• 검색 결과가 없습니다.

참고문헌

문서에서 저작자표시 (페이지 156-172)

김덕찬, 김명진, 1991, “환경화학,” 도서출판동화기술, p. 554.

노열, 문희수, 2000, “철 환원 박테리아를 이용한 자철석 합성,” 한국광물학회지, Vol. 13(2), pp. 65-72.

노열, 문희수, 송윤구, 2002, “철환원 박테리아에 의한 금속 환원 및 광물형성,” 한국 광물학회지, Vol. 15(3), pp. 231-240.

노열, 오종민, 서용재, 장희동, 2007, “미생물을 이용한 신예미 자철광으로부터 철 침 출에 관한 연구,” 한국광물학회지, Vol. 20, pp. 357-366.

박천영, 임성수, 2007, “지하수 공에 형성된 Scale과 철산화박테리아에 대한 지구화 학,” 한국지구시스템공학회지, Vol. 44, pp. 392-410.

윤정수, 박상운, 1998, “제주도 용천수의 수리화학적 특성,” 한국지하수토양환경학회, Vol. 5, pp. 66-79.

이석훈, 김수진, 2002, “흑운모의 풍화작용에 의한 1:1 점토광물의 형성매카니즘,”

한국광물학회지, Vol. 15, pp.221-230.

이인호, 조병욱, 이병대, 2003, “대구시 퇴적암 분포 지역의 지하수에 대한 환경지구 화학적 특성,” 대한지질공학회, Vol. 13, pp. 1-16

이재영, 1992, “대구시 지하수의 금속 오염에 대한 지화학적 연구,” 지질학회지, Vol. 2, pp. 173-200.

이종운, 1997, “방사성폐기물의 지하심부 처분을 위한 국내 심부지하수의 수리지구화 학적 특성 연구,” 박사학위 논문, 서울대학교, 대한민국

이종운, 박현성, 2005, “Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성,”

자원환경지질, Vol. 38, pp. 525-534.

이종운, 전효택, 2000, “원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미 생물학의 최근 연구 동향,” 자원환경지질, Vol. 33, pp. 353-365.

이찬희, 이현구, 이종창, 고용권, 1999a, “나림광산 수계에 분포하는 순환수의 수문 지구화학 및 오염,” 자원환경지질, Vol. 32, pp. 385-398.

이찬희, 이현구, 조애란, 1999b, “공주제일광산 수계에 분포하는 지하수, 지표 수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염,” 자원환경지질, Vol. 32, pp. 611-631.

전효택, 1995, 옥천음료(주), “(주)옥천게르마의 먹는샘물 원수 개발대상지역에 대한 암석의 현미경분석 및 토양, 자연수의 물리·화학적 분석,” 서울대학교 공과대학 부설 에너지·자원신기술연구소, p. 30

정재일, 이무성, 나춘기, 1998, “신보활성광산 주변에 형성된 우라늄 이상체에 관한 지화학적 연구(1),” 자원환경지질, Vol. 31, pp. 101-110.

차종문, 김주용, 이병태, 김경웅, 1999, “광주지역 일곡 매립지 주변에서의 하 천수 및 지하수 오염 모니터링,” 자원환경지질, Vol. 32, pp. 485-493.

최순학, 1990, “제주도 수자원의 특성과 수질오염 연구(Ⅱ),” 과학기술원, KR-90-(B)-10, pp. 1-57.

최희철, 2002, “광주광역시 지하수 오염현황 조사 및 관리방법 개발,” 광주지역환경 기술개발센터 연구보고서, 02-60-63

한정상, 1998, “지하수환경과 오염,” 박영사, pp. 518-519.

홍영국, 박중권, 전효택, 문희정, 김성재, 지세정, 성익환, 김통권, 박희영, 1993, “지 질 환경에서 유해원소들의 자화학적 분산연구(Ⅰ),” 과학기술처, KR-96(T)-10, p. 464.

Abdelouas, A., Lutze, W., Gong, W., Nuttall, E. H., Strietelmeier, B. A. and Travis, B. J., 2000, “Biological reduction of uranium in groundwater and subsurface soil,” The Science of the Total Environment, Vol. 250, pp. 21-35.

Akai, J., Akai, K., Ito, M., Nakano, S., Maki, Y. and Sasagawa, I., 1999,

“Biologically induced iron ore at Gunma iron mine, Japan,” American Mineralogist, Vol. 84, pp. 171-182.

Appelo, C. A. J. and Postma, D., 1993, “Geochemistry, groundwater and pollution,” A. A. Balkema, p.536.

Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. and Penn, R. L., 2000,

“Aggregation-based ctystal growth and microstructure development in natural iron oxyhydroxide biomineralization products,” Science, Vol.

289, pp. 751-754.

Barnara, A. D. and Harry, I. N., 1984, “Relation ships between groundwater soloca, total dissolved solids, and specific electrical conductivity,”

Groundwater, Vol. 22, pp. 80-85.

Barnes, I. and Clarke, F. E., 1969, "Chemical properties of ground water and their corrosion and encrustation effects on wells," Geological Survey Professional p. 498-D.

Beveridge, T. J., Makin, S. A., Kadurugamuwa, J. L. and Li, Z., 1997,

“Interaction between biofilms and the environment,” FEMS Microbiology Reviews, Vol. 20, pp. 291-303.

Brown, D. A., Kamineni, D. C., Sawicki, J. A. and Beveridge, T. J., 1994

“Minerals associated with biofilm occurring on exposed rock in a granitic underground research laboratory,” Applied and Environmental Microbiology, Vol. 60, pp. 3182-3191.

Brown, D. A., Sherriff, B. L., Sawicki, J. A. and Sparling, R., 1999,

“Precipitation of iron minerals by a natural microbial consortium,”

Geochimica et Cosmochimica Acta, Vol. 63, pp. 2163-2169.

Brownlow, A.H., 1996, “Geochemistry,” Prentice Hall, p. 580.

