• 검색 결과가 없습니다.

Melatonin is a hormone produced by the pineal gland in the brain and it has been reported that melatonin plays an important role in cisplatin-induced renal damage. In this study, the underlying mechanisms of melatonin were evaluated in the cisplatin-treated mice and cells. Melatonin significantly ameliorated renal dysfunction, increased expression of tubular injury markers, caspase-3 activation, apoptotic cell death, protein expression of key components of the molecular machinery for necroptosis, activation of NF-κB, and mRNA expression of pro-inflammatory cytokines in cisplatin-treated mice and cells. Taken together, these data demonstrated that the protective effects of melatonin against cisplatin-induced renal dysfunction and structural damages through dual suppression of apoptosis and necroptosis.

References

1. Pabla N, Dong Z: Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney International 2008; 73: 994-1007.

2. Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI: An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical Reviews in Toxicology 2011; 41: 803-21.

3. Perše M, Večerić-Haler Ž: Cisplatin-induced rodent model of kidney injury: characteristics and challenges. BioMed Research International 2018; 2018: A1462802.

4. Tristão VR, Gonçalves PF, Dalboni MA, Batista MC, De Souza Durão Jr M, Monte JCM: Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Renal Failure 2012; 34:

373-7.

5. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Zen FD, et al.: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America 2013; 110: 12024-9.

6. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, et al.: A role for tubular necroptosis in cisplatin-induced AKI. Journal of the American Society of Nephrology 2015; 26: 2647-58.

7. Wang S, Zhang C, Hu L, Yang C: Necroptosis in acute kidney injury: a shedding light. Cell Death and Disease 2016; 3: E2125.

8. Tristão VR, Pessoa EA, Nakamichi R, Reis LA, Batista MC, Monte JCM, et al.: Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis 2016; 21:

51-9.

9. Hu W, Ma Z, Jiang S, Fan C, Deng C, Yan X, et al.: Melatonin:

the dawning of a treatment for fibrosis?. Journal of Pineal Research 2016; 60: 121-31.

10. Hara M, Yoshida M, Nishijima H, Yokosuka M, Ligo M, Ohtani-Kaneko R, et al.: Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. Journal of Pineal Research 2001; 30: 129-38.

11. Parlakpinar H, Sahna E, Ozer MK, Ozugurlu F, Vardi N, Acet A:

Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. Journal of Pineal Research 2002; 33: 161-6.

12. Kilic U, Kilic E, Tuzcu Z, Tuzcu M, Ozercan IH, Yilmaz O, et al.:

Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutrition and Metabolism 2013; 10: A7.

13. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, et al.:

through SIRT3-dependent regulation of oxidative stress and apoptosis. Journal of Pineal Research 2017; 63: E12419.

14. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, et al.: Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. Journal of Pineal Research 2018; 65: E12503.

15. Yang J, Yang Z, Li C, Wang Y, Yin Y, Liu M, et al.: Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis.

Journal of Molecular and Cellular Cardiology 2018; 125: 185-94.

16. Tahan V, Atug O, Akin H, Eren F, Tahan G, Tarcin O, et al.:

Melatonin ameliorates methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis in rats. Journal of Pineal Research 2009; 46: 401-7.

17. Choi HS, Kang WJ, Lee SM: Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis.

Translational Research 2015; 166: 292-303.

18. Kim JY, Park JH, Kim K, Jo J, Leem J, Park KK: Pharmacological inhibition of caspase-1 ameliorates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation in Mice. Mediators of Inflammation 2018; 2018:

A6571676.

19. Deng B, Lin Y, Ma S, Zheng Y, Yang X, Li B, et al.: The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney International 2017; 92: 89-100.

20. Barberino RS, Menezes VG, Ribeiro AEAS, Palheta RC, Jiang XJ, Smitz JEJ, et al.: Melatonin protects against cisplatin-induced ovarian damage in mice via the MT1 receptor and antioxidant activity. Biology of Reproduction 2017; 96: 1244-55.

21. Xu J, Sun S, Wei W, Fu J, Qi W, Manchester LC, et al.:

Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment. Journal of Pineal Research 2007; 42: 166-71.

22. Choi SH, Leem J, Lee IK: Protective effects of gemigliptin, a dipeptidyl peptidase-4 inhibitor, against cisplatin-induced nephrotoxicity in mice. Mediators of Inflammation 2017; 2017:

A4139439.

23. Newton K: RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends in Cell Biology 2015; 25: 347-53.

24. Meng HZ, Fu GH, Shen J, Shen KZ, Xu ZJ, Wang YM, et al.:

Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxidative Medicine and Cellular Longevity 2017; 2017:

A3140680.

