• 검색 결과가 없습니다.

요약문

문서에서 저작자표시 (페이지 82-93)

HDPE와 e-PTFE는 생체재료로서 골 조직공학 분야에서 널리 이용되고 있으나 두 재료 모두 소수성이 강한 특성을 가지고 있다. 이러한 단점을 극복하고자 저 압 및 대기압 플라즈마를 이용하여 각각의 재료표면을 친수성으로 개질을 하였 고, 표면의 물리화학적 특성변화를 확인 하였다. 또한 플라즈마 처리된 생체재 료의 in vitro 생체적합성을 조골모세포의 부착, 증식, 분화에 조사한 결과, 플 라즈마 처리가 매우 긍정적인 효과를 준 것으로 확인하였다. 이상과 같은 결과 로 미루어 보아 소수성이 강한 고분자 생체재료의 생체적합성을 개선하는데 저 압 및 대기압 플라즈마 기술은 매우 유용한 방법으로 적용될 것으로 사료된다.

72

-【참고문헌】

1. R. Langer and J. P. Vacanti (1993). Tissue engineering. Science.

260:920-926.

2. E. Sachlos and J. T. Czernuszka (2003). Making tissue engineering scaffolds work. Review: the pplication of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells and Materials. 5:29-40.

3. O. Y. Alothman, F. N. Almajhdi, and H. Fouad (2013). Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration. BioMedical Engineering Online. doi:10.1186/1475-925X-12-95.

4. S. Ansari, M. O. Freire, E. K. Pang, A. I. Abdelhamid, M. Almohaimeed, and H. H. Zadeh (2014). Immobilization of murine anti-BMP-2 monoclonal antibody on various biomaterials for bone tissue engineering. BioMed Research International. http://dx.doi.org/10.1155/2014/940860.

5. A. Martínez, M. D. Blanco, N. Davidenko, and R. E. Cameron (2015).

Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties.

Carbohydrate Polymers. 132:606-619.

6. 고인갑, 유지, A. Anthony, 이상진 (2011). 재생의학과 조직공학: 기능성이 강화된 고분자 지지체를 이용한 인사이투 조직재생. 고분자과학과 기술. 제 22권 1호. 17-26.

7. S. Mohanty, L. B. Larsen, J. Trifol, P. Szabo, H. V. R. Burri, C.

Canali, M. Dufva, J. Emnéus, and A. Wolff (2015). Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering: C. 55:569-578.

8. G. Chen, T. Ushida, and T. Tateishi (2002). Scaffold design for tissue

73

-engineering. Macromolecular Bioscience. 2:67-77.

9. F. P. W. Melchels, A. M. C. Barradas, C. A. V. Blitterswijk, J. D.

Boer, J. Feijen, and D. W. Grijpma (2010). Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia. 6:4208-4217.

10. 조인환, 고영학 (2013). 자유형상 제조기술을 이용한 조직재생용 다공성 생 체 세라믹 스캐폴드 제조기술. Biomaterials Reseach. 17:082-089.

11. M. Yazdimamaghani, M. Razavi, D. Vashaee, and L. Tayebi (2014).

Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Materials Letters.

132:106-110.

12. 박정훈, 장진아, 조동우 (2014). 3차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체. 대한기계학회 논문집 b권. 제 38권 10호. 817-829.

13. 박수아, 이준희, 김완두 (2009). 조직공학을 위한 생체모사용 스캐폴드 개 발. Elastomers and Composites. 44:106-111.

14. S. J. Hollister (2005). Porous scaffold design for tissue engineering.

Nature Materials. 4:518-524.

15. X. Wang, Y. Yan and R. Zhang (2007). Rapid prototyping as a tool for manufacturing bioartificial livers. Trends in Biotechnology. 25:505-513.

16. N. E. Fedorovich, J. R. Dewijn, A. J. Verbout, J. Alblas and W. J. A.

Dhert (2008). Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A. 14:127-133.

17. K. Novotna, M. Bacakova, N. S. Kasalkova, P. Slepicka, V. Lisa, V.

Svorcik and L. Bacakova (2013). Adhesion and growth of vascular smooth muscle cells on nanostructured and biofunctionalized polyethylene.

Materials. 6:1632-1655.

18. M. Vert (2007). Polymeric biomaterials: Strategies of the past vs.

74

-strategies of the future. Progress in Polymer Science. 32:755-761.

19. X. Liu and P. X. Ma (2004). Polymeric scaffold for bone tissue engineering. Annals of Biomedical Engineering. 32:477-486.

20. L. L. Hench and J. M. Polak (2002). Third-generation biomedical materials. Science. 295:1014-1017.

21. R. Langer (2000). Biomaterials: Status, challenges, and perspectives.

AIChE Journal. 46:1286-1289.