Buerge, I. J. and Hug, S. J., 1999, “Influence of mineral surface on chromium(Ⅵ) reduction by iron(Ⅱ),” Environmental Science &

Technology, Vol. 33, pp. 4285-4291.

Chapelle, F. H., 2001, "Ground-water microbiology and geochemistry", John Wiley & Sons, Inc, p. 477.

Che, Y., Huang, W., Liu, D., Chen, J. and Sun, Z., 2006, "Micro-goethite in percolated water from Fushui reservior in Hubei province, China", Materials Science and Engineering C, v. 26, pp. 606-609.

Cullimore, D. R., 2008, “Practial manual of groundwater microbiology,” CRC Press, p. 379

Cullimore, R., 2000 “Microbiology of well biofouling,” Lewis Publishers, p.

435.

Davis, S. N., Whittemore, D. O. and Fabryka-Martin, J., 1998, "Uses of chloride/bromide ratios in studies of potable water", Ground Water, Vol. 36, pp. 338-350.

Deutsch, W. J., 1997, “GROUNDWATER GEOCHEMISTRY: Fundamentalsand Applications to Contamination, Lewis publishers, pp. 8.

Duce, R., Winchester, J. W. and Van Nahl, T. W., 1965, "Iodine, bromid, and chloride in the Hawaiian marine atmosphere," Jour. Geophys.

Reseach, Vol. 70, pp. 1775-1799.

Eby, G. N., 2004, "Principles of environmental geochemistry", Brooks/Cole, p. 514.

Eggleton, R. A., 1986, “The relation between crystal structure and silicate weathering rates, In Rates of chemical weatheting of rocks and minerals, Colman, S. M., and Dethier, D. P., eds.,” Academic Press, Florida, pp. 21-40.

Emerson, D., 2000, “Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. In Lovley, D.R.(ed.) Environmental microbe-metal interactions,” ASM Press, pp. 31-52.

Fan, H., Song, B. and Li, Q., 2006, "Thermal behavior of goethite during transformation to hematite," Materials Chemistry and Physics, Vol. 98, pp. 148-153

Freez, R. A. and Cherry, J. A., 1979, “Groundwater,” Prentice Hall, p. 604.

Ghiorse, W. C., 1984, “Biology of iron-and manganese-depositing bacteria,”

Ann. Rev. Microbiol, Vol. 37, pp. 515-550.

Hallberg, R. and Ferris, F. G., 2004, “Biomineralization by Gallionella,”

Gemicrobiology Journal, Vol. 21, pp. 325-330.

Hanert, H. H., 1992, “The genus Gallionella, In; Balows, A., Truper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H., (eds),” Springer-Veriag, pp. 4082-4088.

Havenman, S. A., Pedersen, K. and Ruotsalainen, P., 1999, “Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland,” Geomicrobiology Journal, Vol. 16, pp. 277-294.

Henderson, Y., 1994, “Geochemical reduction of hexavalent chromium in the Trinity sand aquifer,” Ground Water, Vol. 32, pp. 477-486.

Houben, G. J., 2003, "Iron oxide incrustation in wells. part 1: genesis, mineralogy and geochemistry," Applied Geochemistry, Vol. 18, pp.

927-939.

Hounslow, A. W., 1995, “Water quality data: analysis and interpretation,”

CRC Press, Inc, p. 397.

Hsi, C. K. D. and Langmuir, D., 1985, “Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model,” Geochimica et Cosmochimica Acta, Vol. 49, pp. 1931-1941.

Ivarson, K. C. and Sojak, M., 1978, “Microorganisms and ochre deposits in field drains of Ontario,” Canadian Journal of Soil Science, Vol. 58, pp.

1-17.

Jackson, G. B., 1993, “Applied water and spentwater chemistry-a laboratory manual-,” van nostrand Reinhold, p. 688.

James, R. E. and Ferris, F. G., 2004, “Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring,” Chemical Geology, Vol. 212. pp. 301-311.

Jones, D. A., 1996, “Principles and prevention of corrosion,” Prentice Hall, p. 572.

Kappler, A. and Newman, D. K., 2004, “Formation of Fe(Ⅲ)-minerals by Fe

(Ⅱ)-oxidizing photoautotrophic bacteria,” Geochimica et Cosmochimica Acta, Vol. 68, pp. 1217-1226.

Kappler, A. and Straub, K. L., 2005, “Geomicrobiological cycling of iron, In;

Banfield, J. F., Cervini-Silva, J. and Nealson, K. H., (eds),” Reviews in Mineralogy & Geochemistry, Vol. 59, pp. 85-108.

Katsoyiannis, I.A. and Zouboulis, A.I., 2004 “Biological treatment of Mn(II) and Fe (II) containing groundwater: kinetic considerations and product characterization,” Water Research, Vol. 38, pp. 1922-1932.

Kebew, A.E., 2001, “Applied chemical hydrogeology,” Prentic Hall, pp.

138-141.

Konhauser, K. O., 1997, “Bacterial iron biomineralisation in nature,” FEMS Microbiology Reviews, Vol. 20, 315-326.

Konhauser, K. O., 1998, “Diversity of bacterial iron mineralization,”

Earth-Science Reviews, Vol. 43, pp. 91-121.

Lindberg, R.D. and Runnells, D.D., 1984, “Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling,” Science, Vol. 225, pp. 925-927.

Little, B., Wagner, P. and Mansfeld, F., 1992, “An overview of microbiologically influenced corrosion,” Electrochimica Acta, Vol. 37, pp. 2185-2194.

Mazor, E., 1991, “The properties of groundwater,” John Wiley & Sons, p.

413.

Mok, W.M. and Wai, C.M., 1994, “Mobilization of arsenic in contaminated river water,” In Nriagu, J.O. (eds), Arsenic in the environment, Wiley, New York, pp. 99-117

Morrison, S.J., Spangler, R. R. and Tripathi, V. S., 1995, “Adsorption of uranium(Ⅵ) on amorphous ferric oxyhydroxide at high concentrations of dissolved carbon(Ⅳ) and sulfur(Ⅵ),” Contaminant Hydrology, Vol.

