• 검색 결과가 없습니다.

Effect of Adenovirus - mediated NeuroD overexpression by AICAR in MIN

A. Materials

III. RESULTS

8. Effect of Adenovirus - mediated NeuroD overexpression by AICAR in MIN

48h after expose to Ad-AMPKα.α1312/T172D, MIN cells were treated with

400 µM AICAR for 16 h. Expression of c- myc tagged AMPKα.α1312/T172D was verified with anti-c-myc antibody (upper). Activity of AMPK was determined by phosphorylation of Ser79 acetyl-CoA carboxylase (ACC) (middle).

AMPKα.α1312/T172D repressed BETA2/NeuroD (lower).

8. Effect of Adenovirus -mediated NeuroD overexpression by AICAR in MIN cells.

To determine whether the protein level of exogenous NeuroD is decreased by AICAR, western blotting for NeuroD was performed after infection with Ad-flag-NeuroD (Fig. 23). Ad-flag-Ad-flag-NeuroD was used to construct the recombinant adenovirus as described previously.36 The recombinant NeuroD protein contains a flag epitope tag at the C-terminus, allowing detection with an anti flag antibody. MIN cells was infected with Ad-flag-NeuroD for 32 h, and treated with 400 µM AICAR in a time-dependent manner. As shown in Fig. 24, GFP expression was visible 32 h after infection in 50-60 % of the MIN cells. Western analysis showed that the protein

level of BETA2/NeuroD in MIN cells was maintained for at least 6 h, but had decreased to 80 % at 12 h, and disappeared at 18 h after treatment with 400 µM AICAR (Fig 26). As an internal control, expression of GSK3β (Glycogen Synthase Kinase-3β) was not affected by AICAR treatment (Fig. 25). Therefore, AICAR decreased BETA2/NeuroD protein level in time-dependent manner. This result

Fig. 22. Effect of AICAR on the intracellular localization of Pdx-1.

Pdx-1 (Cytosol)

Pdx-1 (Nucleus)

GSK3β 1 2 3 4

48 h after exposure to Ad-LacZ or Ad-AMPKα/T172D and 16 h after

treatment with 400 µM AICAR, nuclear and cytosol extracts were obtained and western blotting was done with an antibody for Pdx-1. GSK3b was used as an internal control. Lane1; control, lane2; Ad- LacZ, lane3; Ad-AMPKα/T172D, lane4;

400 µM AICAR.

Fig. 23. Map of pAdTrack-CMV-FLAG-NeuroD

Fig. 24. Overexpression of NeuroD using MIN cells.

MIN cells were infected with recombinant adenovirus, Ad- flag-NeuroD (1 x 108 PFU/ml). The panel shows representative MIN cells 32 h after infected with Ad-flag-NeuroD. Many cells are infected after exposure to Ad-flag-NeuroD which also contains GFP.

Cytosol

Nucleus

NeuroD

GSK3β

NeuroD

GSK3β AICAR (h) 0 1 3 6 18

Fig. 25. Repression of BETA2/NeuroD level by AICAR in MIN cells.

32 h after exposure to Ad-flag-NeuroD, MIN cells were treated with 400 µM AICAR, nuclear and cytosol extracts were obtained. Expression of flag-NeuroD was verified with anti- flag antibody. An internal control, expression of GSK3β was not affected by AICAR treatment. AICAR reduced the level of BETA2/NeuroD protein.

suggests that AMPK suppressed the expression of BETA2/NeuroD protein in post-transcription level.

V. REFERENCES

1. Efrat S, Tal M, Lodish HF 1994 The pancretic β-cell glucose sensor. Trends Biochem Sci 19:535-538

2. Inagaki N, Gonoi T, Clement IV JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J 1995 Reconstitution of IKAT P: An inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166-1170

3. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement IV JP, Boyd III AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA 1995 Cloning of the β-Cell

high-affinity sulfonylurea receptor: A Regulator of insulin secretion. Science 268:423-425

4. Schwanstecher M, Siverding C, Dorschner H, Gross I, Aguilar-Bryan L,

Schwanstecher C, and Bryan J 1998 Potassium channel openers require ATP to bind to and act through sulfonylurea receptor. EMBO J 17: 5529-5535

5. Inagaki N, Gonoi T, Clement IV J P, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S 1996 A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16: 1011-1017

6. Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Kunze DL, Boyd III AE 1990 Ion Channels and Insulin Secretion. Diabetes Care 13:340-363

7. Tomas PM, Wohllk N, Huang E, Kuhnle U, Rabl W, Gagel RF, and Cote GJ 1996 Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 59:510-518

8. Tomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J 1995 Mutation in the sulfonylurea receptor gene in familial

persistent hyperinsulinemic hypogiycemia of infancy. Science 268:426-429

9. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J 2000 Sur1 knockout

mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275:9270-9277

10. Ashfield R and Ashcroft JH 1998 Cloning of the promoters for pancreatic β-Cell

ATP-sensitive K-channel subunits Kir6.2 and SUR1. Diabetes 47:1274-1280 11. Hernandez-Sanchez C, Ito Y, Ferrer J, Reitman M, and LeRoith D 1999

Characterization of the mouse sulfonylurea receptor 1 promoter and its regulation. J Biol Chem 274:18261-18270

12. Schwitzgebel VM 2001 Programming of the pancreas. Molecular and cellular Endocrinology 185:99-108

13. Grapin-Botton A, Majithia AR, and Melton DA 2001 Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. GENES DEV 15:444-454

14. Edlund H 1999 Pancreas: how to get there from the gut? Curr Opin Cell Biol 11:663-668

15. Ahlgren U, Jonsson J, and Edlund H 1996 The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF/PDX1-deficient mice. Development 122:1409-1416

16. Ahlgren U, Jonsson J, Jonsson L, Simu K, and Edlund H 1998 beta-cell-specific

inactivation of the mouse Ipf/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. GENE DEV 12:1763-1768

17. Elrick LJ and Docherty K 2001. Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 50: 2244-2252.

18. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, and Edlund H 1999 Notch signalling controls pancreatic cell

differentiation. Nature 400: 877-881.

19. Gradwohl G, Dierich A, LeMeur M, Guillemot F 2000 neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607-1611

20. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ 2000 Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292-3307

21. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, and Tsai MJ 1997 Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11: 2323-2334.

22. Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, Tsai MJ, and Lowenstein DH 2000 Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and

epilepsy. Proc Natl Acad Sci U S A 97: 865-870.

23. Salt IP, Johnson G, Ashcroft Stephen JH, and Hardie DG 1998 AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β

cells, and may regulate insulin release. Biochem J. 335:533-539

24. Wilson WA, Hawely SA, and Hardie DG 1996 Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under

derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6:1426-1434

25. Silva Xavier G, Lecleric L, Salt IP, Doiron B, Hardie DG, Kahn A, and Rutter GA 2000 Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A 97:4023-4028

26. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, and Witters LA 1999 Dealing with energy demand: the AMP-activated protein kinase. TIBS 24:22-25 27. Ha J, Daniel S, Broyles SS, and Kim KH 1994 Critical phosphorylation site for

Acetyl-CoA carboxylase activity. J Biol Chem 269:22162-22168

28. Winder WW and Hardie DG 1996 Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299-304

29. Merrill GF, Kurth EJ, Hardie DG, and Winder WW 1997 AICA riboside increases AMP-activated protein kinase, fatty acid, and glucose uptake in rat muscle. Am J Physiol 273:E1107-1112

30. Crowe DT and Tsai MJ 1989 Mutagenesis of the rat insulin II 5'-flanking region defines sequences important for expression in HIT cells. Mol Cell Biol 9:1784-1789 31. Hwung YP, Gu YZ, and Tsai MJ 1990 Cooperativity of sequence elements

mediates tissue specificity of the rat insulin II gene. Mol Cell Biol 10:1784-1788 32. Graham FL and van der Eb AJ 1973 A new technique for the assay of infectivity of

human adenovirus 5 DNA. Virology 52:456-467

33. Attardi LD and Tjian R 1993 Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif. Genes Dev 7:1341-1353

34. Corton JM, Gillespie JG, Hawley SA, and Hardie DG 1995 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 15;229: 558-565.

35. Crute BE, Seefeld K, Gamble J, Kemp BE, and Witters LA 1998 Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273: 35347-35354.

36. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, and Vogelstein B 1998 A simplified

system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:

2509-2514.

37. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, and Hardie DG 1996 Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271: 27879-27887.

38. Stein SC, Woods A, Jones NA, Davison MD, and Carling D 2000 The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345 Pt 3:437-443.

