• 검색 결과가 없습니다.

J. Cell Cycle Analysis

V. CONCLUSION

In conclusion of part I, our study demonstrates that HD doxorubicin-induced apoptosis and LD doxorubicin-induced mitotic cell death are largely independent, and the activation of distinct signaling pathways may be responsible for the induction of these morphologically distinct cell death modes. Elucidation of the factors that regulate the various aspects of treatment-induced apoptosis and mitotic catastrophe should assist in improving the efficacy of cancer therapy.

In conclusion of part II, p21 play pivotal role in maintaining of G1 or G2

arrest by DNA damage and so preventing mitotic catastrophe by induction of cell cycle arrest. Even though G2 arrest was abrogated by caffeine, mitotic catastrophe was prevented because p21 induced cell cycle arrest at G1 phase.

96

REFERENCES

1. Acunas B and Rozanes I: Hepatocellular carcinoma: treatment with transcatheter arterial chemoembolization. Eur J Radio 32:86-89, 1999

2. Aebi U, Cohn J, Buhle L and Gerace L: The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560-564, 1986

3. Baichwal VR and Baeuerle PA: Activate NF-kappa B or die? Curr Biol 7:R94-R96, 1997

4. Bakkenist CJ, Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506, 2003

5. Blasina A., Price BD, Turenne GA, McGowan CH: Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9:1135-1138, 1999

6. Boulaire J, Fotedar A, Fotedar R: The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 48(3):190-202, 2000

7. Brown JM and Wouters BG: Apoptosis, p53, and tumor cell sensitivity to

97

anticancer agents. Cancer Res 59:1391-1399, 1999

8. Bukholm IK and Nesland JM: Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch. 436(3):224-228. 2000

9. Busse PM, Bose SK, Jones RW, Tolmach J: The action of caffeine on X-irradiated Hela cells. II. Synergistic lethality. Radiat Res 71:666-677, 1977

10. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679, 1998

11. Canman, CE, and Kastan, MB: Induction of apoptosis by tumor suppressor genes and oncogenes. Semin Cancer Biol 6:17-25, 1995

12. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R and Kroemer G:

Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825-2837, 2004a

13. Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, Horne D, Feunteun J, Lenoir G, Medema R, Vainchenker W and Kroemer G: Mitotic

98

catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362-4370, 2004b

14. Chan GK, Jablonski SA, Sudakin V, Hittle JC and Yen TJ: Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 146:941-954, 1999

15. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K and Roninson IB: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761-3767, 1999b

16. Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A. 99(1):389-394,

17. Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression:

implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci U S A. 97(8):4291-4296, 2000

18. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J and Roninson IB: Role

99

of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808-4818, 1999a

19. Chu K, Teele N, Dewey MW, Albright N, Dewey WC: Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines. Radiat Res. 162(3): 270-286, 2004

20. Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases.

J Biol Chem. 278:37139-37145, 2003

21. Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell 103:239-252, 2000

22. Decaudin D, Marzo I, Brenner C and Kroemer G: Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). Int J Oncol 12:141-152, 1998

23. Dimiri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campisi J: A Biomarker

100

that Identifies Senescent Human Cells in Culture and in Aging Skin in vivo. Proc Natl Acad Sci USA 92:9363-9367, 1995

24. Dubrez L, Coll JL, Hurbin A, Solary E, Favrot MC: Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of Bax protein. J Biol Chem 276:38980-38987, 2001

25. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ and Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023, 1994

26. Dulic V, Stein GH, Far DF, Reed SI: Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 18(1):546-557, 1998

27. Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati JB, Eliaers F, Remacle J and Toussaint O: Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28:361-373, 2000

28. Fan S, Smith ML, Rivet DJ 2nd, Duba D, Zhan Q, Kohn KW, Fornace AJ Jr, O’Connor PM: Disruption of p53 function sensitizes breast cancer MCF-7 cells

101

to cisplatin and pentoxifylline. Cancer Res 55:1649-1654, 1995

29. Gamen S, Anel A, Perez-Galan P, Lasierra P, Johnson D, Pineiro A and Naval J:

Doxorubicin treatment activates a Z-VAD-sensitive caspase, which causes deltapsim loss, caspase-9 activity, and apoptosis in Jurkat cells. Exp Cell Res 258:223-235, 2000

30. Gewirtz DA: A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin.

Biochem Pharmacol 57:727-741, 1999

31. Gupta S: Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69:2957-2964, 2001

32. He QY, Liang YY, Wang DS and Li DD: Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells. Int J Oncol 20:261-266, 2002

