• 검색 결과가 없습니다.

The effect of predifferentiation for adequate periods in vitro on dental tissue regeneration in vivo was examined in this study. Although no significant increase in hard tissue-forming ability was conferred by predifferentiation of the DPSCs, predifferentiated DPSCs generated hard tissue closer to dentin. Besides, predifferentiated PDLSCs appeared to generate higher-quality and more tissue for dental regeneration than their undifferentiated counterparts.

References

Alvarez-Perez MA, Narayanan S, Zeichner-David M, Rodriguez Carmona B, Arzate H:

Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 38(3): 409-419, 2006.

Atkins GJ, Welldon KJ, Halbout P, Findlay DM: Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20(4): 653-664, 2009.

Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al.: Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82(12): 976-981, 2003.

Castano-Izquierdo H, Alvarez-Barreto J, van den Dolder J, Jansen JA, Mikos AG, Sikavitsas VI: Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J Biomed Mater Res A 82(1):

129-138, 2007.

Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, et al.: Runx2, osx, and dspp in tooth development. J Dent Res 88(10): 904-909, 2009.

Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I: Cementum-periodontal ligament complex regeneration using the cell sheet technique.

Journal of Periodontal Research 43(3): 364-371, 2008a.

Flores MG, Yashiro R, Washio K, Yamato M, Okano T, Ishikawa I: Periodontal ligament cell sheet promotes periodontal regeneration in athymic rats. J Clin Periodontol 35(12): 1066-1072, 2008b.

Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A: Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215(3): 743-749, 2008.

Garlet TP, Coelho U, Silva JS, Garlet GP: Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115(5): 355-362, 2007.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25): 13625-13630, 2000.

Hoz L, Romo E, Zeichner-David M, Sanz M, Nunez J, Gaitan L, et al.: Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int 36(2): 129-136, 2012.

Inukai T, Katagiri W, Yoshimi R, Osugi M, Kawai T, Hibi H, et al.: Novel application of stem cell-derived factors for periodontal regeneration. Biochem Biophys Res Commun 430(2): 763-768, 2013.

Karimbux NY, Nishimura I: Temporal and spatial expressions of type XII collagen in the remodeling periodontal ligament during experimental tooth movement. J Dent Res 74(1): 313-318, 1995.

Kim S, Song JS, Jeon M, Shin DM, Kim SO, Lee JH: Ectopic Hard Tissue Formation by Odonto/Osteogenically In Vitro Differentiated Human Deciduous Teeth Pulp Stem Cells. Calcif Tissue Int 97(1): 80-89, 2015.

Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al.:

Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12(9): 1335-1347, 1997.

Lian JB, Stein GS: Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3(3): 269-305, 1992.

Liu F, Akiyama Y, Tai S, Maruyama K, Kawaguchi Y, Muramatsu K, et al.: Changes in the expression of CD106, osteogenic genes, and transcription factors involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells. J Bone Miner Metab 26(4): 312-320, 2008.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402-408, 2001.

Mah YJ, Song JS, Kim SO, Lee JH, Jeon M, Jung UW, et al.: The effect of epigallocatechin-3-gallate (EGCG) on human alveolar bone cells both in vitro and in vivo. Arch Oral Biol 59(5): 539-549, 2014.

Metzger Z, Weinstock B, Dotan M, Narayanan AS, Pitaru S: Differential chemotactic effect of cementum attachment protein on periodontal cells. J Periodontal Res 33(2): 126-129, 1998.

Min B, Song JS, Kim SO, Kim KM, Park WS, Lee JH: Osteoconduction capacity of human deciduous and permanent teeth ash in a rat calvarial bone defect model.

Cell Tissue Bank 16(3): 361-369, 2015.

Ogata Y, Niisato N, Moriwaki K, Yokota Y, Furuyama S, Sugiya H: Cementum, root dentin and bone extracts stimulate chemotactic behavior in cells from periodontal tissue. Comp Biochem Physiol B Biochem Mol Biol 116(3): 359-365, 1997.

Paulsen DF: Chapter 15. Digestive Tract. In: Histology & Cell Biology:

Examination & Board Review, 5e. The McGraw-Hill Companies, New York, NY. 2010.

Pavlin D, Zadro R, Gluhak-Heinrich J: Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res 42(2): 135-148, 2001.

Peters A, Toben D, Lienau J, Schell H, Bail HJ, Matziolis G, et al.: Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing.

Tissue Eng Part A 15(10): 2947-2954, 2009.

