• 검색 결과가 없습니다.

Chapter 4. Postprandial Anti-hyperglycemic Effect of

5.2. Future directions

Ongoing and future work toward addressing the three objectives are outlined below.

• Reaction kinetics study

Inhibitory kinetic assays will be performed to identify the mode of inhibition over α-glucosidase and executed by graphical means of employing primary (Lineweaver-Burk) and secondary plots.

• Molecular docking

To understand the binding interaction with α-glucosidase the molecular

docking will be conducted against the homology model of α-glucosidase.

• Molecular dynamic simulation

MD simulations will be performed for α-glucosidase-vitamin B6 complex.

References

1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:371-381.

2. Korean Diabetes Association. Diabetes Fact Sheet 2016 in Korea. Available at http//www.diabetes.or.kr/

3. Hara Y. Prophylactic functions of tea polyphenols In Food Phytochemicals for cancer prevention II - Tea, spices and herbs, ACS symposium series 547, American chemical society, Washington, DC. 1994:34-504.

4. Horii S, Fukasse K, Matsuo T, Kameda K, Asano N, Masui Y. Synthesis and α-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potent oral antidiabetic agents. J. Med. Chem. 2005;29:938-1046.

5. Harold E, Lebovitz M.D. Alpha-glucosidase inhibitors. Endocrin. Metab. Clin.

1997;26(3):539-551.

6. Liao S, Kao YH, Hiipakka RA. Green tea: biochemical and biological basis for health benefits. Vitam. Horm. 2001;62:1-94.

7. Olokoba AB, OA Obateru, and Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269-273.

8. Baynes H. Classification, Pathophysiology, Diagnosis, and Management of Diabetes Mellitus. J Diabetes Metab. 2015;6(541):2.

9. Organization, W.H. Global report on diabetes. 2016.

10. Ogurtsova K, da Rocha Fernandes J D, Huang Y, Linnenkamp U, Guariguata L, Cho N H, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global

estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50.

11. Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century? International Journal of health sciences. 2010;1(2).

12. Hu FB. Globalization of diabetes. Diabetes care. 2011;34(6):1249-1257.

13. Alberti G, et al. Type 2 Diabetes in the Young: The Evolving Epidemic. The International Diabetes Federation Consensus Workshop. 2004:798-1811.

14. Pinhas-Hamiel O and P Zeitler. The global spread of type 2 diabetes mellitus in children and adolescents. The Journal of pediatrics. 2005;146(5):693-700.

15. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Jama. 2002;287(18):2414-2423.

16. Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114-23.

17. Voight BF, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579-89.

18. Nolan CJ, P Damm, M Prentki. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet.

2011;378(9786):169-81.

19. Lindstrom J, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study.

2006.

20. Tuomilehto J, et al. Prevention of type 2 diabetes mellitus by changes in

of pathogenesis and therapy. The Lancet. 2005;365(9467):1333-1346.

22. Unger RH, PE Scherer. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends in Endocrinology & Metabolism.

2010;21(6):345-352.

23. Guilherme A, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews Molecular cell biology.

2008;9(5):367-377.

24. Shah P, A Basu, R Rizza. Fat-induced liver insulin resistance. Current diabetes reports. 2003;3(3):214-218.

25. Oh J, et al. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo.

International journal of molecular sciences. 2015;16(4):8811-8825.

26. Jones K, et al. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase.

Bioorganic & medicinal chemistry. 2011;19(13):3929-3934.

27. Derosa G, P Maffioli. α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012;8(5):899-906.

28. Van de Laar FA, et al. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. The Cochrane Library. 2005.

29. Chiasson J-L, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. Jama. 2003;290(4):486-494.

30. Hanefeld M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovascular diabetology.

2007;6(20).

31. Hotta N, K H, Sano T. Long-term effect of acarbose on glycemic control in non-insulin-dependent diabetes mellitus: A placebo-controlled double-blind study. Diabetic Med. 1993;10(5).

32. Santeusanio F, V M, Contadini S. Efficacy and safety of 2 different dosages of acarbose in non-insulin-dependent diabetic patients treated by diet alone.