22. T. Livingston, P. Ducheyne and, J. Garino (2002). In vivo evaluation of a bioactive scaffold for bone tissue engineering. Journal of Biomedical Materials Research. 62:1-13.

23. R. C. Thomson, M. C. Wake, M. J. Yaszemski, and A. G. Mikos (1995).

Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science. 122:245-274.

24. Y. N. Shin, B. S. Kim, H. H. Ahn, J. H. Lee, K. S. Kim, J. Y. Lee, M.

S. Kim, G. Khang, and H. B. Lee (2008). Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment. Applied Surface Science. 255:293-296.

25. L. G. Griffith and G. Naughton (2002). Tissue engineering--current challenges and expanding opportunities. Science. 295:1009-1014.

26. 김우섭 (2014). 조직공학의 기본개념과 최신동향 및 미래전망. Journal of the Korean Medical Association. 57:145-154.

27. 김학관, 장주웅, 정회석, 이득용 (2003). 생체재료의 선택에 따른 조골세포 의 형상, 증식 및 분화. Journal of the Korean Ceramic Society. 40:601-607.

28. N. R. Patel and P. P. Gohil (2012). A review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering. 2:91-101.

29. 조성백, 김윤종 (2000). 우리몸의 기능을 수복하고 치료하는 생체재료. 한 국세라믹학회. 3:5-19.

75

-30. 박상례, 홍진우, 이해준, 김규천 (2013). 플라즈마 메디신; 저온 상압 플라 즈마는 어떻게 의학분야에 적용될 수 있는가?. 한국생명과학지. 23:836-846.

31. I. Langmuir (1928). Oscillations in ionized gases. Proceedings National Academy of Sciences of the United States of America. 14:627-637.

32. G. E. Morfill, M. G. Kong, and, J. L. Zimmermann (2009). Focus on plasma medicine. New Journal of Physics. 11:115011.

33. 조중희, 강방권, 김경수, 최병규, 김세훈, 최원열 (2005). 대기압 저온 플 라즈마 처리에 의한 폴리이미드의 친수화 효과. 한국전기전자재료학회. 18:148-152.

34. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki (1988). Stable glow plasma at atmospheric pressure. Journal of Physics D: Applied Physics. 21:838-840.

35. Y. Tsuchiya, K. Akutu, and A. Iwata (1998). Surface modification of polymeric materials by atmospheric plasma treatment. Progress in Organic Coatings. 34:100-107.

36. E. E. Kunhardt (2000). Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Transactions on Plasma Science. 28:189-200.

37. K. Samanta, M. Jassal, and A. K. Agrawal (2006). Atmospheric pressure glow discharge plasma and its applications in textile. Indian Journal of Fibre and Textile Research. 31:83-98.

38. 유효열, 유재현 (2013). IT산업에 적용된 기능성 대기압 플라즈마 표면처리 기술. 전력전자학회지. 18:50-55.

39. 이창호, 조무현 (2013). 플라즈마의 이해. 전력전자학회지. 18:29-33.

40. 이종봉, 하창승, 김동현, 이호준, 이해준 (2011). DC pulse 전압을 이용한 DBD 대기압 플라즈마의 특성분석. 대한전기학회 학술대회 논문집. 1523-1524.

76

-41. 황명환, 손영도, 우인성, 바산바트호약, 임재성, 신백균 (2011). 유기박막 트랜지스터 응용을 위해 플라즈마 중합된 styrene 게이트 절연박막. 한국진 공학회지. 제 20권 5호. 327-332.

42. E. Mitchell and L. E. Smith (2012). Cell responses to plasma polymers-implications for wound care. Wound Practice and Research. 20:74-79.

43. C. Labay, J. M. Canal, M. Modic, U. Cvelbar, M. Quiles, M. Armengol, M. A. Arbos, F. J. Gil, and C. Canal (2015). Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials. 71:132-144.

44. D. Hegemann (2006). Plasma polymerization and its applications in textiles. Indian Journal of Fibre and Textile Research. 31:99-115.

45. D. M. Choi, C. K. Park, K. Cho, and C. E. Park (1997). Adhesion improvement of epoxy resin/polyethylene joints by plasma treatment of polyethylene. Polymer. 38:6243-6249.

46. M. A. Shorkrgozar, M. Farokhi, F. Rajaei, M. H. A. Bagheri, S. H.

Azari, I. Ghasemi, F. Mottaghitalab, K. Azadmanesh, and J. Radfar.

Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. Journal of Biomedical Materials Research PartA. 95:1074-1083.

47. 전찬, 신재호, 우경인, 김윤덕 (2009). 다공성 폴리에틸렌/티타늄 삽입물을 이용한 안와골절의 치료. 대한안과학회지. 제 50권 8호. 1130-1140.