Qian H, Zhao Y, Peng Y, Han C, Li S, Huo N, et al.: Activation of cannabinoid receptor CB2 regulates osteogenic and osteoclastogenic gene expression in human periodontal ligament cells. J Periodontal Res 45(4): 504-511, 2010.

Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, et al.: The expression of dentin sialophosphoprotein gene in bone. J Dent Res 81(6): 392-394, 2002.

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al.: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429): 149-155, 2004.

Sikavitsas VI, van den Dolder J, Bancroft GN, Jansen JA, Mikos AG: Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model. J Biomed Mater Res A 67(3): 944-951, 2003.

Song A, Cai J, Pan K, Yang P: Pre-existing root cementum may promote cementoblast differentiation of human periodontal ligament cells. Cell Prolif 45(3): 249-258, 2012.

Song JS, Kim SO, Kim SH, Choi HJ, Son HK, Jung HS, et al.: In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Eng Part A 18(19-20): 2040-2051, 2012.

Tamaki Y, Nakahara T, Ishikawa H, Sato S: In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 101(2): 121-132, 2013.

Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A: Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76(4):

337-347, 2008.

Wang YX, Ma ZF, Huo N, Tang L, Han C, Duan YZ, et al.: Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med 5(5): 354-362, 2011.

Wei X, Ling J, Wu L, Liu L, Xiao Y: Expression of mineralization markers in dental pulp cells. J Endod 33(6): 703-708, 2007.

Ye X, Yin X, Yang D, Tan J, Liu G: Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Tissue Eng Part C Methods 18(7): 545-556, 2012.

Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, et al.: Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99(8): 465-474, 2007.

Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA: Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 14(2): 285-294, 2008.

국문요약

치수 및 치주인대 줄기세포의 사전분화가 조직재생에 미치는 영향

연세대학교 대학원 치의학과 차 윤 선

지도교수: 송제선

줄기세포를 통한 조직재생을 위해서는 목표한 조직으로 재생되도록 적절한 세포를 분리해 세포 분화 및 성장에 필요한 환경을 형성하는 것이 필요하다. 특히 사전분화 과정은 기간이 길수록 줄기세포의 자가복제능은 줄어들지만, 다양한 세포로 분화될 수 있는 줄기세포가 특정 세포로 분화되도록 유도하기 때문에, 조직 재생에 직접적인 영향을 미치는 중요한 과정이다. 이미 골수유래 줄기세포의 다양한 사전분화 기간에 따른 조직재생 효과에 대해서는 여러 연구가 진행되었으나 사람의 치수 및 치주인대 줄기세포를 이용한 연구는 아직 없었다. 따라서 본 연구는 영구치 치수 및 치주인대 줄기세포를 각기 다른 기간 동안 사전분화시킨 뒤 조직재생에 미치는 영향에 대해 알 아보고자 하였다.

사람의 영구치에서 획득한 치수 줄기세포와 치주인대 줄기세포를 각각 0, 4, 8일간 사전분화시킨 뒤, 면역억제된 쥐에 이식하여 9주간 조직재생을 유도하였다. 이후 이식

체를 획득하여 재생된 조직에 대해 조직학적 분석, 알칼리성 인산가수분해효소 활성 (ALP activity), 역전사효소 중합효소 연쇄반응분석, 면역화학염색법을 시행하여 비교하 였다.

치수줄기세포의 경우, 사전분화시키지 않은 군과 비교해 사전분화시킨 군에서 새로 형성된 조직의 양은 차이가 없었으나, 더 높은 OC, DSPP 발현을 나타내 상아질에 더 가까운 조직이 재생되었음을 보여주었다.

치주인대줄기세포의 경우, 사전분화시키지 않은 군보다 사전분화시킨 군에서 더 많 은 양의 조직이 형성되었고, 높은 ALP activity를 나타냈다. 특히, 8일간 사전분화시킨 군에서는 POSTN, CP23, Col XII의 높은 발현을 보여, 백악질/치주인대 복합체에 더 가 까운 조직이 형성되었음을 나타내었다.

본 연구를 통해 사전분화시킨 치수 및 치주인대줄기세포로 재생된 조직의 특성을 이해할 수 있었고, 이는 향후 치수 및 치주인대 줄기세포의 사전분화과정을 이용한 치아조직의 재생에 대한 연구에 응용될 수 있을 것으로 기대한다.

핵심되는 말: 치수줄기세포, 치주인대줄기세포, 사전분화, 조직재생

관련 문서