• 검색 결과가 없습니다.

As a potential therapeutic agent, Akt1as well as its downstream substrates, offer great promise for the development of therapeutics against a number of neurodegenerative disorders that may be acute in nature, such as stroke, or more sub-acute in duration, such as Alzheimer's disease. Initially believed to have cellular functions directed primarily toward cell survival and growth, Akt1 is now seen as a potential broad cytoprotective agent. Akt1 can offer cellular protection not only through the modulation of intrinsic apoptotic machinery, but also through the activation of survival signal pathways in the cells. Akt1 drives cellular survival through a series of distinct pathways that involve the Forkhead family of transcription factors, GSK-3ß, ß-catenin, eIF2B, c-Jun, CREB, Bad, IKK, p53, and JIPs. Yet, it is evident that further work that clarifies the cellular environment controlled by Akt1 will be of exceptional value to refine our knowledge of Akt1 and to maximize the potential of this protein as a therapeutic agent.

REFERENCES

1. 이학중, 위봉애, 박옥규, 강정채, 신영기, 이시래, 박요한, 박의현, 박영 춘, 유영상, 이 영, 유언호, 정문성, 지영구, 양인석, 김준욱, 박 원, 이홍 순. 문헌고찰과 아울러본 우리나라 뇌혈관 질환의 추이. J Korean Med Assoc. 34(7), 758-768. 1991

2. Abeel A Mangi, Nicolas Noiseux, Deling Kong, Huamei He, Mojgan Rezvani, Joanne S Ingwall and Victor J Dzau. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 9, 1195-1201. 2003

3. Ana I. Rojo, Marta Salinas, Daniel Martin, Rosario Perona, and Antonio Cuadrado. : Regulation of Cu/Zn-Superoxide Dismutase Expression via the Phosphatidylinositol 3 Kinase/Akt Pathway and Nuclear Factor-kB. J. Neurosci, 24, 7324 –7334. 2004

4. Anne B. Vojtek, Jennifer Taylor, Stacy L. DeRuiter, Jenn-Yah Yu, Claudia Figueroa, Roland P. S. Kwok, and David L. Turner. Akt Regulates Basic Helix-Loop-Helix Transcription Factor–Coactivator Complex Formation and Activity during Neuronal Differentiation. Mol Cel biol. 23; 4417-4427. 2003

5. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986-3997, 2001

6. Cheng G., Yu Z., Zhou D. and Mattson M. P. : Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp.

Neurol. 175, 407–414. 2002

7. Chong Z.Z., Kang J.Q. and Maiese K.; Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106, 2973-2979. 2002

8. Chong Z.Z., Kang J.Q. and Maiese K.; Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br. J. Pharmacol. 138, 1107-1118. 2003

9. Chong ZZ, F. Li and K. Maiese: Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol Histopathol. 20, 299-315.

2005

10. Chu K, Kim M, Jeong SW, Kim SU, Yoon BW. Human neural stem cells can

migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343: 129–133. 2003

11. Chu K, Kim M, Park KI, Jeong SW, Park HK, et al. Human neural stem cells improve sensorimotor deficits in the rat brain with experimental focal ischemia.

Brain Res 1016: 145–153. 2004

12. Chu K, Kim M, Chae SH, Jeong SW, Kang KS, et al. Distribution and in situ proliferation patterns of intravenously injected immortalized human neural stem cells in rats with focal cerebral ischemia. Neurosci Res 50: 459–465.2004

13. Conery A.R., Cao Y., Thompson E.A., Townsend C.M., Jr. Ko T.C. and Luo K.;

Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6, 366-372. 2004

14. Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., Segal R. A., Kaplan D. R. and Greenberg M. E.: Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665. 1997

15. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotech 16: 1033–1039.1998

16. Gage FH. Mammalian neural stem cells. Science 287: 1433–1438. 2000

17. Gebel JM and Broderick JP: Intracerebral hemorrhage. Neurol Clin 18: 419–438.

2000

18. Graff JR, Konicek BW, Manulty AM, Wang Z, Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, Vessella RL, Neubauer BL. : Increased Akt activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem. 275, 24500-24505. 2000

