• 검색 결과가 없습니다.

Our study identified lower left ventricular ejection fraction and lower hemoglobin level along with older age, lower BMI, and lower FEV1 as independent risk factors for the mortality of COPD patients.

Our data suggest that multidisciplinary approaches are required in the care of CAD in COPD patients because male gender, hypertension, left heart failure, and lower serum HDL level were independent predictors for the presence of CAD in COPD.

12

REFERENCES

(1) Standard journal

1. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347-65.

2. Han MK, Agusti A, Calverley PM, et al. Chronic obstructive pulmonary disease phenotypes: the Future of COPD. Am J Respir Crit Care Med 2010; 182: 598-604.

3. Vanfleteren LE, Spruit MA, Groenen M, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187: 728-735.

4. McAllister DA, Maclay JD, Mills NL, et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 176: 1208-1214.

5. Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007; 356: 775-789.

6. Preiss D, Thomas LE, Sun JL, et al. Predictors of cardiovascular events in a contemporary population with impaired glucose tolerance: an observational analysis of the Nateglinide and Valsartan in impaired glucose tolerance outcomes research (NAVIGATOR) trial. BMJ Open 2012;2.

7. Kameda K, Matsunaga T, Abe N, et al. Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease. Possible role for left ventricular remodelling. Eur Heart J 2003; 24: 2180-2185.

8. Griendling KK, Ushio-Fukai M. Redox control of vascular smooth muscle proliferation. J Lab Clin Med 1998; 132: 9-15.

9. Drager LF, Yao Q, Hernandez KL, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med 2013; 188: 240-248.

13

10. Savransky V, Nanayakkara A, Li J, et al. Chronic intermittent hypoxia induces atherosclerosis.

Am J Respir Crit Care Med 2007; 175: 1290-1297.

11. Baraldo S, Bazzan E, Zanin ME, et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest 2007; 132: 1733-1740.

12. Yasmin, McEniery CM, Wallace S, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness.

Arterioscler Thromb Vasc Biol 2005; 25: 372.

13. Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med 2011; 365: 1184-1192.

14. Barr RG, Ahmed FS, Carr JJ, et al. Subclinical atherosclerosis, airflow obstruction and emphysema: the MESA Lung Study. Eur Respir J 2012; 39: 846-854.

15. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest 2005; 127:

1952-1959.

16. Reed RM, Eberlein M, Girgis RE, et al. Coronary artery disease is diagnosed and under-treated in advanced lung disease. Am J Med 2012; 125: 1228 e13-1228 e22.

17. Brekke PH, Omland T, Smith P, et al. Underdiagnosis of myocardial infarction in COPD - Cardiac Infarction Injury Score (CIIS) in patients hospitalised for COPD exacerbation. Respir Med 2008; 102: 1243-1247.

18. Williams MC, Murchison JT, Edwards LD, et al. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax 2014.

19. Sidney S, Sorel M, Quesenberry CP, Jr., et al. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest 2005; 128:

2068-2075.

20. Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA et al. Heart Fialure Society of America 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail. 2010 Jun;16(6):e1-194

14

21. Wouters EF, Postma DS, Fokkens B, et al. Withdrawal of fluticasone propionate from combined salmeterol/fluticasone treatment in patients with COPD causes immediate and sustained disease deterioration: a randomised controlled trial. Thorax 2005; 60: 480-487.

22. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet 2007; 370: 786-796.

23. Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med 1995; 152: 1107-1136.

24. Berger JS, Sanborn TA, Sherman W, et al. Effect of chronic obstructive pulmonary disease on survival of patients with coronary heart disease having percutaneous coronary intervention. Am J Cardiol 2004; 94: 649-651.

25. Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation 2003; 107: 1514-1519.

26. Mullerova H, Agusti A, Erqou S, et al. Cardiovascular comorbidity in COPD: systematic literature review. Chest 2013; 144: 1163-1178.

27. Matamis D, Tsagourias M, Papathanasiou A et al. Targeting occult heart failure in intensive care unit patients with acute chronic obstructive pulmonary disease exacerbation: effect on outcome and quality of life. J Crit Care. 2014 Apr;29(2):315.e7-14. 26.

28. Barr RG1, Bluemke DA, Ahmed FS, et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med. 2010 Jan 21;362(3):217-27.

29.Agusti A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One 2012; 7: e37483.

30.Thomsen M, Dahl M, Lange P, et al. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 982-988.

31.Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.

32.Schaffer A, Verdoia M, Barbieri L, et al. High-Density Lipoproteins and Coronary Artery Disease:

15 A Single-Center Cohort Study. Angiology 2013.

33.Acharjee S, Boden WE, Hartigan PM, et al. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: A post-hoc analysis from the COURAGE Trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation). J Am Coll Cardiol 2013; 62: 1826-1833.

16 - 국문요약 -

관상동맥질환을 동반한 만성폐쇄성폐질환 환자의 임상적 특징에 대한 연구

아주대학교 대학원의학과 안 영 환

(지도교수 : 박 주 헌)

배경 : 관상동맥질환은 만성폐쇄성폐질환 환자에게서 흔히 동반되는 질환이며, 심혈관 계사망은 만성폐쇄성폐질환 환자의 주요 사망원인 중 하나로 알려져 있다. 따라서 만성 폐쇄성폐질환 환자에게서 관상동맥질환과 연관된 예후 인자를 찾고, 만성폐쇄성폐질환 환자의 사망에 영향을 미치는 독립인자들을 규명하고자 본 연구를 시행하였다.

방법 : 2000년 1월부터 2012년 12월까지 아주대병원 호흡기내과에 방문하여, 폐기능 검사를 통해 만성폐쇄성폐질환이 확정된 환자 중, 관상동맥 CT검사와 관상동맥 조영술 을 통해 관상동맥질환의 유무가 확인된 405명의 환자를 대상으로, 관상동맥질환을 동반 한 군과 동반하지 않은 군으로 나누어 후향적 연구를 진행하였다.

결과 : 남성, 고혈압, 좌심실부전, 낮은 헤모글로빈 수치와 HDL 수치가 만성폐쇄성폐 질환 환자의 관상동맥질환 동반여부와 관련이 있는 독립인자들로 확인되었다(p<0.05).

고령, 낮은 BMI 수치, 낮은 좌심실 박출계수, 낮은 FEV1, 낮은 헤모글로빈 수치가 만성 폐쇄성폐질환 환자의 높은 사망률과 관련된 독립인자들이다(p<0.05).

결론 : 본 연구에서 고령, 낮은 BMI 수치, 낮은 좌심실 박출계수, 낮은 FEV1, 낮은 헤모글로빈 수치가 만성폐쇄성폐질환 환자의 높은 사망률과 관련된 독립인자들이었고, 남성, 고혈압, 좌심실부전, 낮은 헤모글로빈 수치, 낮은 HDL 수치가 만성폐쇄성폐질환 환자의 관상동맥질환 동반과 관련된 독립인자들이었다. 따라서 관상동맥질환을 동반한 만성폐쇄성폐질환 환자를 치료할 때 여러 동반 질환에 대한 관리가 필요한 것으로 사료 된다.

핵심어 : 만성폐쇄성폐질환, 관상동맥질환, 사망률

관련 문서