17, pp. 333-346.

Mortimer, R. J. G. and Coleman, M. L., 1997, “Microbial influence on the oxygen isotopic composition of diagenetic siderite,” Geochimica et Cosmochimica Acta, Vol. 61, pp. 1705-1711.

Mulder, E. G. and Deinema, M. H., 1992, “The sheathed bacteria, In;

Balows, A., Truper, H. G., Dworkin, M., Harder, W. and Schleifer, K.

H., (eds),” Springer-Veriag, pp. 2612-2624.

Nesbitt, H. W. and Young, G. M., 1984, “Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Acta, Vol. 48, pp. 1523- 1534.

Nordstrom, D. K., Puigdomenech, I. and McNutt, R. H., 1990, "Geochemical modeling of water-rock interactions at the Osamu Utsumi mine and Morr do ferro analogue study sites, Pocos de caldas," Brazil. SKB Technical Report 90-23, p. 33.

Prasad, P. S. R., Prsaad, K. S., Chaitanya, V. K., Babu, E. V. S. S. K., Sreedhar, B. and Murthy, S. R., 2006, "In situ FTIR study on the dehydration of natural goethite," Journal of Asian Earth Sciences, Vol.

27, pp. 503-511.

Raven, K.P., Jain, A. and Loeppert, R.H., 1998, “Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium and adsorption envelopes,” Environmental Science and Technology, Vol. 32, pp.

344-349.

Robles-Camacho, J. and Armienta, M. A., 2000, “Natural chromium contamination of groundwater at leon valley, Mexico,” Journal of Geochemistry Exploration, Vol. 68, pp. 167-181.

Rose, A.W., Hawkes, H.E. and Webb, J.S., 1979, “Geochemistry in mineral exploration,” Academic Press, pp. 578-579.

Sawicki, J. A., Brown, D. A. and Beveridge, T. J., 1995, “Microbial precipitation of siderite and protoferrihydrite in a biofilm,” The Canadian Mineralogist, Vol. 33, pp. 1-6.

Schultze-Lam, S., Fortin, D., Davis, and Beveridge, T. J., 1996,

“Mineralization of bacterial surface,” Chemical Geology, Vol. 132, pp.

171-181.

Schwertmann, U. and Fitzpartick, R. W., 1992, “Iron minerals in surface environments,” Catena supplement, Vol. 21, pp. 257-276.

Schwertmann, U. and Taylor, R. M., 1989, “Iron oxides. In:Dixon JB, Weed SR, editors. Minerals in Soils Environments,” Madison, Wisconsin:

Soil Sci Soc Am pp. 379-439.

Schwertmann, U. Cambier, P. and Murad, E., 1985, "Proerties of goethites of varying crystallinity," Clays and Clay Minerals, Vol. 33. pp. 369-378.

Shi, X., Avci, R. and Lewandowski, Z., 2002, “Electrochemistry of passive metals modified by manganese oxides deposited by Leptothrix discophora: two-step model verified by ToF-SIMS,” Corrosion Science, Vol. 44, pp. 1027-1045.

Snoeyink, V. L. and Jenkins, D., 1980, "Water chemistry", John Wiley &

Sons, p.463.

Sogaard, E. G., Aruna, R., Abraham-Peskir, J. and Koch, C. B., 2001,

“Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground Water,” Applied Geochemistry, Vol. 16, pp. 1129-1137.

Southam, G., 2000, “Bacterial surface-mediated mineral formation. In Lovley, D.R.(ed.) Environmental microbemetal interactions,“ ASM Press, pp. 257-276.

Stumm, W. and Morgan, JJ., 1981, Aquatic chemistry, John Wiley & Son, p.

780.

Taylor, S. W., Lange, C. R. and Lesold, E. A., 1997, “Biofouling of contaminated ground-water recovery wells: characterization of microorganisms,” Ground Water, Vol. 35, pp. 973-980.

Tuhela, L., Carlson, L. and Tuvinen, O. H., 1997, “Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments,” J. Environ. Sci. Health. Vol. A32, pp. 407-426.

van Beek, C. G. E. M and van der Kooij, D., 1982, “Sulfate-reducing bacteria in ground water from clogging and nonclogging shallow wells in the Netherlands river region,” Ground Water, Vol. 20, pp. 298-302.

van Beek, C. G. E. M. and Kooper, W. F., 1980, "The clogging of shallow discharge wells in the Netherlands river region," Ground Water, Vol.

18, pp. 578-586.

Warren, L. A. and Haack, E. A., 2001, “Biogeochemical controls on metal behavior in freshwater environments,” Earth-Sciences, Vol. 54, pp.

261-320.

Wood, W.W., 1976, “Guidelines for collection and field analysis of ground-water samples for selected unstable constituents,” U.S Geological Survey Techniques of Water Resources Investigations. Book 1, Chapter D-2, p. 24.

Xingfu, X. and Gholamhoss, I.S., 1989, “Effect of pH on chemical forms and plant availability of cadmium, zinc and lead in polluted soil,”

Water, Air and Soil Pollution, Vol. 45, pp. 265-274.

Zaihua, L., Daoxian, Y. and Zhaoli, S., 1991, “Effect of coal mine waters of variable pH on springwater quality : a case study : Environmental,”

Geology and water Sciences, Vol. 17, pp. 219-225.

9. Appendices

Appendix 1 The major chemical constituents for the Fe-hydroxides formed in groundwater.

