• 검색 결과가 없습니다.

C. Flow cytometry

V. CONCLUSION

The present study provided novel findings that the CD56bright NK cell subset is not only a minor subpopulation among total NK cells, but serves an important

28

role in adaptive response against PCa cells. This notion lends further support that longitudinal studies regarding NK cell immunosurveillance clearly deserves additional research, which could potentially lead to novel immunotherapeutic strategies for enhancing oncological outcomes of PCa.

29 REFERENCES

1. Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol 2001;1:41-9.

2. Szkaradkiewicz A, Karpinski TM, Drews M, Borejsza-Wysocki M, Majewski P, Andrzejewska E. Natural killer cell cytotoxicity and immunosuppressive cytokines (IL-10, TGF-beta1) in patients with gastric cancer. J Biomed Biotechnol 2010;2010:901564.

3. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 2000;356:1795-9.

4. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989;47:187-376.

5. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6:836-48.

6. Takahashi E, Kuranaga N, Satoh K, et al. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. Scand J Immunol 2007;65:126-38.

7. Cooper MA, Caligiuri MA. Isolation and characterization of human natural killer cell subsets. Curr Protoc Immunol 2004;Chapter 7:Unit 7 34.

8. Watanabe M, Kono K, Kawaguchi Y, et al. NK cell dysfunction with down-regulated CD16 and up-regulated CD56 molecules in patients with esophageal squamous cell carcinoma. Dis Esophagus 2010;23:675-81.

9. Dowell AC, Oldham KA, Bhatt RI, Lee SP, Searle PF. Long-term proliferation of functional human NK cells, with conversion of CD56(dim) NK cells to a CD56 (bright) phenotype, induced by carcinoma cells

30

co-expressing 4-1BBL and IL-12. Cancer Immunol Immunother 2012;61:615-28.

10. Bauernhofer T, Kuss I, Henderson B, Baum AS, Whiteside TL. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur J Immunol 2003;33:119-24.

11. Soiffer RJ, Murray C, Shapiro C, et al. Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2. Clin Cancer Res 1996;2:493-9.

12. Lin CT, Yu MT, Li C, et al. Dysfunction of natural killer cells in patients with transitional cell carcinoma. Cancer Lett 2010;291:39-45.

13. Whiteside TL, Herberman RB. The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 1995;7:704-10.

14. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A 2000;97:2731-6.

15. Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K.

Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol 2001;96:574-8.

16. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR. Role of NK cells in tumour growth and metastasis in beige mice. Nature 1980;284:622-4.

17. Schleypen JS, Baur N, Kammerer R, et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res 2006;12:718-25.

18. Klein EA, Silverman R. Inflammation, infection, and prostate cancer. Curr

31 Opin Urol 2008;18:315-9.

19. Basch E, Oliver TK, Vickers A, et al. Screening for prostate cancer with prostate-specific antigen testing: American Society of Clinical Oncology Provisional Clinical Opinion. J Clin Oncol 2012;30:3020-5.

20. Lahat N, Alexander B, Levin DR, Moskovitz B. The relationship between clinical stage, natural killer activity and related immunological parameters in adenocarcinoma of the prostate. Cancer Immunol Immunother 1989;28:208-12.

21. Oikawa T, Kawai K, Ishiwata I, Ohno T, Akaza H. Induction of potent antitumour natural-killer cells from peripheral blood of patients with advanced prostate cancer. BJU Int 2003;92:1009-15.

22. Kastelan M, Kraljic I, Tarle M. NK cell activity in treated prostate cancer patients as a probe for circulating tumor cells: hormone regulatory effects in vivo. Prostate 1992;21:111-20.

23. Lumen N, Fonteyne V, De Meerleert G, et al. Population screening for prostate cancer: an overview of available studies and meta-analysis. Int J Urol 2012;19:100-8.

24. O'Rourke ME. The prostate-specific antigen screening conundrum:

examining the evidence. Semin Oncol Nurs 2011;27:251-9.

25. Sotosek S, Sotosek Tokmadzic V, Mrakovcic-Sutic I, et al. Comparative study of frequency of different lymphocytes subpopulation in peripheral blood of patients with prostate cancer and benign prostatic hyperplasia. Wien Klin Wochenschr 2011;123:718-25.

26. Aalamian M, Pirtskhalaishvili G, Nunez A, et al. Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells.

32 Prostate 2001;46:68-75.

27. Ebelt K, Babaryka G, Figel AM, et al. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate 2008;68:1-10.

28. Thomas JW, Jerkins G, Cox C, Lieberman P. Defective cell-mediated immunity in carcinoma of the prostate. Invest Urol 1976;14:72-5.

29. Wagenlehner FM, Elkahwaji JE, Algaba F, et al. The role of inflammation and infection in the pathogenesis of prostate carcinoma. BJU Int 2007;100:733-7.

30. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001;22:633-40.

31. Harlin H, Hanson M, Johansson CC, et al. The CD16- CD56(bright) NK cell subset is resistant to reactive oxygen species produced by activated granulocytes and has higher antioxidative capacity than the CD16+

CD56(dim) subset. J Immunol 2007;179:4513-9.

32. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer. Clin Cancer Res 2011;17:6118-24.

33. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009;126:458-65.

34. Izawa S, Kono K, Mimura K, et al. H(2)O(2) production within tumor microenvironment inversely correlated with infiltration of CD56(dim) NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol Immunother 2011;60:1801-10.

35. Chan A, Hong DL, Atzberger A, et al. CD56bright human NK cells

33

differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 2007;179:89-94.

36. Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J Immunol 2004;172:1333-9.

37. Sheikhi A, Saadati K, Salmani R, Yahaghi N, Siemens DR. In vitro modulation of natural killer activity of human peripheral blood mononuclear cells against prostate tumor cell line. Immunopharmacol Immunotoxicol 2011;33:700-8.

38. Keskin DB, Allan DS, Rybalov B, et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 2007;104:3378-83.

39. Schantz SP, Campbell BH, Guillamondegui OM. Pharyngeal carcinoma and natural killer cell activity. Am J Surg 1986;152:467-74.

40. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007;25:267-96.

41. Gonzalez FM, Vargas JA, Lopez-Cortijo C, et al. Prognostic significance of natural killer cell activity in patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg 1998;124:852-6.

42. Yamaguchi Y, Takashima I, Funakoshi M, Kawami H, Toge T. Defective natural killer activity in gastric cancer patients: possible involvement of suppressor factor receptor. In Vivo 1994;8:279-83.

43. Vitale M, Della Chiesa M, Carlomagno S, et al. The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with

34

dendritic cells. Eur J Immunol 2004;34:1715-22.

44. Scordamaglia F, Balsamo M, Scordamaglia A, et al. Perturbations of natural killer cell regulatory functions in respiratory allergic diseases. J Allergy Clin Immunol 2008;121:479-85.

45. Schroder FH. Landmarks in prostate cancer screening. BJU Int 2012;110 Suppl 1:3-7.

46. Khan MA, Partin AW, Rittenhouse HG, et al. Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml. J Urol 2003;170:723-6.

35 ABSTRACT

전립선암에서 관찰되는 자연살해세포 활성장애 기전으로써 CD16-CD56bright subset의 감소

지도교수 홍 성 준

연세대학교 대학원 의학과

구 교 철

I. 서론

자연살해세포에 의한 세포독성은 종양세포의 억제와 제거 기전에 있어 주요한 역할을 한다. 본 연구는 전립선암의 발생 및 진행의 면역요인에 있어서 자연살해세포의 역할에 대해 알아보기 위해 전립선암 환자의 말초혈액에서 자연살해세포의 subset에 초점을 맞춰 자연살해세포 활성도를 분석하고, 전립선암 진단 표지자로써 이들의 가치에 대해 알아보았다.

II. 재료 및 방법

전립선암으로 확진되어 수술을 앞둔 51명의 환자들과 나이를

36

보정한 건강대조군 54명을 대상으로 자연살해세포 활성도와

자연살해세포 subset의 분포를 전향적으로 분석하였다. 자연살해세포 활성도는 말초혈액을 IL-2로 자극시킨 후 배양액의 상층액에서 검출된 IFN-γ치를 측정값으로 사용하였다. 자연살해세포 subset 분포를 분석하기 위해 말초혈액을 단일 클론 형광색소 항체로 염색 후 세포분석기를 이용하여 측정하였으며, 자연살해세포를 구성하는 CD56+CD3- 세포 중 CD16+CD56dim subset과 CD16-CD56bright subset의 세포수를 측정하여 전체 자연살해세포 수 중에서 차지하는 비율로써 분석하였다.

III. 결과

자연살해세포 활성도와 CD56bright subset 세포수는 대조군에 비해

환자군에서 유의하게 낮았다(430.9 pg/ml 대 975.2 pg/ml, 2.3% 대 3.8%;

p < 0.001). 암병기가 증가할수록 두 인자 모두 감소하는 유의한

경향이 관찰되었다 (p for trend = 0.001). CD56dim 대 CD56bright subset 비율은 환자군에서 유의하게 높았으며 (41.8 대 30.3; p < 0.001) 병기가 높을수록 증가하는 유의한 경향을 보임으로써 (p for trend = 0.001), CD56dim subset 세포수의 변화에 비해 CD56bright subset 세포수가 유의하게 상대적으로 감소했음을 확인할 수 있었다. 전립선암 진단에 있어서 자연살해세포 활성도의 예민도와 특이도는 각각 72%와 74%로 나타났다.

37 IV. 결론

CD56bright subset의 세포수 감소는 자연살해세포 활성장애에 선행하는

것으로 생각되며, 이로 인하여 전립선암 세포에 대한 세포독성장애가 발생하는 것으로 보인다. 본 관찰 결과는 전립선암의

미세종양환경에서 자연살해세포 독성장애의 기전을 제시하며, 향후 면역기반 치료의 개발에 응용될 수 있으리라 기대한다.

---

핵심되는 말 : 세포독성; 자연살해세포; 전립선암

38

PUBLICATION LIST

Koo KC, Shim DH, Yang CM, et al. Reduction of the CD16-CD56bright NK Cell Subset Precedes NK Cell Dysfunction in Prostate Cancer. PLoS ONE 2013;8:e78049. doi:10.1371/journal.pone.0078049

관련 문서