33. Hendry JH and West CM: Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int J Radiat Biol 71:709-719, 1997

102

34. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW: DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824-1827, 2000

35. Hirose Y, Berger MS and Pieper RO: p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61:1957-1963, 2001

36. Hortobagyi GN: Anthracyclines in the treatment of cancer. An overview. Drugs 54:1-7, 1997

37. Hsu IC, Tokiwa T, Bennett W, Metcalf RA, Welsh JA, Sun T and Harris CC: p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogensis 14:987-992, 1993

38. Ito K, Nakazato T, Miyakawa Y, Yamato K, Ikeda Y, Kizaki M: Caffeine induces G2/M arrest and apoptosis via a novel p53-dependent pathway in NB4 promyelocytic leukemia cells. J Cell Physiol 196(2):276-283, 2003

39. Kalitsis P, MacDonald AC, Newson AJ, Hudson DF and Choo KH: Gene structure and sequence analysis of mouse centromere proteins A and C. Genomics 47:108-114, 1998

103

40. Kang MS, Lee HJ, Lee JH, Ku JL, Lee KP, Kelly MJ, Won YJ and Kim ST and Park JG: Mutation of p53 gene in hepatocellular carcinoma cell lines with HBX DNA. Int J Cancer 67:898-902, 1996

41. Kanthou C, Greco O, Stratford A, Cook I, Knight R, Benzakour O, Tozer G: The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death. Am J Pathol. 165(4):1401-1411, 2004

42. Kuerbitz SJ, Plunkett BS, Walsh WV and Kastan MB: Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495, 1992

43. Lanni JS and Jacks T: Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18:1055-1064, 1998

44. Lau CC, Pardee AB: Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci USA 79:2942-2946, 1982

45. Lee S and Schmitt CA: Chemotherapy response and resistance. Curr Opin Genet Dev 13:90-96, 2003

104

46. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88:323-331, 1997

47. Li Y and Benezra R: Identification of a human mitotic checkpoint gene: hsMAD2.

Science 274:246-248, 1996

48. Liu L, Kwak YT, Bex F, Garcia-Martinez LF, Li XH, Meek K, Lane WS and Gaynor RB: DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol Cell Biol 18:4221-4234, 1998

49. Lock RB and Stribinskiene L: Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 56:4006-4012, 1996

50. Lu W, Li YH, He XF, Chen Y, Zeng QL and Qiu YR: Effect of dosage of anticancer agents during transcatheter arterial chemoembolization on T cell subsets in patients with hepatocellular carcinoma. Di Yi Jun Yi Da Xue Xue Bao 22:524-526, 2002

51. Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G and Broxmeyer HE:

p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole

105

overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390-1398, 1999

52. Medema RH, Klompmaker R, Smits VA, Rijksen G: p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16(4):431-441, 1998

53. Miranda EI, Santana C, Rojas E, Hernandez S, Ostrosky-Wegman P and Garcia-Carranca A: Induced mitotic death of HeLa cells by abnormal expression of c-H-ras. Mutat Res 349:173-182, 1996

54. Nishida N, Fukuda Y, Kokuryu H, Toguchida J, Yandell DW, Ikenega M and Imura H: Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma. Cancer Res 53:368-372, 1993

55. Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H: Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 23(39):6548-6558,

56. Ono K and Han J: The p38 signal transduction pathway: activation and function.

Cell Signal 12:1-13, 2000

106

56. Park JG, Lee JH, Kang MS, Park KJ, Jeon YM, Lee HJ, Kwon HS, Park HS, Yeo KS, Lee KU, Kim ST, Chung JK, Hwang YJ, Lee HS, Kim CY, Lee YI, Chen TR, Hay RJ, Song SS, Kim WH, Kim CW and Kim YI: Characterization of cell lines established from human hepatocellular carcinoma. Int J Cancer 62:276-282, 1995

57. Passalaris TM, Benanti JA, Kiyono T and Galloway DA: The G(2) checkpoint is maintained by redundant pathways. Mol Cell Biol 19:5872-5881, 1999

58. Patt YZ, Claghorn L, Charnsangavej C, Soski M, Cleary K and Mavligit GM:

Hepatocellular carcinoma. A retrospective analysis of treatments to manage disease confined to the liver. Cancer 61:1884-1888, 1988

