• 검색 결과가 없습니다.

H. Serum IL-6 and IL-17 levels were down-regulated after transfer

Ⅴ. CONCLUSION

We confirmed the frequency of CD4+CD25+T cells in BD-like mice was lower than BDN mice. CD4+CD25+T and Treg cell levels by primary culture of splenocytes were lower in BD-like mice compared to BDN mice. The frequencies of CD4+CD25+T and Treg cells in co-cultures from normal CD4+T cells isolated from splenocytes with normal mDC was higher than CD4+T cells from splenocytes of BDN and BD-like. In vivo, the frequency of CD4+CD25+T cells were higher in transfer with 3 x 105CD4+CD25+T cells in BD-like mice compared to transfer with 3 x 103and 3 x 104CD4+CD25+T cells. In addition, transfer with CD4+CD25+T cells to BD-like mice improved the BD-like symptoms. The severity scores were accordingly decreased compared to transfer of CD4+CD25-T cells to BD-like mice. After 3 x 105 CD4+CD25+T cells transfer, the severity score of BD-like mice was decreased compared to before the transfer. The serum protein levels of TGF-β and IL-10 in BD-like mice transferred with 3 x 105 CD4+CD25+T cells were higher, but IFN-γ, TNF-α, IL-6, and IL-17 were lower than not transferred BD-like mice. The mRNA level of TGF-β was also affected in the transfer of CD4+CD25+T cells. TGF-β was higher than not transferred BD-like mice. Whereas IFN-γ, TNF-α, IL-17A, IL-17F, and ROR-γt of transferred with CD4+CD25+T cells were lower than not transferred BD-like mice.

REFERENCES

1. Adam B, Calikoglu E. Serum interleukin-6, procalcitonin and C-reactive protein levels in subjects with active Behçet’s disease. J Eur Acad Dermatol Venereol 18:318-320, 2004

2. Akdeniz N, Esrefoglu M, Keleş MS, Karakuzu A, Atasoy M. Serum interleukin-2, interleukin-6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behcet's disease. Ann Acad Med Singapore 33:596-599, 2004

3. al-Dalaan A, al-Sedairy S, al-Balaa S, al-Janadi M, Elramahi K, Bahabri S. Enhanced interleukin 8 secretion in circulation in patients with Behçet’s disease. J Rheumatol 22:

904-907, 1995

4. Amelsfort J, Jacvobs K, Bijlsma J, Lafeber F, Taams L. CD4+ CD25+ regulatory T cells in rheumatoid arthritis: Difference in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50:2775-2785, 2004

5. Baecher-Allan C, Hafler DA. Suppressor T cells in human diseases. J Exp Med 200:273-276, 2004

experimental autoimmune encephalomyelitis. J Neuroimmunol 204:58-65, 2008

7. Bettelli, E., M. Oukka, and V. K. Kuchroo. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol 8:345-350, 2007

8. Chai JG, Coe D, Chen D, Simpson E, Dyson J, Scott D. In vitro expansion improves in vivo regulation by CD4+CD25+ regulatory T cells. J Immunol 180:858-69, 2008

9. Cao D. Isolation and functional characterization of regulatory CD25brightCD4 T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33:215-223, 2003

10. Choi B, Hwang Y, Kwon HJ, Lee ES, Park KS, Bang D, Lee S, Sohn S. Tumor necrosis factor alpha small interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci 52:87-97, 2008

11. Crispin JC, Martinez A, Varela JA. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 21:273-276, 2003

12. Derynck R, Jarrett JA, Chen EY, Goeddel DV. The murine transforming growth factor-beta precursor. J Biol Chem 261:4377- 4379, 1986

13. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med 193:1303-1310, 2001

14. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G. Human CD4+CD25+

regulatory, dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med 196:247-253, 2002

15. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149-5153, 2004

16. Hamzaoui K, Hamzaoui A, Houman H. CD4+CD25+ regulatory T cells in patients with Behçet's disease. Clin Exp Rheumatol 24:S71-S78, 2006

17. Han GM, O'Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol 253:92-101, 2008

18. Hashimoto T, Akiyama K, Kobayashi N, Mori A. Comparison of IL-17 production by

19. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, Le TV, Lorenz RG, Xu H, Kolls JK, Carter RH, Chaplin DD, Williams RW, Mountz JD. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9:124-126, 2008

20. Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK, Bourdette D, Ziegler SF, Offner H, Vandenbark AA. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81:45-52, 2005

21. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T. Foxp3 Inhibits ROR{gamma}t-mediated IL-17A mRNA Transcription through Direct Interaction with ROR{gamma}t. J Biol Chem 283:

17003-17008, 2008

22. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH. Infectious tolerance:

human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med. 196:255-260, 2002

23. Katsantonis J, Adler Y, Orfanos CE, Zouboulis CC. Adamantiades– Behçet’s disease:

serum IL-8 is more reliable marker for disease activity than C-reactive protein and erythrocyte sedimentation rate. Dermatology 201:37-39, 2000

24. Kimura A, Naka T, Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA 104:

12099-12104, 2007

25. Korn T, Oukka M. Dynamics of antigen-specific regulatory T-cells in the context of autoimmunity. Semin Immunol 19:272-278, 2007

26. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig 109:131-140, 2002

27. Kulkarni AB, Karlsson S. Transforming growth factor-beta-1 knockout mice - a mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol 143:3-9, 1993

28. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233-240, 2005

29. Lee HY, Hong YK, Yun HJ, Kim YM, Kim JR, Yoo WH. Altered frequency and

30. Lindén A, Hoshino H, Laan M. Airway neutrophils and interleukin-17. Eur Respir J 15:

973-977, 2000

31. Marguti I, Yamamoto GL, da Costa TB, Rizzo LV, de Moraes LV. Expansion of

CD4(+)CD25(+) Foxp3(+) T cells by bone marrow-derived dendritic cells. Immunology Sep 5 [Epub ahead of print], 2008

32. Matusevicius D, Kivisäkk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104, 1999

33. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175:3025-3032, 2005

34. Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van Ewijk W, van Laar JM, de Vries RR, Toes RE. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 52:2212-2221, 2005

35. Mosmann, T.R, Coffman, R.L. Th1 and Th2 cell: different patterns of lymphokine secretion lead to different functional properties. Annu Rev immunol 7:145-173, 1989

36. Müftüoğlu AU, Yazici H, Yurdakul S, Tüzün Y, Pazarli H, Güngen G, Deniz S. Behçet's

disease. Relation of serum Creactive protein and erythrocyte sedimentation rates to disease activity. Int J Dermatol 25:235-239, 1986

37. Murray LJ, Lee R, Martens C. In vivo cytokine gene expression in T cell subsets of the autoimmune MRL/Mp-lpr/lpr mouse. Eur J Immunol 20:163-170, 1990

38. Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet's disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol 18:354-358, 2008

39. Oukka, M. Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis 66:iii87-iii 90, 2007

40. Papiernik M, do Carmo Leite-de-Moraes M, Pontoux C, Joret AM, Rocha B, Penit C, Dy M. T cell deletion induced by chronic infection with mouse mammary tumor virus spares a CD25-positive, IL-10-producing T cell population with infectious capacity. J Immunol 158:4642-4653, 1997

42. Ricciardelli I, Lindley KJ, Londei M, Quaratino S. Anti tumour necrosis-alpha therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn's disease. Immunology 125:178-183, 2008

43. Sakaguchi S, Sakaguchi N, Shimizu J. Immunological tolerance maintained by CD25+

CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32, 2001

44. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345-352, 2005

45. Sayinalp N, Ozcebe OI, Ozdemir O, Haznedaroğlu IC, Dündar S, Kirazli S. Cytokines in Behçet’s disease. J Rheumatol 23:321-322, 1996

46. Seçkin D, Akpolat T, Oltulu Y, Erkan D, Cantürk T, Adam B, Turanli AY. Serum lipoprotein (a) levels in Behçet’s disease. Br J Dermatol 133: 342-343, 1995

47. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

Nature 359:693-699, 1992

48. Sohn S, Lee ES, Bang D, Lee S. Behçet's disease-like symptoms induced by the Herpes simplex virus in ICR mice. Eur J Dermatol 8:21-23, 1998

49. Sohn S, Lee ES, Kwon HJ, Lee SI, Bang D, Lee S. Expression of Th2 cytokines decreases the development of and improves Behçet's disease-like symptoms induced by herpes simplex virus in mice. J Infect Dis 183:1180-1186, 2001

50. Stephens GL, Shevach EM. Foxp3+ regulatory T cells: selfishness under scrutiny.

Immunity 27:417-419, 2007

51. Stephens LA, Mottet C, Mason D, Powrie F. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 31:1247-1254, 2001

52. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969-1980, 1998

CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971-979, 2004

55. Wan S, Xia C, Morel L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol 178:271-279, 2007

54. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9:589-593, 2000

55. Xingmin Zhang, Djordje N. Koldzic, Leonid Izikson, Jayagopala Reddy, Remedios F.

Nazareno, Shimon Sakaguchi, Vijay K. Kuchroo, Howard L. Weiner. Interlukin-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 16:249-256, 2004

56. Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K, Yamamoto K. IL-17B and IL-17C Are Associated with TNF-alpha Production and Contribute to the Exacerbation of Inflammatory Arthritis. J Immunol 179:7128-7136, 2007

57. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213-21, 2004

58. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018-27, 2007

59. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 8:457-462, 2007

60. Zouboulis CC, Katsantonis J, Ketteler R, Treudler R, Kaklamani E, Hornemann S, Kaklamanis P, Orfanos CE. Adamantiades-Behçet's disease: interleukin-8 is increased in serum of patients with active oral and neurological manifestations and is secreted by small vessel endothelial cells. Arch Dermatol Res 292:279-284, 2000

61. Shon S. symptom-associated chemokine genes identified by cDNA micreoarray analysis in a Behcet’s disease mouse model. Japan-Korea joint Meeting on Behcet’s disease.

Yokohama, Japan, 2007

국문요약

-단순포진 바이러스로 유도한 베체트병 마우스모델에서 CD4+CD25+ 조절 T 세포의 역할

아주대학교 대학원 의생명과학과 심 주 아

(지도교수: 손 성 향)

베체트병은 만성 염증질환으로 재발성 구강 궤양, 외음부 궤양, 피부 및 안 증상 등이 특징인 질병이다. 베체트병은 여러 증상들이 동시에 발병하거나 초기 피부 점막증상이 호전과 악화를 거듭하다 관절 증상, 안 증상, 신경계 증상까지 발전할 수 있다. 특히 안 증상은 대표적인 베체트병 주 증상으로 실명이라는 심각한 후유증을 초래할 수 있다. 이러한 심각한 증상을 변화시킬 수 있는 방법으로, 본 연구에서는 T 세포의 한 부분으로 알려져 있는 CD4+CD25+ 조절 T 세포의 역할에 대하여 알아보고자 한다. CD4+ CD25+ 조절 T 세포는 자기 와

비자기 항원에서 잘못된 면역반응을 예방할 수 있고 말초조직에서

self-tolerance 를 유지시켜 준다. 그리고 자가면역을 조절하고 병을 일으킬 수 있는 림프구를 억제하여 자가면역을 예방할 수 있다고 알려져 있다. 이와 같은

보고를 바탕으로 단순포진 바이러스로 유도한 베체트병 마우스모델에서

CD4+CD25+ 조절 T 세포의 연관성을 알아보고자 한다.

베체트병 마우스모델의 비장에서 CD4+CD25+ 조절 T 세포의 발현 양상을 알아보고 CD4+CD25+T 세포를 꼬리 정맥을 통하여 transfer 하여 베체트병 증상에 어떠한 영향을 주는지 관찰하였다. 2 주 후 transfer 한 베체트병 마우스의 비장에서 CD4+CD25+T 와 조절 T 세포의 발현을 유세포 분석기로 확인하였다.

그리고 혈청을 얻어 ELISA 를 통하여 사이토카인의 변화를 확인하였고, RT-PCR 을 통하여 사이토카인의 mRNA 수준을 비교하였다.

그 결과 베체트병 마우스모델의 증상 군이 무증상 군 (바이러스 접종 후 증상이 나타나지 않은 군) 에 비하여 CD4+CD25+ 조절 T 세포가 낮게 발현되었다. 그

발현의 차이가 증상의 변화에 관련이 있는지 알아보기 위하여 베체트병

마우스모델에 CD4+CD25+T 세포를 주입하여 비장에서 조절 T 세포의 변화를 알아본 결과 3 x 103 과 3 x 104 CD4+CD25+T 세포를 주입한 3 x 105 를 주입한

군에서 조절 T 세포가 증가하는 것을 확인하였다. 또한 3 x 105 CD4+CD25+T

세포를 주입한 군에서 증상이 호전되는 것을 관찰하였으며 severity score 역시

유의하게 감소되었다. 사이토카인의 혈청단백질 변화를 측정한 결과 주입하지

않은 베체트병 마우스모델 보다 3 x 105 CD4+CD25+T 세포를 주입한 마우스

모델에서 TGF-β 와 IL-10 이 증가하였고 IFN-γ, TNF-α, IL-6 와 IL-17 은 유의하게 감소한 결과를 보였다. mRNA 역시 단백질 수준과 비슷한 결과를 나타냈다.

이러한 결과를 바탕으로 CD4+CD25+ 조절 T 세포의 발현 저하가 베체트병

마우스모델에서 증상을 유발시키는 요인으로 작용하는 것으로 보이고,

핵심어 : CD4+CD25+T 세포, 조절 T 세포, 베체트병 마우스모델

관련 문서