Diabetes Nutr. Metab. Clin. Exp. 1993;6(7).

33. Hoffmann J, Spengler M. Efficacy of 24-Week Monotherapy With Acarbose, Metformin, or Placebo in Dietary-Treated NIDDM Patients: The Essen-II Study. The American Journal of Medicine.1997;103(6):483-490.

34. Chiasson J-L, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross S A, Ryan EA, Tan MH, Wolever TMS. The Efficacy of Acarbose in the Treatment of Patients with Non–Insulin-Dependent Diabetes Mellitus: A Multicenter, Controlled Clinical Trial. Annals of Internal Medicine, 1994;121(12):928-935.

35. Coniff RF, Shapiro J, Seaton TB. Long-term efficacy and safety of acarbose in the treatment of obese subjects with non-insulin-dependent diabetes mellitus. Archives of Internal Medicine. 1994;154(21): 2442-2448.

36. Coniff RF, Shapiro JA, Seaton TB, Bray GA. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J

hyperglycemia by acarbose in patients with NIDDM. A placebo-controlled dose-comparison study. Diabetes Care. 1995;18(6):817-824.

38. Braun D, S U, Mitzkat HJ. Efficacy of acarbose monotherapy in patients with type 2 diabetes: A double-blind study conducted in general practice.

Endocrinol Metab. 1996;3(7).

39. Lindstrom J, T J, Spengler M. The effect of acarbose on dietary nutrient intake and metabolic control in NIDDM patients. Diabetologia. 1996;39(12).

40. Baynes H. Classification, Pathophysiology, Diagnosis, and Management of Diabetes Mellitus. J Diabetes Metab. 2015;6(541):2.

41. Braun D, SU, Mitzkat HJ. Efficacy of acarbose monotherapy in patients with type 2 diabetes: A double-blind study conducted in general practice.

Endocrinol Metab. 1996;3(7).

42. Lindstrom J, T J, Spengler M. The effect of acarbose on dietary nutrient intake and metabolic control in NIDDM patients. Diabetologia. 1996;39(12).

43. Kawahara M, Kawanishi F, Komiya T, Ohsio H. Dammarane saponins of Gynostemma penaphyllum Makino and isolation of malonyl ginsenosides-Rb1, -Rd and malonyl ginsenosides(V). Chem Pham Bull. 1989;37(1):5.

44. Garriques SS. On panaquilon, a new vegetable substance. Ann Chem. Pharm.

1854;90:231-234.

45. Afkhami-Ardekani M, Shojaoddiny-Ardekani A. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. The Indian Journal of Medical Research. 2007:471-474.

46. Frank R-A-W, Leeper F-J and Luisi B-F. Structure, mechanism and catalytic duality of thiamine-dependent enzymes (Review). Cellular and molecular

life sciences. 2007:892–905.

47. Fischer M, Bacher A. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Archives of biochemistry and biophysics. 2008:252-265.

48. Vaijinath S-K, Moti L-K. Mechanism of Action of Niacin. The American journal of cardiology. 2008:S20-S26.

49. Rodrigues B, Xiang H, Mcneill J-H. Effect of L-Carnitine Treatment on Lipid Metabolism and Cardiac Performance in Chronically Diabetic Rats. Diabetes.

1988:1358-1364.

50. Aprahamian M, Dentinger A, Stock-Damge C, Kouassi J-C, Grenier J-F.

Effects of supplemental pantothenic acid on wound healing: experimental study in rabbit1-3. The American Society for Clinical Nutrition. 1985:578-589.

51. Kannan K, Jain S-K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2treated U937 monocytes.

Free Radical Biology and Medicine. 2003:423-428.

52. Expert Group on Vitamin and Minerals. Safe Upper Levels for Vitamins and Minerals. Food Standard Agency. 2003.

53. Naurath H-J, Joosten E, Riezler R, Stabler S-P, Allen R-H, Lindenbaum J.

Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. The LANCET. 1995:85-89.

Cancer. 1998:712-719.

