• 검색 결과가 없습니다.

F. In vitro cytotoxicity of N. fowleri transfected with a RNAi vector

V. CONCLUSION

In the present study, to observe whether the nfa1 gene could be related with in vitro cytotoxicity, an nfa1 gene and Nfa1 protein were knockdowned in pathogenic N.

fowleri using RNAi strategy. By synthetic dsRNA of the nfa1 gene ORF, the expression of nfa1 gene and the Nfa1 protein were knockdowned about 50% and 30%, respectively. However, the exoression of nfa1 gene and the Nfa1 protein by in vitro transcribed asRNA were not highly knockdowned as dsRNA of nfa1 gene. Four synthetic siRNAs were not act equally, but sinfa1-1 was the highest effective for knockdown of the expression of nfa1 gene and Nfa1 protein with 70% and 43%, respectively. However, N. fowleri trophozoites transfected with synthetic dsRNA or sinfa1-1 did not highly induce in vitro cytotoxicity against murine macrophages as compared with normal N. fowleri trophozoites. Therefore, a vector-based system, in which transfected genes can be maintain longer, was used to transfect the nfa1 gene into N. fowleri. A pAct/SAGAH vector with sinfa1-1 and a pAct/asnfa1AGAH vector with asRNA of the nfa1 gene ORF to transcribe efficiently selective marker genes were cloned and transfected into N. fowleri. The expression of nfa1 gene and Nfa1 protein were efficiently knockdowned about 60% and 29%, respectively by a pAct/SAGAH vector, as compared with a pAct/asnfa1AGAH vector of 30% in the nfa1 gene and 18% in Nfa1 protein. In particular, the in vitro cytotoxicity of N.

fowleri transfected with a pAct/SAGAH vector against macrophages were decreased

with 26.6% at 17 h and 26.8% at 24 h in comparision with normal N. fowleri and N.

fowleri transfected with a pAct/AGAH control vector. Also, the in vitro cytotoxicity by a pAct/asnfa1AGAH vector was decreased with 7.4% at 17 h and 6.6% at 24 h.

These results suggest that the mechanism of RNAi should be worked in N. fowleri trophozoites. Therefore, single stranded RNA, dsRNA, siRNA and siRNA-vector were not only efficiently transfected into N. fowleri using each transfection reagent but also the Nfa1 protein play very important role in destroying macrophages.

REFERENCES

1. Aldape K, H Huizinga, J Bouvier, J McKerrow: Naegleria fowleri:

Characterization of a secreted histolytic cysteine protease. Exp Parasitol 78:230–

241, 1994

2. Bass BL: Double-Stranded RNA as a Template for Gene Silencing. Cell 101:235–

238, 2000

3. Baulcombe DC: Viruses and gene silencing in plants. Arch Virol Suppl 15:189–

201, 1999

4. Bender J: RNA Silencing and DNA Methylation in Plants. Cell 106:129–132, 2001

5. Bernstein E, AA Caudy, SM Hammond, GJ Hannon: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366, 2001

6. Bosher JM, P Dufourcq, S Sookhareea, M Labouesse: RNA interference can target pre-mRNA: Consequences for gene expression in a Caenorhabditis elegans operon. Genetics 159:1245–1256, 1999

7. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248−254, 1976

8. Brown T: Observation by immunofluorescence microscopy on the

cytopathogenicity of Naegelria fowleri in mouse embryo-cell cultures. J Med Microbiol 12:363−371, 1979

9. Cao Z, DM Jefferson, N Panjwani: Role of Carbohydrate-mediated adherence in cytopathogenic mechanisms of Acanthamoeba. J Biol Chem 273:15838−15845, 1998

10. Caplen NJ, S Parrish, F Imani, A Fire, RA Morgan: Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747, 2001

11. Cariou ML, P Pernin: First evidence for diploidy and genetic recombination in free-living amoebae of the genus Naegleria on the basis of electrophoretic variation. Genetics 115:265−270, 1987

12. Carter RF: Description of Naegleria sp. Isolated from two cases of primary amoebic meningoencephalitis, and the experimental pathological changes induced by it. J Pathol 100:217−244, 1970

13. Carter RF: Primary amoebic meningoencephalitis: clinical, pathological and epidemiological features of six fatal cases. J Pathol Bacteriol 96:1−25, 1968 14. Carter RF: Primary amoebic meningo-encephalitis. An appraisal of present

knowledge. Trans R Soc Trop Med Hyg 66:193−213, 1972

15. Chadee K, WA Petri, DJ Innes, JI Ravdin: Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest 80:1245−1254, 1987

16. Chadee K, ML Johnson, E Orozco, WA Petri, JI Ravdin: Binding and internalization of rat colonic mucins by the galactose/N-acetyl-D-galactosamine adherence lectin of Entamoeba histolytica. J Infect Dis 158:398−406, 1988 17. Cho MS, SY Jung, S Park, KH Kim, HI Kim, SH Sohn, HJ Kim, KI Im, HJ Shin:

Immunological characterizations of a cloned 13.1-kilodalton protein from pathogenic Naegleria fowleri. Clin Diagn Lab Immunol 10:954–959, 2003

18. Clark CG: Genome structure and evolution of Naegleria and its relatives. J Protozool 37:25–65, 1990

19. Clark CG, EY Lei, C Fulton, GAM Cross: Electrophoretic karyotype and linkage groups for the amoeboflagellate Naegleria gruberi. J Protozool 37:400–408, 1990

20. Clemens MJ: PKR–A protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol 29:945–949, 1997

21. Clemens CJ, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE: Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA 97:6499–6503, 2000

22. Cogoni C, G Macino: Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169, 1999 23. Cogoni C, G Macino: Posttranscriptional gene silencing in Neurospora by a

RecQ DNA helicase. Science 286:2342–2344, 1999

24. Cursons RTM, TJ Brown, EA Keyes: Virulence of pathogenic free-living amebae.

J Parasitol 64:744–745, 1978

25. De Jonckheere JF: Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp.

Appl Environ Microbiol 39:681–685, 1980

26. De Jonckheere J, H van de Voorde: Comparative study of six strains of Naegleria with special reference to nonpathogenic variants of Naegleria fowleri. J Protozool 24:304–309, 1977

27. Derr-Harf C, JF De Joncheere: Isolation of pathogenic Naegleria australiensis (Amoebida, Vahlkampfiidae) from the Rhine. Protistologica 302:489–494, 1984 28. Eisen D, RC Franson: Acid-active neuraminidases in growth media from cultures

of pathogenic Naegleria fowleri and in sonicates of rabbit alveolar macrophages.

Biochim Biophys Acta 924:369–372, 1987

29. Elbashir SM, J Harborth, W Lendeckel, A Yalcin, K Weber, T Tuschl: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.

Nature 411:494–498, 2001

30. Elbashir SM, W Lendeckel, T Tuschl: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200, 2001

31. Ferrante A: Comparative sensitivity of Naegleria fowleri to amphotericin B and amphotericin B methyl ester. R Soc Trop Medi Hyg 76:476–478, 1982

32. Fire A, S Xu, MK Montgomery, SA Kostas, SE Driver, CC Mello: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

Nature 391:806–811, 1988

33. Fjose A, Ellingsen S, Wargelius A, Seo HC: RNA interference. Mechanism and applications. Annu Rev Biotechnol 7:31–57, 2001

34. Fraser AG, Kamath RS, Zipperlen P, M Martinez-Campos, M Sohrmann, J Ahringer: Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330, 2000

35. Fulton C: Amebo-flgellates as research partners: the laboratory biology of Naegleria and Tetramitus. In: Meth Cell physiol (Ed. D. M. Prescott). Academic Press 4:341–476, 1970

36. Grant SR: Dissecting the Mechanisms of Posttranscriptional Gene Silencing. Cell 96:303–306, 1999

37. Hammond SM, E Bernstein, D Beach, GJ Hannon: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296, 2000

38. Herbst R, C Ott, T Jacobs, T Marti, F Marciano-Cabral, M Leippe: Pore-forming Polypeptides of the Pathogenic Protozoon Naegleria fowleri. J Biol Chem 277:22353–22360, 2002

39. Hildebrandt M, W Nellen: Differential antisense transcription from the Dictyostelium EB4 gene locus: Implications on antisense-mediated regulation of mRNA stability. Cell 69:197–204, 1992

40. Hu Q, HR Henny Jr: An Acanthamoeba polyubiquitin gene and application of its promoter to the establishment of a transient transfection system. Biochim Biophys Acta 20:126–136, 1997

41. Im KI, HJ Shin: Acanthamoeba sohi, n. sp., a pathogenic Korean isolate YM-4 from a freshwater fish. Korean J Parasitol 41:181–188, 2003

42. Jarolim KL, JK McCosh, MJ Howard, DT John: A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 86:50–55, 2000

43. Jeong SR, SC Lee, KJ Song, S Park, K Kim, MH Kwon, KI Im, HJ Shin:

Expression of the nfa1 gene cloned from pathogenic Naegleria fowleri in nonpathogenic N. gruberi enhances cytotoxicity against CHO target cells in vitro.

