• 검색 결과가 없습니다.

B. Generation of LDHB conditional knockout mice

3. ES cell screening

a. Genomic DNA isolation by phenol-chloroform extraction

Transfection 된 ES cell(24well plate from 마크로젠)에 DNA lysis buffer( + proteinase K) 로 55℃에서 5-6 시간 동안 lysis 한다. Phenol-chloroform extraction 방법으로 ES cell 의 genomic DNA 를 추출한다.

b. Southern blot analysis

Phenol-chloroform extraction 을 통하여 얻어진 genomic DNA 를 BamH1(NEB)으로 overnight enzyme digestion 한다. 0.6% agarose gel 을 이용하여 electrophoresis 한 뒤 transfer 한다. transfer 가 끝난 membrane 은 2000J 로 cross-link(UV STRATALINKER® 1800)시킨다. LDHB N probe 를 사용하였으며 α-P32를 이용하여 labeling 하였다. -80℃에서 24 시간 동안 film exposing 하였다.

- 16 -

4. Injection of ES cells into blastocysts

ES cell screening 을 통해 targeting vector 가 들어간 positive ES cell 을 선별하여

- 17 -

6. Confirmation of LDHB knockout mice

마지막으로 Cre mouse 와 mating 으로 얻어진 knockout mouse 들은 PCR genotyping 과 southern blot analysis 를 통해 확인한다. Genotyping 은 LDHB , Flp, 그리고 Cre 에 관하여 진행하였으며 southern blot analysis 는 BamHⅠ으로 digestion 하여 LDHB N probe 로 labeling 하였다.

- 18 -

Ⅲ. 결 과

A. ES cell screening

Southern blot analysis 를 통해 targeting vector 가 들어간 positive ES cell 은 genomic DNA 를 BamHⅠ으로 digestion 하여 LDHB N probe 를 이용해 선별하였다. WT allele 은 12.2kb , targeting vector 는 7.5kb 에서 각각 확인 할 수 있었다(Fig. 4A).

Second confirmation 에서는 BamHⅠdigestion 수행하였으며 BamHⅠ은 LDHB N probe 를 이용하여 screening 하여 positive clone 을 얻었다(Fig. 4B).

- 19 -

Fig. 4. ES cell screening by southern blotting (A)Analysis of control[C] and targeted[T]ES cells. Digestion of ES cell DNA with BamHⅠ generates a novel fragment of kb in LDHB+/neo-loxP clones. (B) Second confirmation of control and targeted ES cells.

Digestion of ES cell DNA with BamHⅠ(B). Southern blot analysis of control and targeted ES cells with LDHB N probe(B).

C T

- 12.2 kb - 7.5 kb

- 7.5 kb - 12.2 kb ES cell

A

B ES cell

C T T T T T T T

- 20 -

LDHB+/neo-loxP mice(+/L) with chimera mice. Genotyping of WT mice by southern blot analysis (A) and PCR(B).

- 21 -

C. Genotyping of LDHB+/neo-loxP, FLP

Germ-line transmission 된 마우스와 Flp 를 지닌 마우스의 교배를 통해 태어난 마우스 중에서 Flp 를 포함하는 mouse (LDHB+/neo-loxP, FLP)를 LDHB primer 와 Flp primer 를 이용하여 PCR 을 통해 선별하였다. (Fig. 6A and 6B)

Fig. 6. Genotyping of LDHB+/neo-loxP, FLP mice (A) Analysis of wild-type(+/+) and LDHB+/neo-loxP mice(+/L) with LDHB primer. (B) Genotyping of LDHB+/neo-loxP, FLP mice with Flp primer

A

B

+/L +/L +/L +/L +/L +/L +/L +/L +/L +/L +/L +/L +/L

+/+ +/+

Flp

+/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+

Flp Flp Flp Flp Flp Flp Flp Flp Flp

- 22 -

D. Genotyping of LDHB+/loxP mice

결과(C)에서 FLP 를 가지고 있는 마우스를 선별한 뒤 wild type 마우스와 mating 시켰다. FRT site 에 flanking 되어 있던 positive selection marker 인 neo-cassette 가 Fig. 7 과 같이 Flp 에 의해 제거 된 마우스를 얻었다.

Fig. 7. Genotyping of LDHB+/ loxP mice (A) Analysis of wild-type(+/+) and LDHB+/neo-loxP mice(+/L) with LDHB primer. (B) Genotyping of LDHB+/neo-LDHB+/neo-loxP, FLP mice with Flp primer.

