• 검색 결과가 없습니다.

In the present study, to determine whether a pathogenic N. fowleri lysate shows the cytopathic effects against primary culture rat microglial cells, the morphological changes of microglial cells was observed by a light, scanning and transmission electron microscope.

And then, the cytotoxicity of N. fowleri lysate against microglial cells was also observed by

51Cr release assay.

In addition, the pro-inflammatory cytokine release from microglial cells in the co-culture system was estimated. As results with a light and electron microscopes, most of microglial cells were severely destroyed by N. fowleri lysate, showing the necrotic (above 85%) and apoptotic cell death (below 15%) in a time- and dose dependent manner.

As the results of 51Cr release assay, the cytotoxicity of N. fowleri lysate against microglial cells were 14.6, 21.9, 38.5 and 71.5% at 3, 6, 12 and 24 hr post incubation, respectively. And then, the amount of cytokines released from microglial cells in co-culture systems at 3, 6 and 12 hr were 121.6, 90.4 and 81.0 pg/ml of TNF-α, 88.5, 92.7 and 190.1 pg/ml of IL-1β, and 298.8, 414.9 and 251.1 pg/ml of IL-6, respectively.

Thus, this present study shows that the microglial cells may be involved in the inflammation stage of N. fowleri infection as secreting various inflammatory cytokines.

VI. REFERENCES

1. Adams DO, Kao KJ, Farb R, Pizzo SV: Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol 124: 293- 300, 1980

2. Adams LB, Hibbs Jr JB, Taintor RR, Krahenbuhl JL: Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from L-arginine. J Immunol 144: 2725-2729, 1990

3. Amber IJ, Hibbs Jr JB, Parker CJ, Johnson BB, Taintor RR, Vavrin Z: Activated macrophage conditioned medium: identification of the soluble factors inducing cytotoxicity and the L-arginine dependent effector mechanism. J Leukocyte Biol 49: 610-620, 1991

4. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP: TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4: 1116–1122, 2004

5. Benedetto N, Folgore A, Carratelli CR, Galdiero F: Effects of cytokines and prolactin on the replication of Toxoplasma gondii in murine microglia. Fur Cytokine Netw 12: 348-358, 2001

6. Benveniste EN: Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75: 165–173, 1997

7. Bottone EJ: Free-living amebas of the genera Acanthamoeba and Naegleria: an overview and basic microbiologic correlates. Mt Sinai J Med 60: 260-270, 1993

8. Brown T: Observations by light microscopy on the cytopathogenicity of Naegleria fowleri in mouse embryo cell cultures. J Med Microbiol 11: 249-259, 1978

9. Brown T: Observations by immunofluorescence microscopy and electron microscopy on the cytopathogenicity of Naegleria fowleri in mouse embryo-cell cultures. J Med Microbiol 12: 363-371, 1979

10. Carbonell WS, Murase S, Horwitz AF, Mandell JW: Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25: 7040–7047, 2005

11. Carter RF: Primary amoebic meningoencephalitis: An appraisal of present knowledge.

Trans R Soc Trop Med Hyg 66: 193-213, 1972

12. Chang SL: Etiological, pathological, epidemiological and diagnostical considerations of primary amoebic meningoencephalitis. CRC Crit Rev. Microbiol 3: 135-159, 1974

13. Chang SL: Pathogenesis of pathogenic Naegleria amoeba. Folia Parasito 26: 195-200, 1979

14. Chao CC, Gekker G, Hu S, Peterson PK: Human microglial cell defense against Toxoplama gondii: The role of cytokines. J Immunol 152: 1246-1252, 1994

15. Christensen RN, Ha BK, Sun F, Bresnahan JC, Beattie MS: Kainate induces rapid redistribution of the actin cytoskeleton in ameboid microglia. J Neurosci Res 84: 170–

181, 2006

16. Cho MS, Jung SY, Park S, Kim KH, Kim KI., Sohn S, Kim HI,. Im KI, Shin HJ:

Immunological characterizations of a cloned 13.1-kilodalton protein from pathogenic Nagleria fowleri. Clin Diagn Lab Immunol 10: 954-959, 2003

17. Clark IA, Cowden WB, Butcher GA: TNF and inhibition of growth of Plasmodium falciparum. Immunol Lett 25: 175-178, 1990

18. Culbertson CG: The pathogenicity of soil amebas. Annu Rev Microbiol 25: 231-254, 1971

19. Cursons RTM, Brown TJ: Use of cell cultures as an indicator of pathogenicity of free-living amoebae. J Clin Pathol. 31: 1-11, 1978

20. Dasgupta S, Jana M, Liu X, Pahan K: Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells. J Biol Chem 278: 22424–22431, 2003