19. Henry M.K., Lynch J.T., Eapen A.K. and Quelle F.W.; DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 98, 834-841. 2001

20. Hayashi T, Abe K, Suzuki H, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 18: 887–895. 1998

21. Inagawa T.: What are the actual incidence and mortality rates of intracerebral hemorrhage? Neurosurg Rev 25: 237–246. 2002

22. Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, et al.: Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res 78:

215–223. 2004

23. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, et al. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34: 2258–2263. 2003

24. Juliet M. Taylor, Ugiur Ali, Rocco C. Iannello, Paul Hertzog and Peter J. Crack : Diminished Akt phosphorylation in neurons lacking glutathione peroxidase-1 (Gpx1) leads to increased susceptibility to oxidative stress-induced cell death. J.

Neurochem. 92, 283–293. 2005

25. Kang J.Q., Chong Z.Z. and Maiese K.; Akt1 protects against inflammatory microglial activation through maintenance of membrane asymmetry and modulation of cysteine protease activity. J. Neurosci. Res. 74, 37-51. 2003a

26. Kang J.Q., Chong Z.Z. and Maiese K.; Critical role for Akt1 in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol. Pharmacol.

64, 557-569. 2003b

27. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, et al.: Transplanted human fetal neural stem cells survive, migrate and differentiate in ischemic rat cerebral cortex.

Proc Nat Acad Sci USA 101: 11839–11844. 2004

28. Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24: 159–171. 2004

29. Kim SU, Park IH, Kim TH, Kim KS, Choi HB, et al.: Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26: 129–140. 2006

30. Lee HJ, Kim KS, Park IH, Kim SU: Human Neural Stem Cells Over-Expressing VEGF Provide Neuroprotection, Angiogenesis and Functional Recovery in Mouse Stroke Model. PLoS ONE 2(1): e156. 2007

31. Lee ST, Chu K, Park JE, Lee K, Kang L, et al. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52: 243–249. 2005

32. Lindvall O, Kokaia Z, Martinez-Serano A..: Stem cell therapy for human neurodegenerative disorders. Nature Med 10 suppl: S42–S50. 2004

33. Liu W, Li J, Roth RA.: Heregilin regulation of Akt/protein kinase B in breast cancer cells. Biochem Biophys Res Commun. 261, 897-903, 1999

34. Marta Salinas, Jinling Wang, Mar Rosa de Sagarra, Daniel Martin, Ana I. Rojo, Jorge Martin-Perez, Paul R. Ortiz de Montellano, Antonio Cuadrado.: Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett.

578, 90–94, 2004

35. Martin D., Salinas M., Lopez-Valdaliso R., Serrano E., Recuero M. and Cuadrado A. Effect of the Alzheimer amyloid fragment Ab(25–35) on Akt/PKB kinase and survival of PC12 cells. J. Neurochem. 78, 1000–1008. 2001

36. Mutlu N, Berry RG, Alpers BJ.: Massive cerebral hemorrhage: Clinical and pathological correlations. Arch Neurol. 8:644-661. 2001

37. Matsuzaki H., Tamatani M., Mitsuda N., Namikawa K., Kiyama H., Miyake S.

and Tohyama M.; Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J.

Neurochem. 73, 2037-2046. 1999

38. McKay R. Stem cells in the central nervous system. Science 276: 66–71. 1997

39. Mearow K. M., Dodge M. E., Rahimtula M. and Yegappan C. Stress-mediated signaling in PC12 cells – the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J.

Neurochem. 83, 452–462. 2002

40. Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, et al. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in mucopolysacchridosis VII mouse. J Neurosci Res 74:266–277. 2003

41. NINDS ICH Workshop Participants: Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 36: 23–41. 2005

42. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 14: 840-50. 2006

43. Owada Y., Utsunomiya A., Yoshimoto T. and Kondo H.; Expression of mRNA for Akt, serine-threonine protein kinase, in the brain during development and its transient enhancement following axotomy of hypoglossal nerve. J. Mol. Neurosci.

9, 27-33. 1997

44. Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. Pharmacologic reduction of mean arterial pressure does not adversely affect regional cerebral blood flow and intracranial pressure in experimental intracerebral hemorrhage. Crit Care Med.