(units; wt.%)

  SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total

G1-7m 1.67 0.09 69.1 0.15 0.05 0.65 <0.01 <0.01 0.007 0.04 26.04 97.76

G1-18m 1.71 0.09 71.4 0.14 <0.01 0.75 0.1 0.02 0.009 0.06 24.93 99.21

G1-24m 14.82 0.87 59.8 0.06 0.1 1.4 0.24 0.15 0.05 0.38 21.22 99.11

G1-32m 13.84 0.8 57.89 0.06 0.1 1.02 0.12 0.1 0.065 0.44 23.29 97.73

G1-40m 2.43 0.12 67.44 0.15 0.04 0.63 <0.01 <0.01 0.005 0.08 26.23 97.04

G1-47m 14.13 0.98 59.23 0.07 0.11 0.95 0.26 0.05 0.087 0.36 22.83 99.04

G1-54m 14.56 1.1 58.57 0.07 0.11 0.87 0.28 0.09 0.086 0.37 22.42 98.54

G2-198m 16.17 3.26 62.11 0.05 0.3 0.41 0.87 0.4 0.149 0.17 16.34 100.2

G3-9m 3.9 0.08 76.07 0.04 0.03 0.06 <0.01 0.05 0.006 0.15 18.76 99.15

G3-15m 4.28 0.12 75.62 0.04 <0.01 0.07 0.1 0.01 <0.005 0.16 19.03 99.45

G3-21m 18.19 3.77 63.8 0.16 0.2 0.54 0.77 0.75 0.106 0.29 12.13 100.7

G3-27m 4.06 0.08 74.09 0.03 0.02 0.05 <0.01 <0.01 0.006 0.14 20.19 98.62

G3-33m 4.37 0.13 76.47 0.04 <0.01 0.05 0.11 0.07 0.01 0.2 17.21 98.66

G3-39m 4.34 0.11 78.11 0.02 <0.01 0.04 0.13 0.06 0.01 0.22 17.95 101

G3-45m 4.47 0.09 76.81 0.03 <0.01 0.06 <0.01 0.11 0.011 0.24 17.76 99.64

G3-51m 4.51 0.14 75.81 0.04 0.03 0.06 0.01 0.05 0.006 0.21 17.66 98.51

G3-57m 4.89 0.12 75.47 0.02 <0.01 0.05 0.07 0.03 <0.005 0.2 17.62 98.49

G6-60m 6.7 0.09 70.79 0.03 0.01 0.1 0.07 <0.01 <0.005 0.22 20.43 98.39

G8-48m 6.91 0.2 77.64 0.08 0.03 0.25 0.06 <0.01 0.013 0.14 14.11 99.42

G8-72m 6.73 0.22 74.74 0.05 0.05 0.37 0.07 <0.01 0.035 0.08 15.81 98.12

G8-84m 6.49 0.18 76.74 0.03 <0.01 0.43 0.13 0.07 0.015 0.06 16.59 100.8

G8-96m 6.85 0.27 75.13 0.05 0.08 0.53 0.07 <0.01 0.017 0.05 16.72 99.77

G8-108m 6.9 0.18 75.96 0.02 0.01 0.44 0.13 0.07 0.015 0.04 16.37 100.1

G8-114m 7.19 0.19 73.41 0.04 0.07 0.69 0.02 <0.01 0.011 0.04 16.27 97.95

G8-126m 7.62 0.27 71.63 0.06 0.07 1.3 <0.01 0.06 0.022 0.06 16.79 97.86

G8-138m 8.45 0.58 73.08 0.04 0.05 0.47 0.16 0.06 0.029 0.05 17.27 100.2

G8-144m 6.82 0.12 75.48 0.04 0.04 0.59 <0.01 <0.01 0.007 0.11 16.07 99.26

G8-168m 7.14 0.16 75.48 0.04 0.04 0.42 <0.01 0.04 0.007 0.06 16.89 100.3

G9-24m 6.16 0.02 74.21 0.08 0.02 0.18 0.1 <0.01 <0.005 0.22 17.48 98.38

G9-30m 6.69 0.08 73.73 0.06 0.04 0.22 <0.01 <0.01 0.007 0.23 17.73 98.78

G9-36m 6.71 0.05 76.39 0.11 0.04 0.46 0.13 0.03 0.017 0.11 16.2 100.2

G9-42m 7.43 0.06 73.07 0.2 0.02 0.42 0.26 0.22 <0.005 0.2 18.4 100.3

G9-48m 7.47 0.04 73.94 0.08 0.04 0.45 0.09 0.03 <0.005 0.14 17.26 99.54

G9-56m 5.78 0.04 75.68 0.13 0.03 0.4 0.13 <0.01 0.011 0.04 15.47 97.71

Appendix 1 Continued.

  SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total

G9-66m 10.99 0.05 65.04 0.03 0.05 0.39 <0.01 0.02 <0.005 1.27 20.24 98.26

G9-72m 11.94 0.08 64.55 0.03 0.04 0.4 0.07 <0.01 <0.005 1.3 20.88 99.14

G9-80m 10.64 0.06 67.7 0.03 0.04 0.32 <0.01 <0.01 <0.005 0.66 19.8 99.24

G9-88m 10.13 0.05 68.15 0.03 0.03 0.3 0.07 <0.01 <0.005 1.3 19.46 99.5

G9-96m 11.15 0.22 68.08 0.03 0.06 0.38 0.04 0.08 0.014 0.43 18.97 99.44

G9-106m 11.19 0.18 68.3 0.04 0.06 0.41 0.03 <0.01 0.007 0.71 18.66 99.56

G9-112m 10.53 0.11 69.56 0.06 0.05 0.52 0.09 <0.01 0.009 0.56 18.79 100.2

G9-129m 10.52 0.11 68.64 0.05 0.05 0.39 <0.01 <0.01 0.007 0.62 18.72 98.98

G10-54m 9.78 0.11 68.07 0.04 <0.01 0.2 0.16 <0.01 0.01 0.29 20.99 99.63

G2.5-14m 5.59 0.07 78.43 0.04 <0.01 0.13 0.14 0.07 0.018 0.17 14.71 99.34

G2.5-21m 6.07 0.4 78.81 0.03 <0.01 0.11 0.22 0.16 0.016 0.12 14.99 100.9

G2.5-28m 5.97 0.7 76.67 0.04 0.03 0.2 0.08 0.11 <0.005 0.14 15.89 99.21

G2.5-35m 6.28 0.21 76.93 0.05 0.04 0.2 0.04 <0.01 0.015 0.17 14.79 98.68

G2.5-42m 5.7 0.07 77.16 0.03 0.03 0.15 <0.01 <0.01 0.008 0.13 15.88 99.03

G2.5-49m 7.43 0.37 74.6 0.04 0.07 0.22 0.16 0.06 0.028 0.16 16.13 99.26

G2.5-56m 6.51 0.36 75.2 0.02 0.06 0.17 0.03 <0.01 0.028 0.24 16.18 98.81

G2.5-63m 8.6 0.82 70.88 0.03 0.19 0.28 0.15 0.06 0.063 0.21 17.58 98.84

G2.5-78m 5.8 0.11 74.72 <0.01 <0.01 0.06 <0.01 0.04 <0.005 0.14 18.23 99.04

SG-1-72m(in) 6.32 0.25 72.29 0.01 0.03 0.04 0.05 0.03 0.013 0.13 20.72 99.89

SG-1-72m(out) 6.31 0.15 75.73 0.06 <0.01 0.02 <0.01 <0.01 <0.005 0.11 17.87 100.3

SS-1-1m 7.35 3.98 0.99 0.02 2.03 44.28 0.09 0.48 0.039 0.11 38.71 98.07

SS-1-3m 8.95 4.95 0.89 0.02 2.49 40.1 0.16 0.58 0.04 0.09 37.86 96.12

SS-1-6m 28.6 13.99 4.52 0.06 11.34 4.88 0.23 0.9 0.083 0.22 27.77 92.58

SS-1-9m 29.18 13.99 7.08 0.06 10.76 3.78 0.21 0.66 0.068 0.22 27.53 92.93

SS-1-12m 7.49 1.33 73.24 0.05 0.221 0.31 0.06 0.09 0.016 0.63 16.06 99.5

SS-1-15m 6.1 0.74 75.27 0.06 0.11 0.12 0.02 0.09 <0.005 0.57 16.18 100.9

SS-1-18m 6.3 0.44 75.36 0.02 0.03 0.18 0.03 <0.01 0.017 0.83 15.49 98.69

SS-1-21m 6.34 0.63 77.58 0.06 0.1 0.12 0.04 0.05 0.01 0.85 13.6 99.37

SS-1-27m 6.44 0.6 76.52 0.04 0.06 0.15 0.05 0.06 0.01 0.37 16.22 100.5

SS-1-33m 5.66 0.43 78.07 0.03 0.05 0.04 0.02 0.05 <0.005 0.37 16.22 100.9

SS-1-36m 7.09 0.44 79.04 0.08 0.04 0.16 0.07 0.08 0.011 0.46 12.53 100

SS-1-39m 6.51 0.75 76.37 0.76 0.07 0.22 0.02 0.07 0.01 0.6 15.09 100.5

SS-1-45m 6.92 0.71 75.3 0.85 0.06 0.09 0.04 0.14 0.011 0.65 15.94 100.7

SS-1-48m 5.96 0.37 77.89 0.07 0.04 0.15 0.03 0.04 0.016 0.48 13.28 98.79

SS-1-54m 6.47 0.49 75.97 0.04 0.03 0.1 0.04 0.08 0.011 1.31 16.23 100.8

SS-1-63m 11.94 1.79 69.68 0.07 0.1 0.21 0.24 0.42 0.071 0.79 13.33 98.64

HG-1-78m(in) 4.46 0.12 72.5 0.06 <0.01 0.02 0.02 <0.01 0.005 3.19 18.27 98.59

HG-1-78m(out) 8.35 0.09 72.05 0.07 <0.01 0.04 <0.01 0.01 <0.005 0.22 18.57 99.39

Appendix 2 The heavy metal constituents for the Fe-hydroxides formed in groundwater.