Infect Immun 73:4098-4105, 2005

44. Jeong SR, SY Kang, SC Lee, KJ Song, KI Im, HJ Shin: Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri. Korean J Parasitol 42:35–40, 2004

45. John DT: Primary amebic meningoencephalitis and the biology of Naegleria fowleri. Annu Rev Microbiol 36:101−23, 1982

46. John DT, TB Cole Jr, RA Bruner: Amebostomes of Naegleria fowleri. J Protozool 32:12–19, 1985

47. Kadlec V, J Skvarova, L Cerva, D Nebazniva: Virulent Naegleria fowleri in indoor swimming pool. Folia Parasit (Praha) 27:11−17, 1980

48. Kang SY, KJ Song, SR Jeong, JH Kim, S Park, K Kim, MH Kwon, HJ Shin:

Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Diagn Lab Immunol 12:873−876, 2005

49. Kaur G, A Lohia: Inhibition of gene expression with double strand RNA interference in Entamoeba histolytica. Biochem Biophys Res Comm 320:1118−1122, 2004.

50. Ketting RF, TH Haverkamp, HG van Luenen, RH Plasterk: mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of werner syndrome helicase and RNaseD. Cell 99:133–141, 1999

51. Kilvington S, T Gray, J Dart, N Morlet, JR Beeching, DG Frazer, M Matheson:

Acanthamoeba Keratitis: The Role of Domestic Tap Water Contamination in the United Kingdom. Invest Ophthalmol Vis Sci 45:165–169, 2004

52. Lares-Villa F, JF De Jonckheere, DE Moura H, A Recchi-Iruretagoyena, E Ferreira-Guerrero, G Fernadez-Quintanilla, C Ruiz-Matus, GS Visvesvara: Five cases of primary amebic meningoencephalitis in Mexicali, Mexico: study of the isolates. J Clin Microbiol 31:685−688, 1993

53. Larkin DF, M Berry, DL Easty: In vitro corneal pathogenicity of Acanthamoeba.

Eye 5:560−568, 1991

54. Larkin DF, S Kilvington, DL Easty: Contamination of contact lens storage cases by Acanthamoeba and bacteria. British J Ophthalmol 74:133–135, 1990

55. Lau NC, PL Lee, EG Weinstein, DP Bartel: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862, 2001 56. Lee RC, V Ambros: An extensive class of small RNAs in Caenorhabditis

elegans. Scienc 294:862–864, 2001

57. Ma P, GS Visvesvara, AJ Martinez, FH Theodore, PM Daggett, TK Sawyer:

Naegleria and Acanthamoeba infections: Review. Rev Infect Dis 12:490–513, 1990.

58. Malhotra P, Dasaradhi PVN, Kumar A, Mohmmed A, Agrawal N, Bhatnagar RK, Chauhan VS: Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and -2) of Plasmodium falciparum. Mol Microbiol 45:1245–1254, 2002

59. Maritra SC, PBN Krishna, SC Agarwala, SR Das: Ultrastructure studies on experimental primary amoebic meningo-encephalitis (PAME) of mouse due to Naegleria aerobia and Hartmanella culbertsoni. Int J Parasitol 6:489–493, 1976 60. Matzke MA, AJ Matzke, GJ Pruss, VB Vance: RNA-based silencing strategies in

plants. Curr Opin Genet Dev 11:221–227, 2001

61. Montgomery MK, S Xu, A Fire: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:15502–15507, 1998

62. Moore MB, JE Ubelaker, JH Martin, R Silvany, JM Dougherty, DR Meyer, JP McCulley: In vitro penetration of human corneal epithelium by Acanthamoeba castellanii: a scanning and transmission electron microscopy study. Cornea 10:291–298, 1991

63. Morton LD, GL McLaughlin, HE Whiteley: Effects of temperature, amebic strain, and carbohydrates on Acanthamoeba adherence to corneal epithelium in vitro.

Infect Immun 59:3819–3822, 1991

64. Ngo H, C Tschudi, K Gull, E Ullu: Double-stranded RNA induces mRNA

degradation in Trypanosoma brucei Proc Natl Acad Sci USA 95:14687–14692, 1998

65. Panjwani N, Z Zhao, J Baum, LD Hazlett, Z Yang: Acanthamoebae bind to rabbit corneal epithelium in vitro. Invest Ophthalmol Vis Sci 38:1858–1864, 1997 66. Parrish S, J Fleenor, S Xu, C Mello, A Fire: Functional anatomy of a dsRNA

trigger differential requirement for the two trigger strands in RNA interference.