27:965-71. 1999

45. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, et al. Spontaneous intracerebral hemorrhage. N Engl J Med 344: 1450–1460. 2001

46. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashsk A, Lynch HT, Smyrk TC.: Akt proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis. 23, 201-205, 2002

47. Ryu JK, Kim J, Hong SH, Choi HB, Lee MC, et al. Proactive transplantation of human neural stem cells blocks neuronal cell death in rat model of Huntington disease. Neurobiol Disease 16: 68–77. 2004

48. Salinas M., Martin D., Alvarez A. and Cuadrado A.: Akt1/PKBa protects PC12 cells against the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium and reduces the levels of oxygenfree radicals. Mol. Cell Neurosci. 17, 67–77. 2001

49. Sharp FR, Ran R, Lu A, Tang Y, Strauss KI, et al. Hypoxic preconditioning protects against Ischemic brain injury. NeuroRx 1: 26–35. 2004

50. Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M. and Danni O.: H2O2 and 4-hydroxynonenal mediate amyloid b-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180, 144–155. 2003

51. Wang J, Tsirka SE.: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 128:1622-1633. 2005a

52. Wang J, Tsirka SE.: Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke. 36:613-618. 2005b

53. Wang X., McCullough K. D., Franke T. F. and Holbrook N. J.: Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival.

J. Biol. Chem. 275, 14 624–14 631. 2000

54. Yao R. and Cooper G. M.: Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006. 1995

55. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106: 829–838.

- 국문 요약 -

Akt1 과발현을 유도한 인간 신경줄기 세포주의 마우스 뇌출혈 뇌졸중 모델에서의 치료 효과

아주대학교 대학원 의학과

김 미 경

(지도교수 : 김 병 곤)

Akt1 분자는 serine/threonine 키나아제의 하나로, 세포의 성장과 증식, 생존 그리고 에너지 대사와 관련된 신호전달체계에서 중요한 역할을 하는 효소 중의 하나이다. 선행된 연구를 통해 래트 뇌출혈 뇌졸중 모델에 인간유래 신경세포줄기를 이식하여, 이식한 줄기세포들의 뇌 손상 조직으로의 선택적인 이동 능력과 모델 동물의 행동적 기능상의 회복을 확인 할 수 있었다. 하지만 이식 된 줄기세포의 낮은 생존율로 인해, 세포 이식 이후의 살아있는 세포에 의한 지속적인 효과에 관한 우려를 낳았다. 이에 본 연구에서는 대표적인 survival molecule 로 알려진 Akt1 유전자를 인간 신경줄기세포 내로 도입,

과발현을 유도하여 이러한 세포를 이용한 질병 치료책에 있어서 이식된 세포의 장기간의 생존 효과를 보고자 하였다.

본 실험은 먼저 Akt1 과발현 신경줄기 세포주를 만들어 in vitro 상에서 과산화수소에 의한 세포사에 대한 저항성을 확인하고, 또한 뇌졸중 상태와 유사한 환경을 가지는 산소 및 글루코스 고갈 실험에서의 세포의 생존력을 비교해 보았다. 그 결과 Akt1 이 과발현 되는 세포주가 그렇지 않은 모세포주보다 강한 생존력을 가지고 있음을 알 수 있었다. 또한 마우스를 이용한 in vivo 동물 실험을 통해 확인을 해 본 결과, Akt1 이 과발현 되는 세포주가 그렇지 않은 대조군의 세포주에 비해 이식 후 일정 시간 후에 보다 더 오래 생존하고, 유지 되고 있음을 확인 할 수 있었다.

이렇듯 본 연구에서는 과발현 되는 Akt1 에 의해 이식하는 신경 줄기 세포의 생존율을 향상시키고, 이식한 세포의 장기간의 생존으로 인해 신경 줄기세포의 지속적인 neuroprotection 효과를 확인할 수 있었다.

핵심어 : 신경 줄기 세포, Akt1/단백질 키나아제 B, 산소-포도당 박탈, 뇌출혈,

세포 이식

관련 문서