21. DeTitto ER, Catterall JR, Remington JS. Activity of recombinant tumor necrosis factor on Toxoplasma gondii and Trypanasoma cruzi. J Immunol 137: 1342-1345, 1986

22. Ding AH, Nathan CF, Stueher DJ: Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 141:2407-2412, 1988

23. Elder MJ, Kilvington S, Dart JK: A clinicopathologic study of in vitro sensitivity testing and Acanthamoeba keratitis. Invest Ophthalmol Vis Sci 35: 1059–1064, 1994

24. Feldman MR: Naegleria fowleri: Fine structural localizaion of acid phosphatase and heme proteins. Ex Parasitol 41: 290-306, 1977

25. Ferrante A, Bates EJ: Elastase in the pathogenic free-living amebae Naegleria and Acanthamoeba spp. Infect Immun 56: 3320-3321, 1988

26. Fowler N, Carter RT: Acute pyogenic meningitis probably due to Acantamoeba sp: a preliminary report. Br Med J 2: 740–742, 1965

27. Fulford DE, Bradley SG, Marciano-Cabral F: Cytopathogenicity of Naegleria fowleri for cultured rat neuroblastoma cells. J Protozool 32: 176-180, 1985

28. Giulian D, Baker TJ: Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6: 163-178, 1986

29. Gonzalez MM, Gould E, Dickinson G : Acquired immunodeficiency syndrome associated with Acanthameba infection and other opportunistic organisms. Arch Pathol Lab Med 110: 749-51, 1986

30. Green SJ, Nacy CA, Meltzer MS: Cytokine induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens.

J Leukocyte Biol 50: 93-103, 1991

31. Hadas E, Mazur T: Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp. Trop Med Parasitol 44: 197-200, 1993

32. Ichinose Y, Bakouche O, Tsao JY, Fidler IJ: Tumor necrosis factor and IL-1 associated with plasma membranes of activated human monokines lyse monokine-sensitive but not

monokine-resistant tumor cells whereas viable activated monocytes lyse both. J Immunol 141: 512-518. 1988

33. Im KI., Shin HJ: Pathogenic free-living amoebae in Korea. Korean J Parasitol 42: 93-119, 2004

34. James SL, Hibbs, Jr JB: The role of nitrogen oxides as effector molecules of parasitic killing. Parasitol Today 6: 303-305, 1990

35. Jana M, Dasgupta S, Saha RN, Liu X, Pahan K: Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J Neurochem 86: 519–528, 2003

36. John DT: Primary amebic meningoencephalitis and the biology of Naegleria fowleri.

Ann Rev Microbiol 36: 101-123, 1982.

37. John DT. Opportunistically pathogenic free-living amebae. In: Kreier JP, Baker JR, editors. Parasitic protozoa 2nd ed, vol 3. San Diego (Calif.): Academic Press Inc; 1993. p.

143-246.

38. Jeong SR, Kang SY, Lee SC, Song KJ, Im KI, Shin HJ: Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria

fowleri. Korean J Parasitol 42: 35-40, 2004

39. Kang SY, Song KJ, Jeong SR, Kim JH, Park S, Kim K, Kwon MH, Shin HJ: Role of the Nfa1 protein in pathogenic Naegleria fowleri treated with CHO target cells. Clin Diagn Lab Immunol 12: 873-876, 2005

40. Keene WE, Hidalgo ME, Orozco E, McKerrow JH: Correlation of the cytophatic effect of virulent trophozoites of Entamoeba histolytica with the secretion of a cysteine proteinases. Exp Parasitol 71: 199-206, 1990

41. Khan NA, Jarrol EL, Panjwani N, Cao Z, Paget TA: Proteases as markers for differentiation of pathogenic and non-pathogenic species of Acanthamoeba. J Clin Microbiol 43: 391-395, 2000

42. Kilvington S, Beeching J: Development of PCR for identification of Naegleria fowleri from the environment. Appl Environ Microbiol 61: 3764–3767, 1995

43. Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19: 312–318, 1996

44. Lachman LB, Dinareilo CA, Llansa ND, Fidler LJ: Natural and recombinant human interleukin 1-1 is cytotoxic for human melanoma cells. J Immunol 136: 3098-3102, 1986

45. Last-Barney K, Homon CA, Faanes RB, Merluzz VJ: Synergistic and overlapping activities of tumor necrosis factor-α and IL-1. J Immunol 141:527-530, 1988

46. LeBlanc PA, Heath LS, Um HD: Activated macrophages use different cytolytic mechanisms to lyse virally infected or a tumor target. J Leukocyte Biol 48: 1-6, 1990

47. Leher H, Silvany R, Alizadeh H, Huang J, Niederkorn JY: Mannose induces the release of cytopathic factors from Acanthamoeba Keratitis. Infet Immun 66: 5-10, 1988

48. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102: 9936–9941, 2005

49. Liew FY, Li Y, Millot S: Tumor necrosis factor α synergizes with IFN γ in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 145: 4306- 4310, 1990

50. Lin JY, Chadee K: Macrophage cytotoxicity against entamoeba trophozoites is mediated by nitric oxide from L-arginine. J Immunol 148: 3999-4005, 1992

51. Lockwood BC, North MJ, Scoot KI, Bremner AF, Coombs GH: The use of a highly sensitive electrophoretic method to compare the proteinases of trichomonads. Mol

Biochem Parasitol 24: 89-95, 1987

52. Ma P, Visvesvara GS, Martinez AJ, Thedore FH, Daggett PM, Sawyer TK: Naegleria and Acanthamoeba infection: Review. Rev Infect Dis 12: 490-513, 1990

53. Marciano-Cabral F: Biology of Naegleria spp. Microbiol 52: 144-33, 1988

54. Marciano-Cabral F, Ludwick CR, Puffenbarger A, Cabral GA: Differential stimulation of microglial pro-inflammatory cytokines by Acanthamoeba culbertsoni versus Acanthamoeba castellanii. J Eukaryot Microbiol 51: 472-479, 2004

55. Marciano-Cabral F, Fulford DE: Cytopathology of pathogenic and nonpathogenic Naegleria species for cultured rat neuroblastoma cells. Appl Environ Microbiol 51: 1133-1137, 1986

56. Marciano-Cabral F, Patterson M,. John DT, Bradley SG: Cytopathogenecity of Naegleria fowleri and Naegleria gruberi for established mammalian cell cultures. J Parasitol 68: 1110-1116, 1982

57. Marshall MM, Naumovitz D, Ortega Y, Sterling CR: Waterborne protozoan pathogens.

Clin Microbiol Rev 10: 67-85, 1997

58. Martinez AJ: Free-living amoebas: natural history, prevention, diagnosis, pathology and treatment of disease, Boca Raton, Fla, CRC Press. p-156, 1985

59. Martinez AJ: Free-living amebas: infection of the central nervous system. Mt Sinai J Med 60: 271–278, 1993

60. Martinez AJ: Free-living, amphizoic and opportunistic amebas. Brain Pathol 7: 583–598, 1997

61. Martinez AJ, Visvesvara GS: Laboratory diagnosis of pathogenic free-living amoebas:

Naegleria, Acanthamoeba, and Leptomyxid. Clin Lab Med 11: 861–872, 1991

62. Martinez AJ, Visvesvara GS: Free-living amphizoic and opportunistic amebas. Brain Pathol 7: 583-598, 1997

63. Mat AN: Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study. Trop Biomed 21: 57-60, 2004

64. Mitro K, Bhagavathiammai A, Zhou OM, Bobbett G, McKerrow JH, Chokshi R, Chokshi B, James ER: Partial characterization of the proteolytic secretions of Acanthamoeba polyphaga. Exp Parasitol 78: 377-385. 1994

65. Moore MB, Ubelaker JE, Marin JH, Silvany R, Dougherty JM, Meyer DR, McCulley JP:

In vitro penetration of human corneal epithelium by Acanthamoeba castellanii: a scanning and transmission electron microscopy study. Cornea 10: 291-298, 1991

66. Nakamura Y, Ohmaki M, Murakami K, Yoneda Y: Involvement of protein kinase C in glutamate release from cultured microglia. Brain Res 962: 122–128, 2003

67. Nacy CA, Oster CN, James SL, Meltzer MS: Activation of macrophages to kill Rickettsiae and Leishmania: dissociation of intracellular microbicidal activities and extracellular destruction of neoplastic and helminth targets. Contemp Top Immunobiol 13:147-170, 1984

68. Nathan CF: Secretory products of macrophages. J Clin Invest 79: 319-326, 1987

69. North MJ, Robertson CD, Coombs GH: The specificity of trichomonad cycteine proteinase analysed using fluorogenic substrate and specific inhibitors. Mol Biochem Parasitol 39: 183-194, 1990

70. Ockert G: occurrence, parasitism and pathogenetic potency of free-living amoeba. Appl Parasitol 34: 77–88, 1993

71. Oh YH, Jeong SR, Kim JH, Song KJ, Kim K, Park S, Sohn S, Shin HJ: Cytopathic

changes and pro-inflammatory cytokines induced by Naegleria fowleri trophozoites in rat microglial cells and protective effect of an anti-Nfa1 antibody. Parasite Immunol 27:

453-459, 2005

72. Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ: Human interleukin-1 is a cytocidal factor for several tumor cell lines. J Immunol 135: 3962-3968, 1985

73. Parija SC, Jayakeerthee SR: Naegleria fowleri: a free living amoeba of emerging medical importance. J Commun Dis 31: 153–159, 1999

74. Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 61: 623–633, 2002

75. Reilly MF, Marchiano F, Bradley DW: Agglutination of N. fowleri and N. guberi by antibodies in human serum. J Clin Microbiol 17: 576-81, 1983

76. Robertson CD, Coombs GH: Characterisation of three groups of cysteine proteinases in the amastigots of Leishmania mexicana. Mol Biochem Parasitol 42: 269-276, 1992

77. Rodriguez-Zaragoza S: Ecology of free-living amoebae. Crit Rev Microbiol 20: 225–241, 1994

78. Schuster FL, Visvesvara GS: Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasit 34: 1001-1027, 2004

79. Schwamberger G, Flesch I, Ferber E: Tumoricidal effector molecules of murine macrophages. Pathobiology 59: 248-253, 1991

80. Selmaj KW, Raine CS: Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346, 1988

81. Shin HJ, Cho MS, Kim HI, Lee M, Park S, Sohn S, Im KI: Apoptosis of primary-culture rat microglial cells induced by pathogenic Acanthamoeba spp. Clin Dign Lab Immunol 7:

510-514, 2000

82. Shin HJ, Cho MS, Kim HI, Lee M, Park S, Yoo JC, Im KI: Cytopathic change in rat microglial cells induced by pathogenic Acanthamoeba culbertsoni: morphology and cytokine release. Clin Dign Lab Immunol 4: 837-840, 2001

83. Shin HJ, Cho MS, Jung SY, Kim HI, Park S, Im KI: Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. J Euk Microbiol 48: 713-717, 2001(a)

84. Shuman SL, Bresnahan JC, Beattie MS: Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50: 798–808, 1997

85. Sparagano O: Differentiation of Naegleria fowleri and other naegleriae by polymerase chain reaction and hybridization methods. FEMS Microbiol Lett 110: 325–330, 1993

86. Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review.

Glia 1: 301–307, 1988

87. Suzumura AT, Marrunouchi T, Yammaoto H: Morphological transformation of microglia in vitro. Brain Res 545: 301-306, 1991

88. Suzumura AT, Sawada M, Yamamoto H, Marrunouchi T: Transforming growth factor-β

suppresses activation and proliferation of microglia in vitro. J. Immunol 151: 2150-2158, 1993

89. Thery C, Mallat M: Influence of interleukin-1 and tumor necrosis factor alpha on the growth of microglial cells in primary cultures of mouse cerebral cortex: involvement of colony-stimulating factor 1. Neurosci Lett 150: 195–199, 1993

90. Vincendeau P, Daulouede S: Macrophage cytostatic effect on Trypanosoma musculi involves an L-arginine-dependent mechanism. J. Immunol 146: 4338-4343, 1991

91. Visvesvara GS: Epidemiology of infections with free-living amebas and laboratory diagnosis of microsporidiosis. Mt Sinai J Med 60: 283–288, 1993

92. Visvesvara GS, Callaway CS: Light and electron microscopic observations on the pathogenesis of Naegleria fowleri in mouse brain and tissue culture. J Protozool 21: 239-250, 1974

93. Visvesvara GS, Stehr-Green JK: Epidemiology of free-living ameba infections. J Protozoo. 37: 25S–33S, 1990

94. Wing EJ, Gardner D, Ryning FW, Remington JS: Dissociation of effector functions in populations of activated macrophages. Nature (London) 268: 642-644, 1977

95. Yang Z, Cao Z, Panjwani N: Pathogenesis of Acanthamoeba keratitis: Carbohydrate- mediated host-parasite interactions. Infect Immun 65: 439-45, 1997

96. Zajicek JP, Wing M, Scolding NJ, Compston DA: Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain 115: 1611–1631, 1992

- 국문요약 -

cell sorting(FACS)을 시행한 결과, 6시간 후 약 16% 정도가 세포사멸 (apoptosis) 과정을 통해 사멸하였다. 또한, 표적세포인 신경소교세포에 대한 아 메바 세포추출액의 세포독성을 생화학적 방법인 51Cr 분비 실험으로 관찰한 결 과, 신경소교세포들에 대한 자유아메바의 세포독성은 배양 후 3, 6, 12 그리고 24 시간에 각각 14.6, 21.9, 38.5 그리고 71.5% 이었다.

한편, 파울러자유아메바의 세포 추출액과 혼합 배양한 신경소교세포들은 방어 적인 면역반응으로 다양한 싸이토카인들을 분비하였는데, TNF-α 및 IL-6등의 싸이토카인(cytokine) 분비량은 배양 초기부터 증가하였으며, IL-1β의 분비는 12시간 후부터 증가하였다.

핵심어: 파울러자유아메바, 원발성 아메바성 수막뇌염, 신경소교세포, 세포독성, 싸이토카인

관련 문서