39. Kim JW, Seghers V, Cho JH, Kang Y, Kim S, Ryu Y, Baek K, Aguilar-Bryan L, Lee YD, Bryan J, and Suh-Kim H 2002 Transactivation of the mouse sulfonylurea

receptor I gene by BETA2/NeuroD. Mol Endocrinol 16:1097-1107.

40. Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R 1999 The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 19:704-713

41. Mutoh H, Naya FJ, Tsai MJ, Leiter AB 1998 The basic helix-loop-helix protein BETA2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells. Genes Dev 12:820-830

42. Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS 2000 The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a

transcriptional activation complex on the insulin promoter. Mol Cell Biol 20:900-911

43. Boam DS, Clark AR, Docherty K1990 Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J Biol Chem 265:8285-8296 44. Clark AR, Wilson ME, Leibiger I, Scott V, Docherty K 1995 A silencer and an

adjacent positive element interact to modulate the activity of the human insulin promoter. Eur J Biochem 232:627-632

45. Naya FJ, Stellrecht Christine MM, and Tsai MJ 1995 Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. GENES DEV 9: 1009-1019.

46. Lee JE. Hollenberg SM. Sinder L, Turner DL, Lipnick N, Weintraub H 1995 Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science, 268, 836-844

47. Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, Tsai MJ, Lowenstein DH 2000 Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A 97:865-870

48. Karschin C, Ecke C, Ashcroft FM, Karschin A 1997 Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 1:59-64

49. Madsen OD, Jensen J, Petersen HV, Petersen EE, Oster A, Andersen FG, Jorgensen MC, Jensen PB, Larsson LI and Serup P 1997 Transcription factors contributing to the pancreatic β-cell phenotype. Horm. Metab. Res. 29: 265-270.

50. Serup P, Jensen J, Andersen FG, Jorgensen MC, Blume N, Holst JJ, and Madsen OD 1996 Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor 1. Proc. Natl. Acad. Sci. 93:

9015-9020.

51. Waeber G, Pedrazzini T, Bonny O, Bonny C, Steinmann M, Nicod P, Haefliger JA 1995 A 338-bp proximal fragment of the glucose transporter type 2 (GLUT2) promoter drives reporter gene expression in the pancreatic islets of transgenic mice.

Mol Cell Endocrinol 114:205-215

52. Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y 1996 The human glucokinase gene beta-cell-type

promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 11:1478-1488

53. Marshak S, Totary H, Cerasi E, Melloul D 1996 Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and

transformed islet cells. Proc Natl Acad Sci U S A 93:15057-15062

54. Dumonteil E, Laser B, Constant I, and Philippe J 1998 Differential Regulation of the Glucagon and Insulin I Gene Promoters by the Basic Helix-Loop-Helix

Transcription Factor E47 and BETA2. J Biol Chem 32: 19945-19954.

55. Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA 1999 Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem 274: 13281-13291

56. Hardie DG, Salt IP, Hawley SA, and Davies SP 1999 AMP-activated protein kinase:

an ultrasensitive system for monitoring cellular energy charge Biochem J. 338: 717-722.

57. Corton JM, Gillespie JG, Hawley SA, and Hardie DG. 1995 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229: 558-565.

58. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, and Hardie DG 1996 Characterization of the AMP-activated protein kinase kinase from rat liver and

identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 271: 27879-27887.

59. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE 2001 Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108: 1167-1174.

- 국문요약 -

B E T A 2 / N e u r o D 와 A M P - activated protein kinase ( A M P K ) 에 의한 S U R 1 유전자의 발현조절

본 연구에서는 췌장의 베타세포로 분화하는데 중요한 역할을 하는 BETA2/NeuroD 전사인자가 인슐린 분비에 관여하는 베타세포의 특이적인 유전자인 SUR (Sulfonylurea receptor)1을 어떻게 조절하는지 구체적인 메카니즘을 밝히고, 또한 진핵세포의 물질대사를 감지하는

AMP-activated protein kinase (AMPK)가 NeuroD와 SUR1 유전자의 발현에 어떠한 영향을 미치는지 조사 하였다.

