• 검색 결과가 없습니다.

H. Differential secretion of cytokines and chemokines by neutrophils cultured with S

Ⅴ. CONCLUSION

The NFS-based culture system provides a 3D space for cell attachment and migration. In the 3D NFS, cell-derived products can diffuse easily and tight cell-to-cell contact can be avoided. Whereas hydrogels can mimic the native 3D microenvironment, limited diffusion of chemokines and migration of cells hampers their use in 3D coculture of bacteria and phagocytes. Technically, the NFS can be easily assembled into the layer-by-layer system, which mimics multilayers of cells in tissue. Moreover, PCL nanofibers are inert and biocompatible in immune cell culture because the adhesion of BM-DCs to PCL nanofibers does not affect their activation status (8, 9). Finally, 3D migration to surrounding bacteria and phagocytosis processes in the NFS can be visualized though a live cell-imaging setup.

Thus, our NFS-based 3D culture system is widely applicable to the biomimetic study of various microbe infections.

REFERENCE

1. Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059-62, 1975.

2. Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev 16:561-80, 2005.

3. Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol 36:547-55, 2015.

4. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453-66, 1962.

5. Sackmann EK, Berthier E, Young EW, Shelef MA, Wernimont SA, Huttenlocher A, et al. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays.

Blood 120:e45-53, 2012.

6. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197-211, 2006.

7. Lee J, Lee SY, Jang J, Jeong YH, Cho D-W. Fabrication of patterned nanofibrous mats using direct-write electrospinning. Langmuir 28:7267-75, 2012.

8. Kim TE, Kim CG, Kim JS, Jin S, Yoon S, Bae HR, et al. Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold. Int J Nanomedicine 11:823-35, 2016.

9. Jin S, Park TM, Kim CH, Kim JS, Le BD, Jeong YH, et al. Three-dimensional migration of neutrophils through an electrospun nanofibrous membrane. Biotechniques 58:285-92, 2015.

10. Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217-56, 2010.

11. Wang Y, Wang G, Chen L, Li H, Yin T, Wang B, et al. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds.

Biofabrication 1:015001, 2009.

12. Swamydas M, Luo Y, Dorf ME, Lionakis MS. Isolation of mouse neutrophils. Curr Protoc Immunol 110:3.20.1-15, 2015.

13. Song MG, Hwang SY, Park JI, Yoon S, Bae HR, Kwak JY. Role of aquaporin 3 in development, subtypes and activation of dendritic cells. Mol Immunol 49:28-37, 2011.

14. Pineda-Torra I, Gage M, de Juan A, Pello OM. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol Biol 1339:101-9, 2015.

15. Park KH, Kurokawa K, Zheng L, Jung DJ, Tateishi K, Jin JO, et al. Human serum mannose-binding lectin senses wall teichoic acid glycopolymer of Staphylococcus aureus, which is restricted in infancy. J Biol Chem 285:27167-75, 2010.

16. Lu T, Porter AR, Kennedy AD, Kobayashi SD, DeLeo FR. Phagocytosis and killing of Staphylococcus aureus by human neutrophils. J Innate Immun 6:639-49, 2014.

17. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61:119-61, 2009.

18. Skovbakke SL, Winther M, Gabl M, Holdfeldt A, Linden S, Wang JM, et al. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils. Biochem Pharmacol 119:56-65, 2016.

19. Alfaro C, Suarez N, Oñate C, Perez-Gracia JL, Martinez-Forero I, Hervas-Stubbs S, et al. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS One 6:e29300, 2011.

20. Sinha B, François PP, Nüsse O, Foti M, Hartford OM, Vaudaux P, et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin a5b1. Cell Microbiol 1:101-17, 1999.

21. Abrigo M, Kingshott P, McArthur SL. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth. ACS Appl Mater Interfaces 7:7644-52, 2015.

22. Schindler D, Gutierrez MG, Beineke A, Rauter Y, Rohde M, Foster S, et al. Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream infection. Am J Pathol 181:1327-37, 2012.

23. Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, et al.

Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links

phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe 7:38-49, 2010.

24. Spaan AN, Surewaard BG, Nijland R, van Strijp JA. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 67:629-50, 2013.

25. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep (2012) 2:786.

26. Sadik CD. Kim ND, Luster AD. Neutrophils cascading their way to inflammation.

Trends Immunol (2011) 32:452-60.

27. Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A (2003) 100:10948-53.

28. Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1).

Immunol Today (1990) 11:97-101.

국문요약

호중구, 대식세포, 수지상 세포와 같은 전문적인 포식 세포들은 미생물을

활발히 에워싼다. 본 연구에서는, 염증 상태일 때 포식세포와 미생물간에

연관을 조사하기 위하여 생체 외 조건에서 3 차원적인 감염 모델을 개발하였다.

황색포도상구균과 포식세포들을 같이 배양하기 위해서 3 차원적 구조 내에서

다층 구조인 나노 섬유를 이용한 배양 시스템을 사용하였다. 표면에 부착된

황색포도상구균과 포식 세포들은 나노 섬유 안으로 이동이 가능하며,

포식세포들은 3 차원적 조건에서 포도상구균으로 이동하고 에워싼다. 또한 포밀

펩타이드 수용체 억제제를 처리하면 식균 작용의 비율이 3 차원적 조건에서는

감소를 하지만 2 차원적 조건에서는 감소를 하지 않았다. 황색포도상구균으로의

포식 세포의 이동은 나노 섬유 기반 다층 구조 배양 시스템을 이용하여

측정하였다. 상위의 나노 섬유 지지체 내 포식 세포들은 아래 층의 지지체로

이동을 하였다. 또한 황색포도상구균과 같이 배양한 포식 세포들에 의한

사이토카인과 케모카인은 분비 양상을 2 차원적과 3 차원적 조건일 때 비교를

하였다. 그리고 3 차원적인 3 차원 조건일 때 수지상 세포는 박테리아를

잡아먹은 호중구로 이동을 한 후, 호중구를 에워쌋다. 게다가 상위의 지지체에

있는 호중구와 대식 세포들은 다층 구조 지지체 배양 시스템에서 아래쪽의

지지체 내의 박테리아에 감염된 폐 상피세포로 이동을 확인했다. 그리고

박테리아에 감염된 폐의 상피세포에 박테리아를 감염시키면 3 차원적

조건에서만 종양괴사인자-알파와 인터류킨-1α 가 분비가 되는 것을 확인했다.

이것을 통해 나노 섬유를 이용한 3 차원적 배양 시스템은 생체 내 미생물에

대한 반응처럼 염증 반응을 흉내 낼 수 있다는 것을 증명하였다.

관련 문서