(units: mg/kg, S: wt.%)   S Au Ag As Ba Be Bi Br Cd Co Cr Cs Cu Hf Ir

G1-7m 9.01 26 1.8 81 <3 <1 4 <1 2.7 101 290 <0.5 1420 <0.5 <5

G1-18m 8.19 <5 1.4 59 9 <1 4 <1 2.8 60 340 <0.5 836 1.7 <5

G1-24m 1.13 <5 0.7 10 134 <1 5 <1 2.7 6 133 2.1 29 <0.5 <5

G1-32m 1.89 <5 1 14 144 1 5 <1 3 5 158 <0.5 30 <0.5 <5

G1-40m 8.76 <5 1.6 56 7 <1 5 <1 2.8 66 273 <0.5 1400 <0.5 <5

G1-47m 2.2 <5 0.9 14 131 1 5 <1 2.8 10 185 <0.5 94 <0.5 <5

G1-54m 2.03 <5 1 12 138 1 5 <1 2.9 6 203 <0.5 48 <0.5 <5

G2-198m 0.4 <5 0.5 14 59 1 4 4 3 5 165 2.8 75 <0.5 <5

G3-9m 0.54 <5 0.5 9 10 <1 7 <1 3.2 6 33 <0.5 17 <0.5 <5

G3-15m 0.45 <5 <0.5 5 17 <1 6 <1 3.3 7 48 <0.5 25 <0.5 <5

G3-21m 0.12 <5 <0.5 20 256 <1 5 <1 2.9 14 48 2 53 1 <5

G3-27m 0.66 <5 <0.5 <2 9 <1 7 2 3.4 5 20 <0.5 2 <0.5 <5

G3-33m 0.33 <5 0.6 5 11 <1 6 3 3.3 5 23 <0.5 8 <0.5 <5

G3-39m 0.43 <5 0.6 3 14 <1 8 <1 3.3 6 52 <0.5 36 <0.5 <5

G3-45m 0.39 <5 0.5 4 11 <1 8 <1 3.3 9 35 0.5 30 0.5 <5

G3-51m 0.38 <5 0.5 5 10 <1 7 3 3.3 8 38 <0.5 23 <0.5 <5

G3-57m 0.34 <5 0.6 5 8 <1 6 5 3.3 5 21 <0.5 2 <0.5 <5

G6-60m 0.56 18 0.7 11 9 <1 7 2 3.2 7 28 <0.5 73 <0.5 <5

G8-48m 0.28 <5 0.7 14 103 <1 7 6 3.4 17 55 <0.5 82 <0.5 <5

G8-72m 0.19 <5 0.6 9 143 <1 6 <1 3.4 12 62 <0.5 44 <0.5 <5

G8-84m 0.19 <5 <0.5 10 144 <1 7 2 3.3 16 61 <0.5 53 <0.5 <5

G8-96m 0.19 <5 0.6 8 160 <1 5 <1 3.2 12 52 <0.5 37 <0.5 <5

G8-108m 0.14 <5 <0.5 14 144 <1 7 <1 3.2 7 64 <0.5 29 <0.5 <5

G8-114m 0.13 <5 <0.5 15 176 <1 6 <1 3.2 9 72 <0.5 33 <0.5 <5

G8-126m 0.25 <5 0.7 24 144 <1 6 <1 3 13 98 <0.5 87 <0.5 <5

G8-138m 0.26 <5 0.7 20 166 <1 7 <1 3.1 16 123 <0.5 64 1.9 <5

G8-144m 0.29 <5 0.7 30 76 <1 6 3 3.1 8 32 <0.5 52 <0.5 <5

G8-168m 0.22 <5 0.8 21 114 <1 7 <1 3.2 10 80 <0.5 47 <0.5 <5

G9-24m 0.23 11 0.7 18 26 <1 8 <1 3.2 13 37 <0.5 130 <0.5 <5

G9-30m 0.18 20 0.8 15 30 <1 8 <1 3.2 7 31 <0.5 56 <0.5 <5

G9-36m 0.05 12 0.6 17 28 <1 5 <1 3.2 15 47 <0.5 149 <0.5 <5

G9-42m 0.16 <5 0.7 18 60 <1 7 <1 3.1 10 32 <0.5 84 <0.5 <5

G9-48m 0.08 <5 0.5 18 48 <1 7 <1 3.2 9 22 <0.5 73 <0.5 <5

G9-56m 0.04 15 0.5 25 26 <1 9 <1 3.1 20 47 <0.5 193 <0.5 <5

G9-66m 0.07 33 2.1 13 61 2 4 <1 2.9 4 48 <0.5 28 <0.5 <5

Appendix 2 Continued.