48. H. U. Lee, Y. S. Jeong, S. Y. Jeong, S. Y. Park, J. S. Bae, H. G. Kim, and C. R. Cho (2008). Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible polyε-caprolactone film. Applied Surface Science. 254:5700-5705.

49. M. Lehocký, H. Drnovská, B. Lapčíková, A. M. Barros-Timmons, T.

Trindade, M. Zembala, and L. L. Jr (2003). Plasma surface modification of polyethylene. Colloids and Surface A: Physicochemical and

77 -Engineering Aspects. 222:125-131.

50. I. Banik, K. S. Kim, Y. I. Yun, D. H. Kim, C. M. Ryu, C. S. Park, G.

S. Sur, and C. E. Park (2003). A closer look into the behavior of oxygen plasma-treated high-density polyethylene. Polymer. 44:

1163-1170.

51. V.Švorčĺk, N. Kasálkvá, P. Slepička, K. Záruba, V. Král, L. Bačáková, M. Pařízek, V. Lisá, T. Ruml,H. Gbelcová, S. Rimpelová, and A. Macková (2009). Cytocompatibility of Ar+ Plasma treated and Au nanoparticle-grafted PE. Nuclear Instruments and Methods in Physic Research B. 267:1904-1910.

52. A. Vesel, I. Junkar, U. Cvelbar, J. Kovac, and M. Mozetic (2008).

Surface modification of polyester by oxygen-and nitrogen-plasma treatment.Surface and Interface Analysis. 40:1444-1453.

53. 강인숙 (2013). O2 플라즈마 처리에 따른 필름기질의 친수 및 소수화 상반효 과. 한국섬유공학회지. 제 50권 4호. 266-274.

54. P. P. Singh, F. Mahadi, A. Roy, and P. Sharma (2009). Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian Journal of Clinical Biochemistry. 24:324-342.

55. A. Vesel, M. Mozetic, and A. Zalar (2007). XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma. Surface and Interface Analysis. 40:661-663.

56. C. M. Chan, T. M. Ko, and H. Hiraoka (1996). Polymer surface modification by plasmas and photons. Surface Science Reports. 24:1-54.

57. M. Chen, P. O. Zamora, P. Som, L. A. Peña, and S. Osaki (2003). Cell attachment and biocompatibility of polytetrafluoroethylene(PTFE) treated with glow-discharge plasma of mixed ammonia and oxygen.

Journal of Biomaterials Science. Polymer edition. 14:917-935.

58. I. Junkar, A. Vesel, U. Cevlbar, M. Mozetič, and S. Strnad (2010).

78

-Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate(PET) polymers. Vacuum. 84:83-85.

59. 원동수, 김태경, 이원규 (2010). 저압 및 대기압 플라즈마 처리를 통한 폴 리카보네이트의 접촉각 변화특성 비교. 공업화학. 제 21권 1호. 21:98-103.

60. J. H. Lee, K. Y. RHee, Y. H. Lee, and H. C. Kim (2009). An application of plasma treatment to improve shear and bending behavior of HDPE/steel composites. 한국물리학회. 54:986-991.

61. A. J. Wagner, D. H. Fairbrother, and F. Reniers (2002). A comparison of PE surfaces modified by generated neutral nitrogen species and nitrogen ions. Plasma and Polymers. 8:119-134.

62. 김승수, 김형우, 김정만, 성진형, 박병기 (1998). 플라즈마 처리한 poly(L-Lactic acid) 표면에서의 골아세포 거동. 한국고분자학회. 22:1014-1019.

63. M. G. Kong, M. Keidar, and K. Ostrikov (2011). Plasma meet nanoparticles-where synergies can advance the frontier of medicine.

Journal of Physics D: Applied Physics. 44:174018.

64. 김철호 (2010). New conversing technology; plasma medicine. 대한이비인 후과학회지. 53:593-603.

65. S. Frank, B. Stallmeyer, H. Kämpfer, N. Kolb, and J. Pfeilschifter (1999). Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. The Journal of the Federation of American Societies for Experimental Biology. 13:2002-2014.

66. S. Bose, M. Roy, and A. Bandyopadhyay (2012). Recent advances in bone tissue engineering scaffolds. Cell Press. 30:546-554.

67. J. Rouwkema, N. C. Rivron, and C. A. V. Blitterswijk (2008).

Vascularization in tissue engineering. Cell Press. 26:434-441.

68. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman (2008). Applied plasma medicine. Plasma Processes and

79 -Polymers. 5:503-433.

69. C. Sarra-Bournet, S. Turgeon, D. Mantovani, and G. Laroche (2006). A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications. Journal of Physics D: Applied Physics. 39:3461-3469.

