• The Grad-Shafranov Equation p B

J     

(14)

- Momentum equation J   B    p

    F

R B R

B J B

J J

p  

p

 

p

   

0

F R e

J

p

 

 

 

0

1

  

e

B

p

R 1  R B F (  )

* 0 0

0

1

) (

 

 

d dF R

F d

R dp

d B dF d

R dp

B F R p

J

 

*

0

1 

R

J

Symmetry

Tokamak Equilibrium

• The Grad-Shafranov Equation

(15)

- BCs: provided by the transformer-induced poloidal magnetic field outside the plasma

- In practice, the G-S equation is solved numerically to find the geometrical location of the magnetic surfaces and the radial distribution of the axial

current density in a way that is consistent with the

▽p:

plasma load on a magnetic

flux surface

JpxBΦ: strength

of BΦ JΦxBp:

strength of Bp

 

d

F dF d

R dp

* 0 2

Tokamak Equilibrium

• The Grad-Shafranov Equation

(16)

Force balance in a tokamak

(17)

▽p:

plasma load on a magnetic

flux surface

JpxBΦ: strength

of BΦ JΦxBp:

strength of Bp

 

d

F dF d

R dp

* 0 2

Tokamak Equilibrium

• The Grad-Shafranov Equation

What kind of forces does a plasma have regarding equilibrium?

(18)

18

• Basic Forces Acting on Tokamak Plasmas

- Radial force balance

- Toroidal force balance: Tire tube force

) (

~

R I II

NET

e pA pA

F  

Tokamak Equilibrium

X Jt Bp

Jt xBp

Magnetic pressure, Tension force

(19)

- Toroidal force balance: 1/R force - Toroidal force balance: Hoop force

2 2 2 0

2 2

2 2 2

/ ) (

~ e B A B A   a B

F

NET R I I

II II

II II I

I

II I

II I

A B A

B

A A

B B

2 2

,

net

pressure

Tokamak Equilibrium

• Basic Forces Acting on Tokamak Plasmas

0 2

2

) / 2

(

~

R I I II II

NET

e B A B A

F

I I II II

II I

II I

II I

A B A

B

A A

B B

2 2

,

net

pressure

(20)

v p

v

BIL R I B

F   2 

0

v

p

B

I  

B B

B

• Basic Forces Acting on Tokamak Plasmas

Tokamak Equilibrium

- External coils required to provide the force balance

How about vertical movement?

(21)

Lesch, Astrophysics, IPP Summer School (2008)

References

참조

관련 문서

• The supply and demand curves cross at the equilibrium price and quantity.. • You can read off approximate equilibrium values

• The ideal process that can serve as a suitable model for adiabatic steady-flow devices (e.g. turbine, compressors, nozzle).. EX 2) Effect of Efficiency on Compressor Power

However, the 432 Detector output does not change to the selected balance until the detector is autozeroed by a contact closure at the Auto Zero input terminals on the

If you want to lock the white balance during movie shooting in the auto white balance mode, select MENU → (Camera Settings2) → Assign [AWB Lock Hold] or [AWB Lock Toggle]

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

Average of the indexed values of the following data: (1) Total value of the indexed score for disability-adjusted life years (the number of years lost due to illness,

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

Based the above study results, balance relaxation therapy is considered a therapy that can help the body recover its flexibility if there is an imbalance