55. Arshag D, Failla A, Hoogwerf B, Maryniuk M, Wylie-rosett J. Selected Vitamins and Minerals in Diabetes. Diabetes Care. 1994:464-479.

56. Punithavathi V-R, Anuthama R, Prince P-S-M. Combined treatment with naringin and vitamin C ameliorates streptozotocininduced diabetes in male Wistar rats. Journal of Applied Toxicology. 2008:806-813.

57. Jain S-K, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Biology and Medicine. 2001:232-237.

58. Kalaiselvi T, Panneerselvam C. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. J. Nutr . Biochem. 1998:575-581.

59. Combs, GF. The Vitamins: Fundamental Aspects in Nutrition and Health (3rd ed.). San Diego: Elsevier Academic Press. 2007:320–324.

60. McCormick DB. "Vitamin B6". In Bowman BA, Russell RM. Present Knowledge in Nutrition. 2(9th ed.). Washington DC: International Life Sciences Institute. 2006:270-273.

61. Sauberlich, Howerde E. "Vitamins – how much is for keeps?". Nutrition Today. 1987;22: 20-28.

62. Apostolidis E, Li L, Kang BH, Lee CM, Seeram NP. Seasonal influence on phenolic-mediated antihyperglycemic properties of Canadian sugar and red maple leaves using in vitro assay models. Food Sci. Biotechnol.

2012;21:753-760.

63. American Diabetes Association. Diagnosis and classification of diabetes

mellitus. Diabetes Care. 2012;35:S64-S71.

64. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes:

Estimates for the year 2000 and projections for 2030. Diabetes Care.

2004;27:1047-1053.

65. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 2010;8(29).

66. Jo SH, Ka EH, Lee HS, Apostolidis E, Jang H D, Kwon YI. Comparison of antioxidant potential and rat intestinal α-glucosidases inhibitory activities of quercetin, rutin, and isoquercetin. Int. J. Appl. Res. Nat. Prod. 2009;2:52-60.

67. Tucci SA, Boyland EJ, Halford JC. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes.

2010;10:125-43.

68. Subramanian R, Asmawi MZ, Sadikun A. In vitro glucosidaseand α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Pol. 2008;55:391-398.

69. Gromova OA, Torshin IY, Nazarenko AG, Kalachev AG. Deficiency of magnesium and pyridoxine as a risk factors for coronary heart disease.

Kardiologia. 2016;56:55-62.

2001;103:2788-2791.

71. Robinson K, Arheart K, Refsum H, Brattström L, Boers G, Ueland P, Rubba P, Palma-Reis R, Meleady R, Daly L, et al. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. European COMAC Group. Circulation.

1998;97:437-43.

72. Nix WA, Zirwes R, Bangert V, Kaiser RP, Schilling M, Hostalek U, Obeid R.

Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res. Clin. Pract. 2015;107:157-165.

73. Odum EP, Wakwe VC. Plasma concentrations of water-soluble vitamins in metabolic syndrome subjects. Niger. J. Clin. Pract. 2012;15:442-447.

74. Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008;87:1446-1454.

75. Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na++K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic. Biol. Med. 2001;30:232–237.

76. Levin ER, Hanscom TA, Fisher M, Lauvstad WA, Lui A, Ryan A, Glockner D, Levin SR. The influence of pyridoxine in diabetic peripheral neuropathy.

DiabetesCare. 1981;4:606-609.

77. Nair AR, Biju MP, Paulose CS. Effect of pyridoxine and insulin administration on brain glutamate dehydrogenase activity and blood glucose control in streptozotocin-induced diabetic rats. Biochim. Biophys. Acta.

1998;1381:351-54.

78. Solomon LR, Cohen K. Erythrocyte O2 transport and metabolism and effects of vitamin B6 therapy in type II diabetes mellitus. Diabetes. 1989;38:881-886.

79. Ahmad S, Shahab U, Baig MH, Khan MS, Khan MS, Srivastava AK, Saeed M, Moinuddin. Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products. PLoS ONE. 2013;8(e72128).

