• 검색 결과가 없습니다.

D. TIS21 inhibited Chk2 phosphorylation through regulation of Mre11

Ⅵ. CONCLUSION

In the present study, downregulation of p-Chk2T68 and p-p53S20 in Ad-TIS21-HA infected Huh7 cells after treatment of etoposide were observed during DNA damage signal.

It was also confirmed in several different cell lines. Inhibition of p-Chk2T68 caused downregulation of p53-dependent-apoptotic protein such as BAX, p21Waf1/Cip1, and NOXA in the same condition, leading to anti-apoptotic responses. We confirmed the apoptosis by using apoptotic marker such as cleaved form of caspase3, PARP, caspase3/7 activity, FACS, and chromatin condensation. Furthermore, TIS21 induced Mre11 protein methylation and we thought TIS21 increased Mre11 DNA repair activity.

Therefore, TIS21 involved DNA damage pathway. However, it is still more identified of which TIS21 inhibits Chk2 phosphorylation.

REFERENCES

1.

Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196, 2001

2. Ahn, J.Y., Schwarz, J.K., Piwnica-Worms, H., and Canman, C.E. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60, 5934-5936, 2000

5. Bartek, J., and Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer.

Cancer Cell 3, 421-429, 2003

6. Bell, D.W., Varley, J.M., Szydlo, T.E., Kang, D.H., Wahrer, D.C., Shannon, K.E., Lubratovich, M., Verselis, S.J., Isselbacher, K.J., Fraumeni, J.F., et al.

Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science

286, 2528-2531, 1999

7. Berthet, C., Guehenneux, F., Revol, V., Samarut, C., Lukaszewicz, A., Dehay, C., Dumontet, C., Magaud, J.P., and Rouault, J.P. Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects.

Genes Cells 7, 29-39, 2002

8. Bradbury, A., Possenti, R., Shooter, E.M., and Tirone, F. Molecular cloning of

PC3, a putatively secreted protein whose mRNA is induced by nerve growth

factor and depolarization. Proc Natl Acad Sci U S A 88, 3353-3357, 1991

9. Calegari, F., Haubensak, W., Yang, D., Huttner, W.B., and Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci U S A 99, 14236-14240, 2002

10. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B., and Siliciano, J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-1679, 1998 11. Canzoniere, D., Farioli-Vecchioli, S., Conti, F., Ciotti, M.T., Tata, A.M.,

Augusti-Tocco, G., Mattei, E., Lakshmana, M.K., Krizhanovsky, V., Reeves, S.A., et al. Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J Neurosci 24, 3355-3369, 2004

12. Chehab, N.H., Malikzay, A., Appel, M., and Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev

14, 278-288, 2000

13. Corrente, G., Guardavaccaro, D., and Tirone, F. PC3 potentiates NGF-induced differentiation and protects neurons from apoptosis. Neuroreport 13, 417-422, 2002

14. Deng, C.X. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34, 1416-1426, 2006

15. Durocher, D., and Jackson, S.P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13, 225-231, 2001

16. el-Ghissassi, F., Valsesia-Wittmann, S., Falette, N., Duriez, C., Walden, P.D., and Puisieux, A. BTG2(TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene 21, 6772-6778, 2002

17. Elmore, L.W., Di, X., Dumur, C., Holt, S.E., and Gewirtz, D.A. Evasion of a single-step, chemotherapy-induced senescence in breast cancer cells:

implications for treatment response. Clin Cancer Res 11, 2637-2643, 2005

18. Ficazzola, M.A., Fraiman, M., Gitlin, J., Woo, K., Melamed, J., Rubin, M.A., and Walden, P.D. Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis.

Carcinogenesis 22, 1271-1279, 2001

19. Fletcher, B.S., Lim, R.W., Varnum, B.C., Kujubu, D.A., Koski, R.A., and Herschman, H.R. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J Biol Chem 266, 14511-14518, 1991

20. Guardavaccaro, D., Corrente, G., Covone, F., Micheli, L., D'Agnano, I., Starace, G., Caruso, M., and Tirone, F. Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 20, 1797-1815, 2000

21. Haubensak, W., Attardo, A., Denk, W., and Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101, 3196-3201, 2004

22. Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J., and Mak, T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-1827, 2000

23. Hong, J.W., Ryu, M.S., and Lim, I.K. Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death.

J Biol Chem 280, 21256-21263, 2005

24. Iacopetti, P., Michelini, M., Stuckmann, I., Oback, B., Aaku-Saraste, E., and Huttner, W.B. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci U S A 96, 4639-4644, 1999 25. Kastan, M.B., and Bartek, J. Cell-cycle checkpoints and cancer. Nature 432,

316-323, 2004

26. Kastan, M.B., and Lim, D.S. The many substrates and functions of ATM. Nat

Rev Mol Cell Biol 1, 179-186, 2000

27. Kawakubo, H., Carey, J.L., Brachtel, E., Gupta, V., Green, J.E., Walden, P.D., and Maheswaran, S. Expression of the NF-kappaB-responsive gene BTG2 is aberrantly regulated in breast cancer. Oncogene 23, 8310-8319, 2004