A

B

+/L +/L

Flp Flp Flp

+/+ +/+ +/+ +/+ +/+

- 23 -

E. Genotyping of LDHB knockout mice(LDHB+/loxP mice, Cre)

(D)와 마찬가지로 결과(C)에서 FLP 를 가지고 있는 마우스를 선별한 뒤 wild-type 마우스가 아닌 Cre-recombinase 를 가진 마우스를 mating 시킨다. 이 사이에서 태어난 마우스 중에서 Cre 를 가지고 있는 마우스를 선별하여 결과적으로 LDHB+/- 마우스를 얻었다.

Figure 8. Genotyping of LDHB+/ loxP, Cre mice (A) Analysis of wild-type(+/+) and LDHB+/neo-loxP mice(+/L) with LDHB primer. (B) Genotyping of LDHB+/neo-loxP, FLP mice with Flp primer. (C) Genotyping of Cre with Cre primer

A

B

C

+/L +/L +/L +/L +/L +/L

Cre Cre Cre Cre Cre Cre

Flp Flp Flp Flp

+/+ +/+ +/+ +/+

- 24 -

- 25 -

Ⅴ. 결 론

본 연구에서는 마우스에서 LDHB 를 제거함으로써 세포내의 모든 lactate dehydrogenase 가 LDHA 로 구성되도록 즉, lactate dehydrogenase 의 활성이 항상 증가되도록 조작하고자 하였다.

본 연구에서는 마우스의 LDHB 게놈을 이용하여 LDHB 유전자 적중용 벡터를 제작하였으며, 이를 이용하여 LDHB 유전자를 마우스의 줄기배아세포 (embryonic stem cell)에서 적중하였다. 다음으로 LDHB 가 적중된 마우스 줄기배아세포를 대리모 마우스의 blastocyst 에 주입하여 chimera 마우스를 생산하였고, 이 chimera 마우스로부터 LDHB+/- 마우스를 얻었다.

현재 LDHB+/- 마우스가 태어나 homozygous 마우스를 만들기 위하여 교배 중이며, LDHB 가 적중된 마우스와 heart-specific 하게 Cre recombinase 가 발현되는 마우스를 교배하여 심장에서 LDHB 가 제거된 마우스를 제작하고 있다.

앞으로 LDHB knockout 마우스는 발암기전 연구를 위한 동물 모델 및 미토콘드리아 활성저하 동물 모델로 유용하게 사용될 것으로 기대된다.

- 26 -

참고 문헌

1. Aoki K, Taketo MM : Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 468:307-331, 2008

2. Argiris A, Murren JR : Staging and clinical prognostic factors for small-cell lung cancer.

Cancer J 7:437-447, 2001

3. Brian Sauer : Inducible Gene Targeting in Mice Using the Cre/loxP system. Methods 14:

381-392, 1998

4. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller Klieser W : Elevated tumor lactate concenturations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349-353, 2001

5. Thorn C C, Freeman T C, Scott N, Guillou P J and Jayne D G: Laser microdissection expression profiling of marginal edges of colorectal tumours reveals evidence of increased lactate metabolism in the aggressive phenotype. Gut 58: 404-412, 2009

6. Chan Bae Park, Jorge Asin-Cayuela, Yolanda Camara, et al.: MTERF3 Is a Negative Regulator of Mammalian mtDNA Transcription. Cell 130: 273-285, 2007

7. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC : The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452: 230-233, 2008

- 27 -

8. Clement L. Markert : Lactate Dehydrogenase Isozymes. Dissociation and Recombination of Subunits. SCIENCE 40:1329-1330, 1963

9.Dang, C.V., and Semenza, G. L. : Oncogenic alterations of metabolism. Trends Biochem.

Sci. 24: 68-72,1999 allele by the adenoviral Cre recombinase in vivo. Dev. Gen. 31: 126-129, 2001

13. Kemeny N, Niedzwieckd D, Shurgot B, Oderman P : Prognostic variables in patients with hepatic metastases from colorectal cancer. Importance of medical assessment of liver involvement. Cancer 63: 742-747, 1989

14. Koukourakis MI, Giatromanolaki A, Sivridis E : Lactate dehydrogenase isoenzymes 1 and 5: differential expression by neoplastic and stromal cells in non-small cell lung cancer and other epitherial malignant tumors. Tumour Biol. 24:199-202, 2003

15. Liu P, Jenkins N, Copeland N : A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13: 476-484, 2003

- 28 -

16. Lois C, et al.: Germline transmission and tissue-specific expression of transgenic delivered by lentiviral vectors. SCIENCE 295: 868-872, 2002

17. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR.: mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10:594-601, 2004

18. Mario R. Capecchi : Gene targeting in mice. Functional analysis of the mammalian genome for the twenty-first century. Nature Rev. 6:507-512, 2005

19.Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ : Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:17-186