80. Kwon YI, Apostolidis E, Kim YC, Shetty K. Health benefits of traditional corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension management. J. Med. Food. 2007;10:266-275.

81. Kwon YI, Vattem DA, Shetty K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr.

2006;15:107-118.

82. Dahlqvist A. Method for assay of intestinal disaccharidases. Anal. Biochem.

1964;7:18-25.

83. Bergmeyer HU, Bernt E. Determination of Glucose with Glucose Oxidase and Peroxidase. In Methods of Enzymatic Analysis 2nd ed. Academic Press New York, NY, USA. 1974:1205-1215.

84. Middleton HM. In vivo absorption and phosphorylation of pyridoxine-HCl in rat jejunum. Gastroenterology. 1979;76:43-49.

2011;12:3757-3769. Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2002;25:S5-S20.

89. Deshpande MC, Venkateswarlu V, Babu RK, Trivedi RK. Design and evaluation of oral bioadhesive controlled release formulations of miglitol, intended for prolonged inhibition of intestinal α-glucosidases and enhancement of plasma glycogen like peptide-1 levels. Int. J. Pharm.

2009;380:16-24.

90. Hirsh AJ, Yao SY, Young JD, Cheeseman CI. Inhibition of glucose absorption in the rat jejunum: A novel action of α-D-glucosidase inhibitors.

Gastroenterology. 1997;113:205-211.

91. Mooradian AD, Failla M, Hoogwerf B, Maryniuk M, Wylie-rosett J. Selected Vitamins and Minerals in Diabetes. Diabetes Care. 1994;17:464-479.

92. Punithavathi VR, Anuthama R,Prince P. Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistar rats. J. Appl. Toxicol. 2008;28:806-813.

93. Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na++

K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Rad. Biol. Med. 2001;30:232-237.

94. Kang Y-R, Kim HH, Lee J-Y, Jang H-B, Lee KW, Apostolidis E, Kwon Y-I.

Postprandial Anti-hyperglycemic Effect of Pyridoxine and Its Derivatives using in-vitro and in-vivo Animal Models. Frontiers in Chem. 2017: Arginyl-fructosyl-glucose and arginyl-fructose, compounds related to browning reaction in the model system of steaming and heat-drying processes for the preparation of red ginseng. J. Ginseng Res. 2004;28:143-148.

97. Dehghan-Kooshkghazi M, Mathers JC. Starch digestion, largebowel fermentation and intestinal mucosal cell proliferation in rats treated with the α-glucosidase inhibitor acarbose. Br. J. Nutr. 2004;91:357-365.

98. Kim GN, Kwon YI, Jang HD. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting α-glucosidase in normal rats. J. Med. Food. 2011;14:712-717.

99. Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with

Molecular weight dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci. 2013;14:14214-14224.

101. Hanefeld, M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc. Diabetol.

2007;6:1-10.

102. Jenkins DJ, Taylor RH, Goff DV, Fielden H, Misiewicz JJ, Sarson DL, Bloom SR, Alberti KG. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes. 1981;30:951-954.

103. Matsuura Y, Zheng Y, Takaku T, Kameda K, Okuda H. Isolation and physiological activities of a new amino acid derivative from Korean red ginseng. Korean J. Ginseng Sci. 1994;18:204-211.

104. Joo KM, Park CW, Jeng HJ, Lee SJ, Chang IS. Simultaneous determination of two Amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. B Anal. Technol. Biomed.

Life Sci. 2008;865:159-166.

105. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35:S64-S71.

106. Bender DA. The Vitamins. In: Introduction to human nutrition. John Wiley &

Sons Inc., Hoboken, NJ, USA. 2009:132-187.

107. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health

Metr. 2010;8:29.

108. Centers for Disease Control and Prevention. Diabetes Report Card 2014.

Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, USA . 2015.

109. Hou CT, Wu YH, Huang PN, Cheng CH, Huang YC. Higher plasma pyridoxal 5'-phosphate is associated with better blood glucose responses in critically ill surgical patients with inadequate vitamin B-6 status. Clin. Nutr.

2011;30(4):478-483.