  S Au Ag As Ba Be Bi Br Cd Co Cr Cs Cu Hf Ir

G9-72m 0.05 34 2.2 18 77 2 5 <1 3 4 37 <0.5 36 <0.5 <5

G9-80m 0.06 <5 1.3 12 55 1 7 2 3.3 4 28 <0.5 32 <0.5 <5

G9-88m 0.07 33 2.1 12 58 2 7 <1 3 4 42 <0.5 32 <0.5 <5

G9-96m 0.04 15 1 11 54 1 6 <1 3.1 3 31 <0.5 34 <0.5 <5

G9-106m 0.04 <5 1.1 13 59 1 4 <1 2.9 4 33 2 22 <0.5 <5

G9-112m 0.12 16 1 13 58 1 7 <1 3.1 6 32 <0.5 51 <0.5 <5

G9-129m 0.07 17 1.2 16 60 1 6 <1 3 5 33 <0.5 40 <0.5 <5

G10-54m 0.09 <5 1.2 9 29 <1 6 <1 3.1 3 42 <0.5 9 <0.5 <5

G2.5-14m 0.04 <5 0.7 9 41 <1 7 <1 3.2 5 33 <0.5 24 <0.5 <5

G2.5-21m 0.06 <5 0.6 8 28 <1 6 2 3.4 5 30 <0.5 14 <0.5 <5

G2.5-28m 0.06 <5 0.7 7 34 <1 5 <1 3.3 4 40 <0.5 33 <0.5 <5

G2.5-35m 0.04 <5 0.6 6 36 <1 5 <1 3.4 4 27 <0.5 8 <0.5 <5

G2.5-42m 0.04 <5 0.7 5 21 <1 7 <1 3.3 4 29 <0.5 7 <0.5 <5

G2.5-49m 0.19 <5 0.6 10 32 <1 6 2 3.2 10 104 <0.5 37 <0.5 <5

G2.5-56m 0.12 <5 0.7 6 22 <1 7 3 3.4 4 144 <0.5 17 <0.5 <5

G2.5-63m 0.3 <5 0.7 5 28 <1 5 4 3.2 4 207 <0.5 11 <0.5 <5

G2.5-78m 0.28 <5 0.7 4 14 <1 5 5 3.2 3 202 <0.5 1 <0.5 <5

SG-1-72m 0.36 9 0.8 2 10 <1 <2 3 2.9 4 87 2.3 7 <0.5 <5

SG-1-72m 0.28 <5 0.7 17 21 <1 4 2 1.6 8 48 <0.5 77 <0.5 <5

SS-1-1m 0.1 <5 1.8 69 575 <1 <2 3 <0.5 5 39 3.8 13 0.6 <5

SS-1-3m 0.13 <5 1.6 77 599 2 <2 4 <0.5 5 41 4.1 24 <0.5 <5

SS-1-6m 0.21 70 5.2 88 507 4 <2 13 <0.5 11 176 5 301 <0.5 <5

SS-1-9m 0.2 593 3.3 76 539 4 <2 12 0.5 9 182 <0.5 294 <0.5 <5

SS-1-12m 0.31 <5 1 114 133 2 3 2 2.2 11 453 <0.5 70 <0.5 <5

SS-1-15m 0.51 16 1.7 93 122 2 <2 5 1.8 12 385 <0.5 61 <0.5 <5

SS-1-18m 0.24 <5 1.5 21 89 1 5 5 1.6 5 123 <0.5 7 <0.5 <5

SS-1-21m 0.29 16 2 84 140 2 4 5 2.1 12 336 <0.5 48 <0.5 <5

SS-1-27m 0.54 9 1.1 69 61 3 3 4 1.9 6 277 <0.5 9 <0.5 <5

SS-1-33m 0.49 12 0.8 68 68 1 3 5 1.1 6 276 <0.5 6 <0.5 <5

SS-1-36m 0.16 <5 1.1 12 114 <1 3 16 1.5 12 86 <0.5 32 <0.5 <5

SS-1-39m 0.43 12 1.2 33 483 2 <2 14 2.9 15 236 <0.5 6 <0.5 <5

SS-1-45m 0.34 10 1.2 30 444 2 3 9 2.4 11 213 <0.5 7 <0.5 <5

SS-1-48m 0.19 <5 1.6 15 117 1 4 17 2.4 11 90 <0.5 35 <0.5 <5

SS-1-54m 0.2 20 2.4 30 138 2 <2 13 1.9 6 172 <0.5 6 <0.5 <5

SS-1-63m 0.13 <5 1.5 16 135 2 4 16 2 10 89 4.5 38 <0.5 <5

HG-1-78m 0.02 55 6.2 15 23 7 5 2 2.3 8 812 <0.5 19 <0.5 <5

HG-1-78m 0.13 <5 1.5 8 36 <1 <2 2 2.1 6 70 <0.5 49 <0.5 <5

Appendix 2 Continued.

  Mo Ni Pb Rb Sb Sc Se Sr Ta Th

G1-7m 110 547 488 60 12.7 0.2 <3 19 <1 <0.5

G1-18m 47 369 550 <20 9 <0.1 <3 26 <1 <0.5

G1-24m 3 35 283 <20 2.2 0.8 <3 140 <1 2.2

G1-32m 3 42 329 <20 2.4 0.8 <3 137 <1 <0.5

G1-40m 89 407 637 <20 11.9 0.4 <3 24 <1 <0.5

G1-47m 8 98 365 <20 3.1 0.9 <3 126 <1 1.8

G1-54m 5 105 346 <20 2.7 0.9 <3 121 <1 1

G2-198m 5 27 19 <20 1.4 2.6 <3 56 <1 <0.5

G3-9m 5 19 42 <20 0.5 0.2 <3 7 <1 <0.5

G3-15m 4 20 52 <20 0.7 0.2 <3 11 <1 1.9

G3-21m 4 41 110 <20 2.3 1.9 <3 71 <1 <0.5

G3-27m 5 13 35 <20 0.4 <0.1 <3 5 <1 0.7

G3-33m 4 28 83 <20 1 0.2 <3 7 <1 <0.5

G3-39m 3 20 70 <20 0.6 0.1 <3 7 <1 <0.5

G3-45m 4 23 66 <20 0.5 0.1 <3 8 <1 <0.5

G3-51m 3 22 56 <20 0.6 <0.1 <3 7 <1 <0.5

G3-57m 3 27 65 <20 0.5 0.2 <3 7 <1 <0.5

G6-60m 4 17 92 <20 1.5 0.2 <3 12 <1 <0.5

G8-48m 32 38 120 <20 1.2 0.2 <3 35 <1 <0.5

G8-72m 30 47 79 <20 0.8 0.3 <3 75 <1 <0.5

G8-84m 20 40 71 <20 1.2 0.2 <3 73 <1 <0.5

G8-96m 19 32 76 <20 0.9 0.3 <3 95 <1 <0.5

G8-108m 37 20 78 <20 1 0.4 <3 86 <1 <0.5

G8-114m 42 23 67 <20 0.9 0.2 <3 120 <1 <0.5

G8-126m 40 36 134 <20 1.3 0.4 <3 110 <1 <0.5

G8-138m 40 42 127 <20 1.4 0.6 <3 81 <1 1.7

G8-144m 67 16 80 <20 1.5 0.3 <3 48 <1 <0.5

G8-168m 46 33 90 <20 1.1 0.4 <3 62 <1 <0.5

G9-24m 17 19 76 <20 2.3 <0.1 <3 29 <1 <0.5

G9-30m 26 13 88 <20 1.3 0.2 <3 36 <1 <0.5

G9-36m 7 27 251 <20 2.5 0.3 <3 60 <1 1

G9-42m 16 14 70 <20 1.6 0.2 <3 68 <1 <0.5

G9-48m 11 11 44 <20 1.3 0.1 <3 74 <1 <0.5

G9-56m 6 29 164 <20 3.6 <0.1 <3 49 <1 <0.5

G9-66m 4 6 305 <20 0.8 0.3 <3 68 <1 0.8

G9-72m 5 8 291 <20 1.3 0.5 <3 78 <1 <0.5

G9-80m 7 7 152 <20 0.9 0.2 <3 55 <1 <0.5

G9-88m 6 8 215 <20 0.8 0.4 <3 57 <1 <0.5

G9-96m 7 7 65 <20 1.1 0.5 <3 55 <1 <0.5

Appendix 2 Continued.