Mol Cell 6:1077–1087, 2000

67. Peng Z, R Omaruddin, E Bateman: Stable transfection of Acanthamoeba castellanii. Biochim Biophys Acta 22:93–100, 2005.

68. Pussard M, R Pons: Étude des genres Leptomyxa et Gephyramoeba (Protozoa, Sarcodina). II−Leptomyxa flagellate Goodey. Protistologica 12:307−319, 1979 69. Ralph P, I Nakoinz: Antibody-dependent killing of erythrocyte and tumor targets

by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol 119:950−954, 1977

70. Ratcliff FG, SA MacFarlane, DC Baulcombe: Gene Silencing without DNA:

RNA-Mediated Cross-Protection between Viruses. Plant Cell 11:1207–1216, 1999

71. Rojas-Hernández S, A Jarillo-Luna, M Rodríguez-Monroy, L Moreno-Fierros, R Campos-Rodríguez: Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 94:31−36, 2004 72. Sagerström CG, HL Sive: A laboratory guide to RNA: Isolation, analysis, and

synthesis (Krieg PA, ed), Wiley-Liss, Inc, New York 83−103, 1996.

73. Shin HJ, MS Cho, SY Jung, HI Kim, S Park, HJ Kim, KI Im: Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. J Eukaryot Microbiol 48:713−717, 2001

74. Shin HJ, MS Cho, SY Jung, HI Kim, S Park, JH Seo, JC Yoo, KI Im: Cytopathic changes in rat microglial cells induced by pathogenic Acanthamoeba culbertsoni:

morphology and cytokine release. Clin Diag Lab Immunol 8:837–840, 2001 75. Stevens AR, JF De Jonckheere, E Willaert: Naegleria lovaniensis new species:

Isolation and identification of six thermophilic strains of a new species found in association with Naegleria fowleri. Int J Parasitol 10:51−64, 1980

76. Stougaard P, S Molin, K Nordström: RNAs involved in copy-number control and incompatibility of plasmid R1. Proc Natl Acad Sci USA 78:6008–6012, 1981 77. Tabara H, A Grishok, CC Mello: RNAi in C. elegans: Soaking in the genome

sequence. Science 282:430–431, 1998

78. Tabara H, M Sarkissian, WG Kelly, J Fleenor, A Grishok, L Timmons, A Fire, CC Mello: The rde-1 Gene, RNA interference, and transposon silencing in Caenorhabditis elegans. Cell 99:123–132, 1999

79. Takagi T, Cox JA: Primary structure of myohemerythrin from the annelid Nereis diversicolor. FEBS Lett 285:25−27, 1991

80. Tang MX, CT Redemann, FC Szoka: In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chem 7:703, 1996.

81. Tavernarakis N, SL Wang, M Dorovkov, A Ryazanov, M Driscoll: Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes.

Nat Genet 24:180–183, 2000

82. Timmons L, A Fire: Specific interference by ingested dsRNA. Nature 395:854, 1998

83. Tomizawa J, T Itoh, G Selzer, T Som: Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78:1421–1425, 1981 84. Tschudi C, A Djikeng, H Shi, E Ullu: In vivo analysis of the RNA interference

mechanism in Trypanosoma brucei. Methods 30:304–312, 2003

85. Tuschl T, PD Zamore, R Lehmann, DP Bartel, PA Sharp: Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197, 1999 86. van Klink F, H Alizadeh, GL Stewart, MS Pidherney, RE Silvany, Y He, JP

McCulley, JY Niederkorn: Characterization and pathogenic potential of a soil isolate and an ocular isolate of Acanthamoeba castellanii in relation to Acanthamoeba keratitis. Curr Eye Res 11:1207–1220, 1992

87. Vaucheret H, C Beclin, T Elmayan, F Feuerbach, C Godon, JB Morel, P Mourrain, JC Palauqui, S Vernhettes: Transgene-induced gene silencing in plants.

Plant J 16:651–659, 1998

88. Waterhouse PM, NA Smith, MB Wang: Virus resistance and gene silencing:

killing the messenger Trends Plant Sci 4:452–457, 1999

89. Willaert E: Isolement et culture in vitro des amibes de genre Naegleria. Ann Soc Belg Med Trop 51:701−708, 1971

90. Yang Z, Z Cao, N Panjwani: Pathogenesis of Acanthamoeba keratitis:

carbohydrate-mediated host-parasite interactions. Infect Immun 65:439−445, 1997

91. Yin J, HR Henney Jr: Stable transfection of Acanthamoeba. Can J Microbiol 43:239-244, 1997

92. Young JDE, DM Lowrey: Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. J Biol Chem 264:1077−1083, 1989

93. Yu JY, SL DeRuiter SL, DL Turner DL: RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052, 2002

94. Zhang WW, G Matlashewski: Analysis of antisense and double stranded RNA downregulation of A2 protein expression in Leishmania donovani. Mol Biochem Parasitol 107:315–319, 2000