70. T. P. Rauth, B. K. Poulose, L. B. Nanney, and M. D. Holzman (2007). A comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa-implications for patch repair in ventral herniorrhaphy. Journal of Surgical Research. 143:43-49.

71. Z. Lan, L. Guo-Hua, C. Wei, P. Hua, Z. Gu-Ling, and Y. Si-Ze (2011).

Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric-pressure glow discharge. Chinese Physics B. 20:065206.

72. G. O. Molina, M. T. Oliveira, L. Buss, J. D. F. Peruchi, J. R.

Pereira, and J. S. Ghizoni (2013). Histometric analysis of alveolar bone regeneration with expanded polytetrafluoroethylene(e-PTFE) and latex membranes. Brazilian Journal of Oral Sciences. 12:184-188.

73. H. Hiruma, H. Toida, T. Hanawa, H. Sakuragi, and Y. Suzuki (2011). Ion beam modification of ePTFE for improving the blood compatibility.

Surface and Technology. 206:905-910.

74. C. Y. Tu, Y. C. Wang, C. L. Li, K. R. Lee, J. Huang, and J. Y. Lai (2005). Expanded poly(tetrafluoroethylene) membrane surface modification using acetylene/nitrogen plasma treatment. European Polymer Journal. 41: 2343-2353.

75. D. J. Wilson, R. L. Williams, and R. C. Pond (2001). Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surface and Interface analysis. 31: 385-396.

76. D. Y. Tseng and E. R. Edelman (1998). Effects of amide and amine plasma-treated ePTFE vascular grafts on endothelial cell lining in an

80

-artificial circulatory system. Journal of biomedical Materials Research Part A. 42:188-198.

77. F. Rezaei, B. Shokri, and M. Sharifian (2015). Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties.

Estuarine, Coastal and Shelf Science. 164:471-481.

78. C. Lee, T. Kim, H. Park, and S. S. Yang (2015). Stability improvement of nonthermal atmospheric-pressure plasma jet using electric field dispersion. Microelectronic engineering. 145:153-159.

79. C. W. Kan, C. H. Kwong, and S. P. Ng (2015). Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma. Applied Surface Science. 346:270-277.

80. E. E. L. Oksuz, A. I. Komur, F. Bozduman, N. N. Maslakci, and A. U.

Oksuz (2015). Atmospheric pressure plasma treatment of wool fabric structures. Journal of Electrostatics. 77:69-75.

81. W. C. Ma, C. Y. Tsai and C. Huang (2014). Investigation of atmospheric-pressure plasma deposited hexafluorobenzene fluorocarbon film. Surface and Coatings Technology. 259:290-296.

82. S. Trigwell, D. Boucher, and C. I. Calle (2007). Electrostatic properties of PE and PTFE subjected to atmospheric pressure plasma treatment; correlation of experimental results with atomistic modeling. Journal of Electrostatics. 65:401-407.

83. Y. W. Chen-Yang, C. W. Chen, S. C. Tseng, J. Huang, and Y. Z. Wu (2004). Surface modification of bi-axially expanded poly(tetrafluoroethylene) by plasma polymerization of ethylene.

Surface and Coatings Technology. 176:148-156.

84. E. Njatawidjaja, M. Kodama, K. Matsuzaki, K. Yasuda, and T. Matsuda (2006). Polymerization of acrylic acid on expanded poly(tetrafluoroethylene) tube by APGD plasma treatment. Plasma

81 -Processes and Polymers. 3:338-341.

85. M. Okubo, M. Tahara, Y. Aburatani, T. Kuroki, and T. Hibino (2010).

Preparation of PTFE film with adhesive surface treated by atmospheric-pressure nonthermal plasma graft polymerization. IEEE Transactions on Industry Applications. 46:1715-1721.

86. B. Gupta, A. Srivastava, N. Grover, and S. Saxena (2010). Plasma induced graft polymerization of acrylic acid onto poly(ethyleneterephthalate) monofilament. Indian Journal of Fibre and Textile research. 35:9-14.

87. H. Wang, J. Ji, W. Zhang, Y. Zhang, J. Jiang, Z. Wu, S. Pu, and P.K.

Chu. (2009). Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomaterialia. 5:279-287.

88. H. Wang, J. Ji, W. Zhang, W. Wang, Y. Zhang, Z. Wu, Y. Zhang, and P.

K. Chu (2010). Rat calvaria osteoblast behavior and antibacterial properties of O2 and N2 plasma-implanted biodegradable poly(butylene succinate). Acta Biomaterialia. 6:154-159.

89. T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer (2007).

Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 28: 2175-2182.

90. K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, and L. Gao (2002). Influence of different surface modification treatments on poly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials. 23:1603-1611.

문서에서 저작자표시 (페이지 82-93)

관련 문서