  Mo Ni Pb Rb Sb Sc Se Sr Ta Th

G9-106m 7 6 97 <20 0.8 0.3 <3 63 <1 <0.5

G9-112m 7 10 80 <20 0.8 0.3 <3 64 <1 <0.5

G9-129m 6 7 104 <20 0.8 0.3 <3 60 <1 <0.5

G10-54m <2 14 377 <20 0.7 0.3 <3 28 <1 <0.5

G2.5-14m 12 12 424 <20 0.7 0.4 <3 21 <1 <0.5

G2.5-21m 13 13 421 <20 0.9 0.4 <3 16 <1 <0.5

G2.5-28m 31 29 365 <20 1.3 0.4 <3 27 <1 1.2

G2.5-35m 8 10 260 <20 0.4 0.5 <3 25 <1 <0.5

G2.5-42m 13 11 164 <20 0.7 0.5 <3 21 <1 <0.5

G2.5-49m 6 42 244 70 1.7 0.9 <3 20 <1 <0.5

G2.5-56m 9 12 146 <20 0.5 0.7 <3 16 <1 <0.5

G2.5-63m 8 12 121 <20 0.5 1 <3 23 <1 <0.5

G2.5-78m 9 14 17 <20 <0.2 0.2 <3 9 <1 <0.5

SG-1-72m <2 15 105 <20 0.4 0.2 <3 10 <1 <0.5

SG-1-72m 2 24 <5 <20 3.9 <0.1 <3 4 <1 <0.5

SS-1-1m <2 5 79 <20 1 1.4 <3 3423 <1 2.5

SS-1-3m <2 8 82 <20 1.1 1.7 <3 3070 <1 2.8

SS-1-6m 13 12 879 <20 0.8 2.6 <3 552 <1 6.6

SS-1-9m 24 17 1200 <20 1.5 2.1 <3 493 <1 3.8

SS-1-12m 161 31 359 <20 5.9 0.3 <3 49 <1 <0.5

SS-1-15m 154 32 192 <20 5.8 0.2 <3 31 <1 <0.5

SS-1-18m 27 20 134 60 1.5 0.2 <3 22 <1 <0.5

SS-1-21m 137 29 172 <20 5 0.2 <3 29 <1 <0.5

SS-1-27m 177 17 160 <20 4.9 0.2 <3 19 <1 <0.5

SS-1-33m 158 15 171 <20 5 0.2 <3 13 <1 <0.5

SS-1-36m 12 23 57 <20 1.5 0.2 <3 23 <1 <0.5

SS-1-39m 52 17 68 <20 2.2 0.5 <3 52 <1 0.6

SS-1-45m 73 17 74 <20 2.5 0.3 <3 24 <1 <0.5

SS-1-48m 14 23 70 <20 1.4 0.2 <3 26 <1 0.6

SS-1-54m 24 13 121 <20 1.8 0.2 <3 18 <1 0.7

SS-1-63m 12 23 86 <20 1.4 0.6 <3 27 <1 5.7

HG-1-78m <2 12 218 <20 0.5 0.9 <3 13 <1 <0.5

HG-1-78m 2 16 266 <20 1.9 0.1 <3 9 <1 <0.5

Appendix 2 Continued.

  U V W Y Zn Zr La Ce Nd Sm Eu Tb yb Lu

G1-7m 482 17 <3 <1 >10000 <2 1606 70 57 10.9 <0.1 <0.5 <0.1 <0.05

G1-18m 583 11 <3 <1 7360 11 21.2 83 85 14 <0.1 <0.5 <0.1 <0.05

G1-24m 60.2 58 <3 1 4890 43 6.1 9 <5 1.5 <0.1 <0.5 <0.1 <0.05

G1-32m 70.9 70 <3 1 5740 22 5.7 18 5 1.8 <0.1 <0.5 <0.1 <0.05

G1-40m 513 18 <3 <1 >10000 11 17.6 72 57 10.4 <0.1 <0.5 <0.1 <0.05

G1-47m 91.4 57 <3 <1 6390 45 6.8 15 <5 2.2 <0.1 <0.5 0.9 <0.05

G1-54m 71.1 57 <3 1 6160 45 6.5 14 7 2.1 <0.1 <0.5 0.4 <0.05

G2-198m 51.6 52 <3 2 783 45 14.1 21 5 1.8 <0.1 <0.5 0.6 <0.05

G3-9m 7.6 24 <3 <1 358 61 0.4 <3 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-15m 6.2 13 <3 <1 379 <2 0.5 <3 <5 0.2 <0.1 <0.5 <0.1 <0.05

G3-21m 5.9 28 <3 <1 740 8 9.2 13 <5 0.9 <0.1 <0.5 0.4 <0.05

G3-27m 4.8 22 <3 <1 198 42 0.6 4 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-33m 16.5 37 <3 <1 3100 2 1.2 <3 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-39m 13 39 <3 <1 291 9 0.7 <3 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-45m 16.9 45 <3 <1 285 15 1 <3 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-51m 15.7 47 <3 <1 241 <2 1.3 4 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G3-57m 24.2 36 <3 <1 3600 <2 1.4 <3 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G6-60m 76.9 68 <3 <1 1170 3 2.4 4 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G8-48m 196 23 88 <1 3790 12 5.4 16 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G8-72m 219 16 56 <1 3210 4 6.1 19 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G8-84m 291 15 23 <1 3360 6 7.8 23 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G8-96m 323 8 13 <1 4110 12 8.5 21 <5 <0.1 <0.1 <0.5 <0.1 <0.05

G8-108m 424 15 74 1 5340 5 17.8 68 80 10.3 <0.1 <0.5 <0.1 <0.05

G8-114m 382 16 104 <1 4410 14 16.2 72 32 10.1 <0.1 <0.5 <0.1 <0.05

G8-126m 419 30 117 1 6600 3 17.6 69 52 9.9 <0.1 <0.5 <0.1 <0.05

G8-138m 480 8 77 3 6360 20 19.7 70 49 10.9 <0.1 <0.5 <0.1 <0.05

G8-144m 384 32 225 1 2800 2 16.7 70 54 9.4 <0.1 <0.5 0.6 <0.05

G8-168m 503 19 90 <1 5670 7 20.9 86 78 14.7 <0.1 <0.5 <0.1 <0.05

G9-24m 78.3 46 42 <1 1820 7 2.9 10 <5 1.4 <0.1 <0.5 <0.1 <0.05

G9-30m 98.8 57 65 <1 2150 9 3.6 16 <5 1.9 <0.1 <0.5 <0.1 <0.05

G9-36m 42.8 19 13 <1 >10000 9 1.5 5 <5 0.8 <0.1 <0.5 <0.1 <0.05

G9-42m 98.3 40 53 <1 1570 79 3.1 9 <5 1.5 <0.1 <0.5 <0.1 <0.05

G9-48m 81.1 35 44 <1 1140 4 2.7 8 7 1.5 <0.1 <0.5 <0.1 <0.05

G9-56m 39 17 12 <1 >10000 15 1.5 5 <5 0.7 <0.1 <0.5 <0.1 <0.05

문서에서 저작자표시 (페이지 156-172)

관련 문서