28. Kim, H., Rafiuddin-Shah, M., Tu, H.C., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8, 1348-1358, 2006

29. Konrad, M.A., and Zuniga-Pflucker, J.C. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol

35, 3030-3042, 2005

30. Kosodo, Y., Roper, K., Haubensak, W., Marzesco, A.M., Corbeil, D., and Huttner, W.B. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23, 2314-2324, 2004

31. Lee, C.H., and Chung, J.H. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation.

J Biol Chem 276, 30537-30541, 2001

32. Lieber, M.R., Ma, Y., Pannicke, U., and Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4, 712-720, 2003

33. Lim, I.K. TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol 132, 417-426, 2006

34. Lim, I.K., Lee, M.S., Lee, S.H., Kim, N.K., Jou, I., Seo, J.S., and Park, S.C.

Differential expression of TIS21 and TIS1 genes in the various organs of Balb/c

mice, thymic carcinoma tissues and human cancer cell lines. J Cancer Res Clin

Oncol 121, 279-284, 1995

35. Lim, I.K., Lee, M.S., Ryu, M.S., Park, T.J., Fujiki, H., Eguchi, H., and Paik, W.K. Induction of growth inhibition of 293 cells by downregulation of the cyclin E and cyclin-dependent kinase 4 proteins due to overexpression of TIS21.

Mol Carcinog 23, 25-35, 1998

36. Liu, Y., Masson, J.Y., Shah, R., O'Regan, P., and West, S.C. RAD51C is required for Holliday junction processing in mammalian cells. Science 303, 243-246, 2004

37. Matsuoka, S., Huang, M., and Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897, 1998

38. Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., and Elledge, S.J.

Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc

Natl Acad Sci U S A 97, 10389-10394, 2000

39. Melchionna, R., Chen, X.B., Blasina, A., and McGowan, C.H. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell

Biol 2, 762-765, 2000

40. Morel, A.P., Sentis, S., Bianchin, C., Le Romancer, M., Jonard, L., Rostan, M.C., Rimokh, R., and Corbo, L. BTG2 antiproliferative protein interacts with the human CCR4 complex existing in vivo in three cell-cycle-regulated forms. J

Cell Sci 116, 2929-2936, 2003

41. O'Driscoll, M., and Jeggo, P.A. The role of double-strand break repair - insights from human genetics. Nat Rev Genet 7, 45-54, 2006

42. Olive, P.L. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res 150, S42-51, 1998

43. Oswald, J., Steudel, C., Salchert, K., Joergensen, B., Thiede, C., Ehninger, G., Werner, C., and Bornhauser, M. Gene-expression profiling of CD34+

hematopoietic cells expanded in a collagen I matrix. Stem Cells 24, 494-500,

2006

44. Park, S., Lee, Y.J., Lee, H.J., Seki, T., Hong, K.H., Park, J., Beppu, H., Lim, I.K., Yoon, J.W., Li, E., et al. B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling.

Mol Cell Biol 24, 10256-10262, 2004

45. Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L., and Venkitaraman, A.R. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287-293, 2002

46. Prevot, D., Morel, A.P., Voeltzel, T., Rostan, M.C., Rimokh, R., Magaud, J.P., and Corbo, L. Relationships of the antiproliferative proteins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex: involvement in estrogen receptor alpha signaling pathway. J Biol Chem 276, 9640-9648, 2001

47. Rouault, J.P., Prevot, D., Berthet, C., Birot, A.M., Billaud, M., Magaud, J.P., and Corbo, L. Interaction of BTG1 and p53-regulated BTG2 gene products with mCaf1, the murine homolog of a component of the yeast CCR4 transcriptional regulatory complex. J Biol Chem 273, 22563-22569, 1998

48. Ryu, M.S., Lee, M.S., Hong, J.W., Hahn, T.R., Moon, E., and Lim, I.K.

TIS21/BTG2/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p53 expression. Exp Cell Res

299, 159-170, 2004

49. Sakaguchi, T., Kuroiwa, A., and Takeda, H. Expression of zebrafish btg-b, an anti-proliferative cofactor, during early embryogenesis. Mech Dev 104, 113-115, 2001

50. Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14, 289-300, 2000

51. Struckmann, K., Schraml, P., Simon, R., Elmenhorst, K., Mirlacher, M.,

Kononen, J., and Moch, H. Impaired expression of the cell cycle regulator

BTG2 is common in clear cell renal cell carcinoma. Cancer Res 64, 1632-1638, 2004

52. Sugimoto, K., Hayata, T., and Asashima, M. XBtg2 is required for notochord differentiation during early Xenopus development. Dev Growth Differ 47, 435-443, 2005

53. Sukhatme, V.P., Kartha, S., Toback, F.G., Taub, R., Hoover, R.G., and Tsai-Morris, C.H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1, 343-355, 1987

54. Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M., and Haupt, Y. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18, 1805-1814, 1999