59. Perry J, Kleckner N: The ATRs, ATMs, and TORs are giant HEAT repeat proteins.

Cell 112:151–155, 2003

60. Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S: Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55:1643-1648, 1995

61. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B and Davis RJ: MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated

107

protein kinase signal transduction pathway. Mol Cell Biol 16:1247-1255, 1996

62. Reed SI, Bailly E, Dulic V, Hengst L, Resnitzky D and Slingerland J: G1 control in mammalian cells. J Cell Sci Suppl 18:69-73, 1994

63. Roninson IB, Broude EV and Chang BD: If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303-313, 2001

64. Ruth AC and Roninson IB: Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res 60:2576-2578, 2000

65. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT:

Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375-4382, 1999

66. Sato N, Mizumoto K, Nakamura M, Ueno H, Minamishima YA, Farber JL, Tanaka M: A possible role for centrosome overduplication in radiation-induced cell death. Oncogene. 19(46):5281-5290, 2000

67. Sciarrino E, Simonetti RG, Le Moli S and Pagliaro L: Adriamycin treatment for hepatocellular carcinoma. Experience with 109 patients. Cancer 56:2751-2755,

108

1985

68. Seong YS, Kamijo K, Lee JS, Fernandez E, Kuriyama R, Miki T and Lee KS: A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J Biol Chem 277:32282-32293, 2002

69. Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593-602, 1997

70. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases.

Genes Dev 9(10):1149-1163, 1995

71. Speth PA, Linssen PC, Boezeman JB, Wessels HM and Haanen C: Cellular and plasma adriamycin concentrations in long-term infusion therapy of leukemia patients. Cancer Chemother Pharmacol 20:305-310, 1987

72. te Poele RH, Okorokov AL, Jardine L, Cummings J and Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876-1883, 2002

73. Wang Y, Blandino G and Givol D: Induced p21waf expression in H1299 cell line

109

promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18:2643-2649, 1999

74. White E: Life, death, and the pursuit of apoptosis. Genes Dev 10:1-15, 1996

75. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR and Templeton DJ:

Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372:798-800, 1994

76. Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M, Ravi R, Collector MI, Jones RJ, Sharkis SJ, Fuchs EJ, Bedi A: Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nature Med 2:1140-1143, 1996

77. Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, Mishra R, Mattern MR, Winkler JD, Khanna KK: Caffeine abolishes the mammalian G2-M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275:10342-10348, 2000

78. Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H: Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 23(39):6548-6558,

110

납작해지면서 senescence associated β-galactosidase (SA-β-gal)의 활성이

증가하는 노화유사 표현형 (senescence-like plenotype; SLP)이 관찰되었다.