–국문요약–

Antisense RNA를 이용한를를 이용한이용한이용한 병원성병원성병원성자유아메바로부터병원성자유아메바로부터자유아메바로부터자유아메바로부터 클로닝된클로닝된클로닝된클로닝된 nfa1 유전자의유전자의유전자의 발현억제유전자의 발현억제발현억제 시스템발현억제 시스템시스템 시스템

아주대학교 대학원의학과 이 상 철

(지도교수: 신 호 준)

파울러자유아메바 (Naegleria fowleri)에 의한 원발성 아메바성 수막뇌염 (primary amoebic meningoencephalitis)은 소아나 실험동물에서 급성으로 발병하며 치명적 이다. 파울러자유아메바의 병인기전 및 독성과 연관된 단백질에 관한 보고는 거의 미약하다. 또한, 단백질의 기능을 파악하기 위한 transfection 시스템도 아직 완전히 확립되지 못하였다. 본 연구에서 사용된 병원성 nfa1 유전자는 병원성 파울러자유아메바로부터 immunoscreening 통해 클로닝되었으며, 357 개의 DNA로 구성되어 있다. Nfa1 단백질은 아메바의 위족 특히, food-cup 형성에 관여하는 것으로 알려져 있다. 또한 anti-Nfa1 항체는 파울러아메바의 세포독성을 감소 시키는 효과를 갖고 있다. 따라서 본 연구자는 nfa1 유전자에 대한 antisense RNA와 siRNA를 이용하여, transfection system의 확립과 더불어 표적세포에 대한 아메바의 세포독성에 있어서 Nfa1 단백질의 연관성을 확인하고자 하였다. 시험관 내에서 합성된 dsRNA에 의해서 nfa1 유전자의발현과 Nfa1 단백질의 생산은 각각 약 50% 및 30%가 억제되었다. 하지만, 시험관 내에서 합성된 antisense RNA에 의해서는 dsRNA에 의한 효과만큼 크지는 않았다. 합성된 네개의 siRNAs들 중 sinfa1-1이 최대의 효과가 있었으며, nfa1 유전자에는 70% 그리고 Nfa1 단백질에

는 43%의 억제를 보여주었다. 하지만, 합성된 dsRNA 혹은 sinfa1-1을 transfection 한 파울러자유아메바는 대식세포에 대한 세포독성을 유발하지 않았다. 따라서, transfection 된 유전자가 더욱 더 세포내에서 오랫동안 유지 될 수 있는 벡터를 이용하여 파울러자유아메바에 transfection하고 세포독성을 관찰하고자 하였다.

sinfa1-1이 클로닝된 pAct/SAGAH와 antisense nfa1 유전자 mRNA가 클로닝된 pAct/asnfa1AGAH 벡터가 이용되었다. pAct/SAGAH 벡터에 의해서 nfa1 유전자의 발현과 Nfa1 단백질 생산이 각각 60% 및 29%가 억제되었고, pAct/asnfa1AGAH 벡터에 의해서 유전자와 단백질이 30% 및 18%가 각각 억제되었다. 특히, pAct/SAGAH 벡터가 transfection 된 파울러자유아메바는 표적세포인 대식세포와 17 시간 혼합배양에 있어서 대조군들보다 약 26.6% 그리고 24 시간에 있어서 약 26.8%의 세포독성 억제를 보여주었다. pAct/asnfa1AGAH 벡터가 transfection 된

sinfa1-1이 클로닝된 pAct/SAGAH와 antisense nfa1 유전자 mRNA가 클로닝된 pAct/asnfa1AGAH 벡터가 이용되었다. pAct/SAGAH 벡터에 의해서 nfa1 유전자의 발현과 Nfa1 단백질 생산이 각각 60% 및 29%가 억제되었고, pAct/asnfa1AGAH 벡터에 의해서 유전자와 단백질이 30% 및 18%가 각각 억제되었다. 특히, pAct/SAGAH 벡터가 transfection 된 파울러자유아메바는 표적세포인 대식세포와 17 시간 혼합배양에 있어서 대조군들보다 약 26.6% 그리고 24 시간에 있어서 약 26.8%의 세포독성 억제를 보여주었다. pAct/asnfa1AGAH 벡터가 transfection 된

관련 문서