25. Salem N, Helmi N, Assaf N: Renoprotective effect of platelet-rich plasma on cisplatin-induced nephrotoxicity in rats. Oxidative Medicine and Cellular Longevity 2018; 2018: A9658230.

26. Park JH, Chung EJ, Kwon HJ, Im SS, Lim JG, Song DK:

Protective effect of melatonin on TNF-α-induced muscle atrophy in L6 myotubes. Journal of Pineal Research 2013; 54: 417-25.

27. Smith CC, Yellon DM: Necroptosis, necrostatins and tissue injury.

Journal of Cellular and Molecular Medicine 2011; 15: 1797-806.

28. Pasparakis M, Vandenabeele P: Necroptosis and its role in inflammation. Nature 2015; 517: 311-20.

29. Newton K, Manning G: Necroptosis and inflammation. Annual Review of Biochemistry 2016; 85: 743-63.

Melatonin Attenuates Cisplatin-Induced Nephrotoxicity through Dual Suppression of Apoptosis and Necroptosis

Kim, Jong Woo Department of Physiology

Graduate School Keimyung University

(Supervised by Professor Park, Jae Hyung)

Melatonin is a hormone produced by the pineal gland and is well

known to regulate the sleep-wake cycle. In addition, melatonin also has

beneficial effects such as anti-oxidant and anti-inflammatory properties

in various disease models. It has been reported that melatonin plays a

protective role against cisplatin-induced nephrotoxicity. However, the

mechanisms underlying the protective effect of melatonin on

cisplatin-induced kidney injury remains poorly understood. This study

showed that treatment of melatonin significantly ameliorated

cisplatin-induced kidney dysfunction and structural damages. Melatonin

inhibited cleaved caspase-3 and cleaved PARP-1 expressions in

cisplatin-treated mice. Necroptotic markers were markedly increased by

cisplatin treatment and these changes were also attenuated by melatonin.

In the cisplatin-treated mice, melatonin significantly inhibited expression

levels of phospho-NF-κB and pro-inflammatory cytokines. In renal

epithelial cell lines, melatonin also ameliorated cisplatin-induced cellular

apoptosis and necroptosis. These results suggest that melatonin protects

against cisplatin-induced renal dysfunction and structural damages

through dual suppression of apoptosis and necroptosis.

시스플라틴 유도 신독성에서 아포토시스와 네크롭토시스의 이중 억제에 의한 멜라토닌의 보호효과

김 종 우

계 명 대 학 교 대 학 원 의학과 생리학 전공 (지도교수 박 재 형)

멜라토닌은 뇌의 송과선에서 생산되는 호르몬으로 수면-각성 주기를 조

절하는 것으로 알려져 있다. 또한 멜라토닌은 다양한 질병 모델에서 항산화

및 항염증 작용과 같은 유익한 효과를 나타낸다. 멜라토닌은 시스플라틴에

의한 신독성으로부터 신장 조직을 보호하는 것으로 보고되었다. 하지만 그

기전은 아직까지 명확히 밝혀져 있지 않다. 본 연구에서는 시스플라틴을 투

여한 마우스 및 신장 세포주에서 멜라토닌의 효능을 확인하고 그 기전을

규명하였다. 동물실험에서 시스플라틴에 의한 혈액 요소질소 및 크레아티닌

의 혈청 수치 감소가 멜라토닌 처리에 의해 개선되었으며, 시스플라틴에 의

한 신장세포의 조직학적 변화도 멜라토닌 처리에 의해 개선되었다. 호중구

젤라티나제 결합 리포칼린과 신장 손상 분자-1과 같은 신장 관상세포의 손

상지표들의 발현이 시스플라틴에 의해 현저히 증가하였으며, 이는 멜라토닌

처리에 의해 억제되었다. 시스플라틴에 의해 신장 세포의 아포토시스와 네

크롭토시스 모두 현저히 증가하였으며, 아포토시스와 네크롭토시스 모두 멜

라토닌 처리에 의해 억제되었다. 시스플라틴에 의해 신장 조직의 염증성 사

이토카인들의 발현양도 현저히 증가하였으며, 멜라토닌 처리에 의해 유의하

게 감소되었다. 신장 세뇨관 상피 세포주를 이용한 실험에서도 시스플라틴

에 의한 아포토시스와 네크롭토시스 증가가 멜라토닌에 의해 모두 억제되

었다. 결론적으로 멜라토닌은 아포토시스와 네크롭토시스의 이중 억제를 통

하여 시스플라틴에 의한 신장의 기능이상과 구조적 손상을 예방하였다. 따

라서 멜라토닌은 시스플라틴에 의한 신독성을 예방할 수 있는 후보물질이

될 수 있다.

관련 문서