20. Matthew G. Vander Heiden, Lewis C. Cantley, Craig B. Thompson : Understanding the Warburg Effect, The Metabolic Requirements of Cell Proliferation. SCIENCE 324: 1029-1033, 2009

21. Michael I. Koukourakis, Emmanuel Kontomanolis, Alexandra Giatromanolaki, Efthimios Sivridis, Vassilios Liberis : Serum and Tissue LDH levels in Patients with Breast/Gynaecological Cancer and Benign Diseases. Gynecol Obstet Invest 67: 162-168, 2009

22. Peggy P. Hsu, and David M. Sabatini : Cancer cell metabolism, Warburg and Beyond.

Cell 134: 703-707, 2008

- 29 -

23. Pentao Liu, Nancy A.Jenkins, and Neal G. Copeland : A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations. Genome

research 13: 476-484, 2003

24. R.D. Ellender, B.L.Middlebrooks and P.M.Toom : Simple isoelectric focusing method to quantitate LDH isoenzymes in cultured cells for cell characterization. TCA manual 3:593-596, 1977

25. Rozhin J, Sameni M, Ziegler G, Sloane BF : Pericellular pH affects distribution and secretion of cathesin B in malignant cells. Cancer Res. 54: 6517-6525, 1994

26. Russell G. Jones,and Craig B. Thompson : Tumor suppressors and cell metabolism. A recipe for cancer growth. Genes Dev 23:537-548, 2009

27. Sekine, N., Cirulli, V., et al.: Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta cells. Potential role in nutrient sensing.

J.Biol.Chem. 269:4895-4902, 1994

28. Toshiro ARAI, Masashi SASAKI, Juichi TANAKA, and Yoshio OKI : Characteristics of Lactate Dehydrogenase Isozymes in Tissue Extracts of Herbivorous Vole, Microtus arvalis Pallas. Jpn. J. Vet. Sci. 50:287-290, 1988

29. Valeria R.Fantin, Julie St-Pierre, and Philip Leder : Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance.

Cancer cell 9: 425-434, 2006

- 30 -

30. V Fritz , L Fajas : Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 29:4369-4377, 2010

31. Warburg O. : Metabolism of Tumors. Arnold Constable: London, 1930

32. Warburg O. : On the origin of cancer cells. SCIENCE 123:309-314,1956

33. Warburg O. : On respiratory impairment in cancer cells. SCIENCE 124:269-270, 1956

34. Xiangdong Xu, Xiang-Dong Fu : Conditional knockout mice to study alternative splicing in vivo.Methods 37: 387-392, 2005

35. Zabel DD, Feng JJ, Scheuenstuhl H, Hunt TK, Hussain MZ : Lactate stimulation of macrophage-derived angiogenic activity is associated with inhibition of poly(ADP-ribose) synthesis. Lab Invest 74: 644-649, 1996

- 31 -

(Supervised by Assistant Professor Chan Bae Park)

In general, differentiated cells produce most of the ATP to growth from glucose through metabolism. Normal cells produce 2 ATP by glycolysis in the cytoplasm and convert to 2 pyruvates. Next, this pyruvate produces about 36 ATP by oxidative phosphorylation in the mitochondria.

On the other hand, many metastatic cancer cells have altered glycolytic(glucose) metabolism. The lactate released by this altered glycolytic metabolism exported out of cancer cells. Because the tumor environment is highly hypoxic so that cancer cells produce of ATP by glycolysis. Cancer cells uptake glucose much more than normal cells. Because, they use inefficient glycolysis for producing ATP. In cancer cell, expression of gene associated with glycolysis and enzyme about lactate production are increased for activating glycolysis.

- 32 -

Recently, Many report presented about that discovered altered glucose metabolism in cancer cells is not passive alteration by change in environment, but important role in normal cells.

Lactate dehydrogenase(LDH) is a major enzyme involved in conversion of lactate in glycolysis. There are five LDH isozymes as a result of the five differenct combination that are produced by two subunit(A and B gene). Also, they have different enzymatic activity.

The LDH-1 that consist of 4 LDHA complex is most active in LDH activity. But LDH activity is inverse amounts of LDHB. So we want make the condition of increased LDHA activity without LDHB in the cell.

In this study, we designed a targeting vector about LDHB gene used by LDHB genome(mouse). And then, this targeting vector insert into the ES cell. Then targeted ES cell inject into blastocyst. As a result, we have got the chimera, LDHB targeted mouse. And now, we have gained the LDHB knockout mouse that generated by mating LDHB targeted mouse and Cre-expressed mouse.

We expect that LDHB knockout mouse is used to animal model of research for cancer research and mitochondrial function that involved in cancer cell metabolism.

Key words : Glycolysis , Oxidative phosphorylation , Lactate dehydrogenase , Conditional gene knockout mouse

관련 문서