• 검색 결과가 없습니다.

참고문헌

문서에서 저작자표시 (페이지 37-43)

1. C.J. Ma, K.Y. Lee, E.J. Jeong et al. Persicarin from water dropwort (Oenanthe javanica) protects primary cultured rat cortical cells from glutamate-induced

neurotoxicity. Phytoher Res. 2010; 24; 913-918.

2. J.H. Yang, S.C. Kim, B.Y. Shin et al. O-methylated flavonol isorhamnetin prevent acute inflammation through blocking of NF-kB activation. Food Chem Toxicol.

2013; 59; 362-372.

3. J.H. Yang, B.Y. Shin, J.Y. Han et al. Isorhamnetin protects against oxidative stress by activating Nfr2 and inducing the expression of its target genes. Toxicol Appl Pharm.

2014; 274; 293-301.

4. Q. Li, F.Q. Ren. C.L. Yang et al. Anti-proliferation effects of isorhamnetin on lung cancer cells in vitro and in vivo. Asian Pac J Cancer P. 2015; 16; 3035-3042.

5. Q. Ke, M. Costa. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006; 70;

1469-1480.

6. G.L. Wang, B.H. Jiang, E.A. Rue et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. P Natl Acad Sci USA.

1995; 92; 5510-5514.

7. H.K. Eltzschig, D.L. Bratton, S.P. Colgan. Targeting hypoxia signaling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov. 2014; 13;

852-869.

8. D. Lando, D.J. Peet, D.A Whelan et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002; 295; 858-861.

- 27 -

9. M.C. Brahimi-Horn, J. Pouysségur. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007; 73; 450-457.

10. C.W. Pugh, P.J. Ratcliffe. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9; 677-684.

11. G.L. Semenza. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3; 721-732.

12. H. Gao, J. Xie, J Peng et al. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1a. Exp Cell Res. 2015;

332; 236-246.

13. P. Pratheeshkumar, Y.O. Son, S.P. Divya et al. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharm. 2014; 281; 230-241.

14. H.S. Kim, T. Wannatung, S. Lee et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis.

2012; 17; 938-949.

15. L. Pengfei, D. Tiansheng, H. Xianglin et al. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods Hum Nutr. 2009; 64; 141-145.

16. B.S. Teng, Y.H. Lu, Z.T Wang et al. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoids L. against BEL-7402 cells. Pharmacol Res.

2006; 54; 186-194.

17. K.A. Manu, M.K. Shanmugam, L. Ramachandran et al. Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-kB signaling cascade in gastric cancer. Cancer Lett. 2015; 363; 28-36.

- 28 -

18. S.M. Shin, I.J. Cho, S.G. Kim. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3b inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009; 76; 884-895.

19. J.M. Lee, W.H. Lee, H.Y. Kay et al. Hemin, an iron-binding porphyrin, inhibits HIF-1a induction through its binding with heat shock protein 90. Int J Cancer. 2012; 130;

716-727.

20. A. Shen, H. Chen, Y. Chen et al. Pien tze hung overcomes multidrug resistance and epithelial-mesenchymal transition human colorectal carcinoma cells via suppression of TGF-b pathway. Evid-Based Compl Alt. 2014; 2014; 1-10.

21. G.S. Bogatkevich, A. Ludwicka-Bradly, C.B. Singleton et al. Proteomic analysis of CTGF-activated lung fibroblasts: identification of IQGAP as a key player in lung fibroblast migration. Am J physiol Mol Physiol. 2008; 295; L603-L611.

22. G. Olmos, M.I. Arenas, R. Bienes et al. 15-Deoxy-D12,14-prostaglandin-J2 reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1a degradation.

Cell Mol Life Sci. 2009; 66; 2167-2180.

23. M.E. Hubbi, D.M. Gilkes, H. Hu et al. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1a to promote cell-cycle progression. P Natl Acad Sci USA. 2014; 111; E3325-E3334.

24. A. Galanis, A. Pappa, A. Giannakakis et al. Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett. 2008; 266; 12-20.

- 29 -

25. Y. Liu, Y. Cui, M. Shi et al. Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1a accumulation. Cell Physiol Biochem. 2014; 33; 1036-1046.

26. A. Sanjuán-Pla, A.M. Cervera, N. Apostolova et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1a. FEBS Lett. 2005; 579; 2669-2674.

27. W.H. Lee, Y.W. Kim, J.H. Choi et al. Oltipraz and dithiolethione congeners inhibit hypoxia-inducible factor-1a activity through p70 ribosomal S6 kinase-1 inhibition and H2O2-scavenging effect. Mol Cancer Ther. 2009; 8; 2791-2802.

28. C. Chen, N. Pore, A. Behrooz et al. Regulation glut1 mRNA by hypoxia-inducible factor-1. J Biol Chem. 2001; 276; 9519-9525.

29. J.M. Gleadle, P.J. Ratcliffe. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for src kinase. Blood. 1997; 89; 503-509.

30. J.D Firth, B.L Ebert, P.J. Ratcliffe. Hypoxia regulation of lactate dehydrogenase a. J Biol Chem. 1995; 270; 21021-21027.

31. J. Kim, I. Tchernyshyov, G.L. Semenza et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.

Cell Metab. 2006; 3; 177-185.

32. I. Papandreou, R.A. Cairns, L. Fontana et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006; 3;

187-197.

33. A. Giaccia, B.G. Siim, R.S. Johnson. HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003; 2; 1-9.

- 30 -

34. J. Li, C. Mi, J. Ma et al. Dihydrotanshinone I inhibits the translational expression of hypoxia-inducible factor-1a. Chem-Biol Interact. 2015; 240; 48-58.

35. E. Laughner, P. Taghavi, K. Chiles et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1a (HIF-1a) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001; 21;

3995-4004.

36. K. Seo, J.H. Yang, S.C. Kim et al. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

Inflammation. 2014; 37; 712-722.

- 31 -

국 문 초 록

이소람네틴에 의한 HIF-1a 억제 효능 연구

서 수 호

지 도 교 수 : 신 상 미 약학과

조선대학교 대학원

이소람네틴은 미나리에서 추출한 플라보노이드 구조를 갖는 성분이다. 기존 연구를 통해 이소람네틴의 항산화, 항염증 및 항암 활성 등의 긍정적인 효능이 보고되었다. 본 연구에서는 대장암 세포에서 이소람네틴의 항산화 효과가 암을 억제하는데 기여할 수 있는지 조사하였다. 이소람네틴은 HCT116 과 HT29 세포에서 저산소증 또는 CoCl2 로 유도한 hypoxia inducible factor-1a (HIF-1a)의 축적을 억제하였다. 또한, CoCl2로 유도한 hypoxia response element (HRE) 리포터 유전자의 활성을 억제하였다. 저산소상태에서 이소람네틴의 HIF-1a 억제는 glucose transporter1 (GLUT1), lactate dehydrogenase A (LDH A), carbonic anhydrase-IX (CA-IX) 및 pyruvate dehydrogenase kinase1 (PDK1) 와 같은 HIF-1a 타겟 유전자 억제로 이어졌다.

이소람네틴은 HIF-1a 단백질 안정성을 감소시키는 것으로 관찰되었으나, HIF-1a 유비퀴틴화는 변화시키지 않았다. 이에 다음으로 HIF-1a의 억제에 이소람네틴의 항산화 효과가 연관성이 있는지 평가하였다. 이소람네틴은 CoCl2 또는 H2O2

문서에서 저작자표시 (페이지 37-43)

관련 문서