111

세포의 생존도는 서서히 apoptosis가 아닌 mitotic catastrophe 가 원인이

되는 세포사에 의해 감소하기 시작하여 doxorubicin 처리 9일째에 50%

정도의 세포사가 관찰되었다. Mitotic catastrophe에 의한 cell death 시에는

세포막을 구성하는 phosphatidyl serine의 위치변화 및 mitochondria로부터

cytochrome c 가 세포질로 방출되는 현상이 apoptosis 시와 공통되게

관찰되었으나, stress activated MAPK (p38, JNK) 및 caspases 들의 활성화가

apoptosis와 다르게 거의 나타나지 않았으며, 또한, 핵막의 integrity가

소실됨이 관찰 되었는데 이러한 결과들은 Huh-7 세포에서 관찰되는

mitotic catastrophe에 의한 cell death는 apoptosis와는 전혀 다른 necrosis와

유사한 세포사멸 기전임을 확인하였다. 이러한 LD doxorubicin에 의한 cell

death의 원인인 mitotic catastrophe (혹은, mutinucleation)의 조절 기전을

이해하기 위하여, p21 유전자를 가지고 있거나 (P21+/+) 혹은 가지고 있지

않은 (P21-/-) human colorectal carcinoma cell line인 HCT116 세포에

doxorubicin을 처리한 후 multinucleation 정도를 비교하였다. p21을 발현할

수 있는 세포에서는 (p21+/+ cells) multinucleation 이 유도되지 않는 반면에,

p21이 없는 세포 (p21-/- cells) 에서는 multinucleation이 관찰되었다. 또한, 50

112

nM의 doxorubicin이 처리된 p21+/+ 세포는 G1 cell cycle에 세포들이 arrest

되는 반면 p21-/- 세포들에서는 특정 cell cycle에 arrest 되지 않으면서 Cdc2

및 Cdk2 활성이 그대로 유지되었다. Cdc2 와 Cdk2 활성 억제제인

roscovitine 이나 purvalanol A를 p21-/- 세포에 처리하는 경우, multinucleation

생성을 감소시킬 수 있었는데, 이러한 사실은 p21-/- 세포에서 Cdc2 와

Cdk2의 활성 유지가 multinucleation 생성에 매우 중요하게 작용함을

시사한다. 그러나 500 nM의 doxorubicin을 처리하면 p21의 유무에 상관없이

ATM/Chk signaling pathway가 활성화 됨으로서 G2 cell cycle arrest 가

유도되고 multinucleation은 생성되지 않았다. 그러나, ATM/Chk signaling

pathway의 활성을 억제할 수 있는 caffeine을 함께 처리하면 p21+/+ 세포는

G2 phase arrest 가 풀린 후 G1 phase에서 다시 arrest가 되면서

multinucleation은 유도되지 않았다. p21-/- 세포에서는 G1 cell cycle arrest 가

관찰되지 않았고 multinucleation 생성은 caffeine 농도에 의존적으로 크게

증가하였다. 결론적으로 doxorubicin은 abnormal mitosis가 원인이 되어

multinucleation 을 유도하는데, 이러한 multinucleation의 유도를 위해서는

Cdc2 및 Cdk2 활성이 요구되며, 또한, DNA damage 후 특정 cell cycle arrest

113

(G1 or G2)가 일어나지 않는 조건을 필요로 한다는 사실을 확인하였다.

따라서 p21은 LD doxorubicin 에 노출된 세포에서 Cdc2 및 Cdk2 의 활성을

억제함으로서 multinucleation 생성을 막는데 반드시 필요하지만, MD

doxorubicin은 p21의 존재유무에 상관 없이 G2 arrest를 유도시킴으로서

multinucleation 생성을 억제하지만 이러한 G2 arrest를 극복하는 세포에서는

p21이 G2 arrest 이외에 부가적으로 작용하여 이 세포들을 다시 G1 phase 에

arrest 를 시킴으로서 multinucleation 생성을 억제할 수 있다.

핵심되는 말: Doxorubicin, Mitotic catastrophe, Senescence-like phenotype, Apoptosis, p21, Multinucleation,

114

LIST OF PUBLISHED PAPERS

1: Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. :Oncogene. 2004 Aug 19;23(37):6272-81.

Park SS, Eom YW, Kim EH, Lee JH, Min do S, Kim S, Kim SJ, Choi KS.

Institute for Medical Sciences, Ajou University School of Medicine, 5 Wonchon-Dong, Paldal-Gu, Suwon 442-749, Korea.

Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of apoptosis in normal hepatocytes, and acquiring resistance to TGF-beta1 may be a critical step in the development of hepatocellular carcinoma (HCC). In this study, we investigated the possible involvement of c-Src in the regulation of TGF-beta1-induced apoptosis.

TGF-beta1 induced transient activation of c-Src and its subsequent caspase-mediated degradation concomitant with cell death in FaO hepatoma cells, which are sensitive to TGF-beta1. In response to TGF-beta1, activated c-Src was translocated into the cytoplasmic membrane, then relocated to the nuclei of apoptotic cells during its cleavage. In TGF-beta1-induced apoptotic cells, c-Src maintained its tight association with p85 FAK fragment cleaved by caspases, possibly contributing to focal adhesion disassembly. TGF-beta1-induced apoptosis was enhanced by either

115

inhibition of c-Src activity using PP1 or PP2, or by overexpression of dominant-negative c-Src. In contrast, overexpression of constitutively active c-Src inhibited apoptosis suppressing TGF-beta1-induced activation of p38, JNK and caspases. In many HCC cell lines resistant to TGF-beta1, enhanced c-Src activity was detected.

We hypothesize that activated c-Src in HCC may contribute to resistance against the apoptotic and/ or antiproliferative properties of TGF-beta1.

PMID: 15208664 [PubMed - indexed for MEDLINE]

2: Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. :J Biol Chem. 2002 Mar 8;277(10):8572-8.

Epub 2001 Dec 27.

Woo CH, You HJ, Cho SH, Eom YW, Chun JS, Yoo YJ, Kim JH.

Woo CH, You HJ, Cho SH, Eom YW, Chun JS, Yoo YJ, Kim JH.

관련 문서