55. Wang, Y., Shao, C., Shi, C.H., Zhang, L., Yue, H.H., Wang, P.F., Yang, B., Zhang, Y.T., Liu, F., Qin, W.J., et al. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Asian J Androl 7, 375-380, 2005

56. Wyman, C., Ristic, D., and Kanaar, R. Homologous recombination-mediated

double-strand break repair. DNA Repair (Amst) 3, 827-833, 2004

- 국문요약 -

TIS21 이 Etoposide 에 의해 유도되는 DNA 손상 후 수복기작에 미치는 영향 연구

아주대학교 대학원 의생명과학과 최규성

(지도교수: 박태준)

TIS21/BTG2/PC3 (12-O-tetradecanoyl phorbol-13-acetate-inducible

sequence 21) 은 p53 의 타깃 유전자로써 갑상선, 전립선, 신장 및 간에서의

암 발생과정 중에서 암을 억제하는 기능을 하는 것으로 알려져 있다. 또한 암을

치료하기 위한 화학요법에 의해 발생하는 세포사멸 중 TIS21 의 발현됨을

관찰함으로써, 세포사멸 과정 중의 TIS21 이 중요시되었다.

이 연구는 암 억제유전자인 TIS21 이 etoposide 에 의해 일어나는 세포

사멸조절 기작의 관여에 대해 연구하기 위하여 실시되었다. DNA 손상의 마커인

gH2AX 의 foci 형성을 wild type MEF 와 TIS21-/-mouse embryo

fibroblasts(MEFs)에서 관찰 해 본 결과 TIS21-/- MEFs 에서 gH2AX foci

형성되는 세포들이 wild type MEFs 보다 더 많이 관찰 되었으며, 이는

TIS21 이 DNA 수복 기작에 관여를 한다는 것을 의미하였다. 다음으로 DNA

손상 마커인 single cell electrophoresis 라고 불리는 comet assay 를 시행

하였다. Etoposide 를 사용하여 adenovirus LacZ 와 TIS21 이 과발현 된

간암세포주인 Huh7 세포에 DNA 손상을 주었으며, 이때 TIS21 이 과발현 된

세포에서의 comet tail 이 더 짧은 것으로 보아, TIS21 이 DNA 수선 역할을 할

수 있다는 증거를 관찰하였다. 다음으로 DNA 손상 시그널에 TIS21 이

관여하는지를 연구하기 위해, ATM-mediated DNA 수복과 p53-mediated

apoptosis 에 관여되는 단백질들의 발현과 인산화 정도를 관찰하였다. Chk2 의

Thr68 잔기의 인산화는 DNA 손상 후 시그널을 하위로 내려 보내는 중요한

단백질로 Ad-TIS21-HA 가 과발현된 세포에서 Thr68 잔기의 인산화와

Chk2 의 직접적인 하위 시그널인 p53 의 Ser20 잔기의 인산화가 Ad-LacZ 가

과 발현 된 세포보다 적은 것을 관찰 하였다. p53 의 인산화는 단백질의 안정화

및 전사조절에 중요한 역할을 하며, 나아가 세포주기 억제와 세포사멸에 영향을

미치게 된다. Wild type p53 을 발현하는 MCF7, HeLa, H9C2 와 같은 다양한

세포주에서도 동일한 현상을 관찰하여 mutant p53 을 가지고 있는 Huh7 에서

관찰되는 Chk2, p53 인산화의 저해가 p53 비 의존적으로 관찰됨을 알게 되었다.

p53 의 Ser20 잔기 인산화의 감소가 세포사멸 기작에 미치는 영향을 연구하기

위해 BAX, p21Waf1/Cip1, NOXA 와 같은 세포사멸에 관계된 단백질 발현을

관찰해본 결과, TIS21 이 과발현 세포에서 세포사멸에 관계된 단백질의 발현이

감소 되어있는 것을 관찰하였다. 또한 caspase 3/7 활성도 및 annexin V 염색이

TIS21 과 발현 세포에서 감소함을 관찰하였다. TIS21 은 protein arginine

methyltransferase 1(PRMT1) 과 결합을 통하여 PRMT1 의 활성도를

조절한다는 보고를 바탕으로 TIS21 이 과 발현되어있을 때 PRMT1 의 기질 중

DNA 수선에 관여하는 Mre11 의 메칠화가 증가하는 것을 관찰 하였다. Mre11

의 과 발현이 또한 Chk2 의 인산화를 억제하는 것으로 관찰되어 TIS21 이

Mre11 의 메칠화를 통해 Chk2 의 인산화에 영향을 미친다는 것을 관찰 하였다.

TIS21 은 Mre11 과의 결합 및 메칠화를 통해 Chk2 의 인산화를 억제하는

것으로 보아 Chk2-p53 를 통한 세포 사멸을 억제하며 DNA 수복에 관여

한다는 결론을 낼 수 있다.

핵심어: ATM, Chk2, BTG2, TIS21, Mre11, DNA damage, apoptosis

관련 문서