110. Hsu CC, Cheng CH, Hsu CL, Lee WJ, Huang SC, Huang YC. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr. Res.

2015;59:25702.

111. Kannan K, Jain SK. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic. Biol. Med. 2004;36(4):423-428.

112. Kim HW, Kang YR, Lee JY, Chang HB, Lee KW, Apostolidis E, Kwon YI.

The postprandial anti-hyperglycemic effect of pyridoxine and its derivatives using in vitro and in vivo animal models. Nutrients. 2018;10(3):285-296.

113. Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008;87:1446-1454.

different food sources. Int. J. Food Sci. Nutr. 2002;53(2):171-179.

116. Van de Laar FA. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008;4(6):1189-1195.

117. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis.

Diabetes Care. 2005;28(1):154-163.

118. Wei EK, Giovannucci E, Selhub J, Fuchs CS, Hankinson SE, Ma J. Plasma vitamin B6 and the risk of colorectal cancer and adenoma in women. J. Natl.

Cancer Inst. 2005;97(9):684-692.

Figure 16. Pyridoxine binding to human lysosomal alpha-glucosidase. The catalytic nucleophile and acid/base can be assigned to D518 and D616, respectively. The substrate is stabilized by hydrogen bonds to the side-chains of D404 and W481.

Figure 17. Pyridoxine binding to human lysosomal alpha-glucosidase. Model of Pyridoxine bound to human lysosomal alpha-glucosidase in surface representation.

국문 초록

일반적인 포도당 대사질환인 제 2 형 당뇨병은 인슐린에 대한

체내의 저항성 증가 또는 maltose, sucrose 와 같은 이당류가 함유된

고칼로리 식품의 섭취 등이 주요 원인이다. 제2 형 당뇨병은 성인 당뇨병

환자의 대부분을 차지하는데 2030 년까지 세계적으로 그 수가

3 억 6 천 6 백만명에 이를 것으로 예상된다.

제 2 형 당뇨병을 개선하는데 있어 식후 혈당 조절이 매우

중요한데 식후 높은 혈당 수치는 제 2 형 당뇨병 환자에게 전형적으로

나타나는 증상으로 이는 췌장 α-amylase 와 소장에서의 탄수화물 소화,

흡수에 따른 혈당 상승이 그 원인이다. 식후 혈당 수치를 낮추는 방법은

소장에서 작용하는 glucosidase 의 억제를 통해 가능하기 때문에

α-glucosidase 억제 의약품인 아카보스(Acarbose® , Bayer AG),

보글리보스(Voglibose® , Takeda) 및 미글리톨(Miglitol® , Bayer AG) 등이

일반적으로 제 2 형 당뇨병환자에게 단독 혹은 인슐린 관련 치료제와

비타민 B6(피리독신)는 고령자의 정상 인지 기능을 유지하고

관상동맥 심장질환(CHD) 발병률을 낮추는데 사용되어 왔다. 비타민

B6 의 투여가 당뇨 합병증과 신경퇴행성 질환 발생률을 감소시키며,

또한 제 1 형과 제 2 형 당뇨병의 발병 환자에서 체내 비타민 B6 의 감소를

확인한 바가 보고되었다. 그러나 비타민 B6 와 그 유도체의 식후 혈당

감소 효과 및 작용기전을 제안하는 연구는 거의 없었다. 따라서 본

논문에서는 비타민 B6 와 그 유도체의 식후 혈당 효능과 그 작용기전에

대한 연구를 수행하였으며, 이를 통해 제 2 형 당뇨병의 관리와 예방에

기여하고자 하였다.

먼저 α-glucosidase, sucrase, maltase, glucoamylase 와 같은 다양한

소화 효소에 대한 피리독신, 피리독살, 피리독사민의 억제 활성을

조사하였다. 이당류의 흡수에 관여하는 효소를 억제함으로써 탄수화물

위주의 식이로 인한 식후 고혈당증을 개선할 수 있는데, IC50 실험

위주의 식이로 인한 식후 고혈당증을 개선할 수 있는데, IC50 실험

관련 문서