SUR은 당뇨병의 치료제로 사용되는 sulfonylurea의 약리작용을

이해하는 과정에서 밝혀진 세포막 단백질로서 Kir 6.2와 함께 KATP

채널을 구성한다. SUR은 혈당량의 증가를 감지하여 인슐린이 분비되도록 유도하는데 핵심적으로 작용하며 베타세포에 특이적으로 발현된다고 알려졌다. SUR1의 특이적인 발현이 BETA2/NeuroD라는 basic helix-loop-helix (bHLH) transcription factor에 의해 조절되어짐을 명백히 밝힌바 있다. 인슐린 유전자는 베타세포의 특이적인 유전자로 알려져 있을 뿐만 아니라 베타세포의 여러 전사인자들의 post-translational modification 을 통해 extracelluar signaling molecule에 의해 조절되는 것으로 알려져 있다. 또한 인슐린의 합성과 분비는 세포 내의 포도당의 농도에 의해 조절되어지는데 포도당에 반응하는 신호전달물질로써 AMPK가 있다. AMPK는 세포 내의 ATP 고갈에 의한 AMP 농도에 중가에 의해 활성화되면서 ATP 생성 경로를 활성화시키고 ATP 소모 경로를 차단시킴으로 세포 내의 ATP 항상성을 유지시켜준다. 따라서 AMPK는 뇌, 간, 췌장 등 다양한 조직에서 metabolic sensor로써 역할을 한다. AMPK는 간세포에서 지질과 포도당 대사를 조절한다고 알려져

있다. 특히 고농도 포도당에서 lipogenesis에 관여하는 유전자들의 발현을 저해한다. 간에서의 지질과 포도당 대사가 유사한 췌장의 베타세포에서도 AMPK의 기능, 즉 특이적인 유전자의 발현을 조절할 수 있으리라 기대되어 진다.

따라서 본 연구에서는 BETA2/NeuroD가 SUR1 유전자의 발현을 조절하는 구체적인 메카니즘을 밝히고 AMPK가 베타 세포의 특이적인 유전자로 알려져 있는 NeuroD와 SUR1 유전자의 발현에 어떠한 영향을 밝히는데 그 목적이 있다.

본 실험에서 BETA2/NeuroD는 SUR1 프로모터에 존재하는 putative E-box 중에 세 번째 E-box에만 특이적으로 반응하였다. 또한 BETA2/NeuroD가 특이적으로 반응하는 E-box에 BETA2/NeuroD와 같은 bHLH transcription factor이면서 베타 세포의 발생과정에서 발현되어지는 ngn3 (neurogenin3)는 HeLa 세포에서 SUR 프로모터의 발현을 유도하지 않는 반면에 MIN 세포에서는 SUR1의 발현을 증가시켰다. 따라서 ngn3는 SUR1 프로모터에 직접적으로 결합하는 것이 아니라 BETA2/NeuroD에 결합하는 간접적인 방법으로 SUR1의 발현을 증가시킨다. 또한 단 사간동안 고농도의 포도당을 처리하였을 때 SUR1과 BETA2/NeuroD 유전자들의 mRNA와 단백질 발현이 증가했고 이렇게

증가된 발현이 AMPK의 활성제인 AICAR의 농도 의존적으로 저해되었다.

그러나 Pdx-1의 mRNA는 AICAR에 의해 조절되지 않았다. 이러한 결과로 베타세포에 특이적인 모든 유전자가 AMPK에 의해 조절되어지는 것이 아님을 확인할 수 있었다.

종합적으로 정리해보면 위와 같은 실험을 통해 인슐린 분비에 중요한 역할을 하는 SUR1 유전자는 베타세포의 특이적인 전사인자인 BETA2/NeuroD에 의해서만 발현한다는 사실을 보여준다. 또한 세포 내의 포도당 농도가 KATP 채널의 발현과 BETA2/NeuroD와 이를 매개로 발현되는 SUR1의 전사를 조절하는 것으로 추측되어지기 때문에 AMPK는 베타 세포의 특이적인 유전자들의 발현을 조절하는데 중요한

종합적으로 정리해보면 위와 같은 실험을 통해 인슐린 분비에 중요한 역할을 하는 SUR1 유전자는 베타세포의 특이적인 전사인자인 BETA2/NeuroD에 의해서만 발현한다는 사실을 보여준다. 또한 세포 내의 포도당 농도가 KATP 채널의 발현과 BETA2/NeuroD와 이를 매개로 발현되는 SUR1의 전사를 조절하는 것으로 추측되어지기 때문에 AMPK는 베타 세포의 특이적인 유전자들의 발현을 조절하는데 중요한